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B cell lymphoma 2 (BCL-2) family proteins play an important role in intrinsic apoptosis.
Overexpression of BCL-2 proteins in acute myeloid leukemia can circumvent resistance to
apoptosis and chemotherapy. Considering this effect, the exploration of anti-apoptotic
BCL-2 inhibitors is considered to have tremendous potential for the discovery of novel
pharmacological modulators in cancer. This review outlines the impact of BCL-2 family
proteins on intrinsic apoptosis and the development of acute myeloid leukemia (AML).
Furthermore, we will also review the new combination therapy with venetoclax that
overcomes resistance to venetoclax and discuss biomarkers of treatment response
identified in early-phase clinical trials.
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INTRODUCTION

Acute myeloid leukemia (AML) is one of the most common hematological malignancies in adults,
with a median age at diagnosis of 68 (1). For the past 30 years, the main treatment has been
chemotherapy alone or combined with hematopoietic stem cell transplantation (HSCT). In 2017,
there was a breakthrough, and several new drugs, including venetoclax and selective B cell
lymphoma-2 (BCL-2) inhibitors, seemed to reshape the therapeutic landscape of AML (2). The
BCL-2 family of proteins plays a significant role in the intrinsic apoptotic pathway. They are also
critical for cell survival and are overexpressed in many tumors, including AML. In addition,
aberrant overexpression of BCL-2 family proteins causes resistance to chemotherapy and is
associated with a poor prognosis (3–7). Recently, BCL-2 inhibitors, such as venetoclax and novel
MCL-1 inhibitors, have shown anti-leukemic activity in preclinical AML models. In 2018,
venetoclax in combination with azacitidine, decitabine, or low-dose cytarabine (LDAC) was
approved for use in untreated patients with AML aged 75 years or older or patients with
comorbidities that preclude the use of intensive induction chemotherapy (8). Here, we review
how they regulate apoptosis and how the targeting of BCL-2 has developed in AML. Furthermore,
we summarize the mechanism of resistance to venetoclax and provide some potential solutions.
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APOPTOSIS AND THE BCL-2 FAMILY

There are twomain pathways for apoptosis: the intrinsic pathway and
the extrinsic pathway (9). The extrinsic apoptotic pathway is initiated
by the interaction of an extracellular ligand and tumor necrosis factor
(TNF) family death receptors. Then, procaspase-8 is activated by the
binding of the death-inducing signaling complex (DISC) to a series of
adaptors, and activated caspase-8 further initiates the caspase-3
cascade, which eventually leads to cell death via apoptosis (10, 11)
(Figure 1). The intrinsic pathway is initiated by internal cellular stress,
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such as DNA damage, growth factor deprivation, and oxidative stress.
These alterations then lead to mitochondrial depolarization, which
allows the release of cytochrome c, which is the hallmark of the
intrinsic apoptotic pathway. Cytochrome c binds to apoptosis
protease-activating factor 1 (APAF1) and procaspase-9, forming an
intracellular “apoptosome” that can activate caspase-9. Then, active
caspase-9 leads to executioner caspase-3 activation (11) (Figure 1).
The BCL-2 family of proteins regulates the intrinsic apoptotic
pathway by controlling mitochondrial outer membrane
permeabilization (MOMP) (12).
FIGURE 1 | The extrinsic and intrinsic pathways to apoptosis. The extrinsic pathway of apoptosis is activated when certain death receptor ligands of the tumour
necrosis factor (TNF) family (such as TNF) engage their cognate death receptors on the plasma membrane, leading to caspase-8 activation via the death-inducing
signalling complex (DISC), which results in apoptosis. The intrinsic pathway of apoptosis is activated by cellular stresses (such as DNA damage, growth factor
deprivation or oxidative stress) and is regulated by BCL-2 family proteins. BH3 proteins bind to and activate pro-apoptotic proteins BAX, BAK and possibly BOK,
which oligomerize in the mitochondrial membranes and release cytochrome c, then interact with apoptosis protease-activating factor 1(APAF1) and initiate caspase
activation that results in apoptosis. Futhermore, BH3-only activator proteins (BID, BIM, Puma and NOXA) directly bind to interact with BAX and BAK to promote
mitochondrial outer membrane permeabilization (MOMP). While the BH3-only sensitizer proteins (BAD, BIK, HRK, BMF, PUMA, NOXA) bind to anti-apoptotic
proteins with higher affinity, freeing the activator proteins from the BH3 binding pockets in the anti-apoptotic proteins and executing cell death by binding to BAX or
BAK. The two pathways converge at activation of the effector caspase-3.
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The BCL-2 gene, whose transcription can be upregulated, was
first discovered as a part of t(14;18) chromosomal translocation
in follicular lymphoma and diffuse large B cell lymphoma (13,
14). It was first recognized as a classical growth-driving
oncogene, but later proved that BCL-2 promotes malignant cell
survival by attenuating apoptosis (15, 16). The BCL-2 family
consists of more than 20 proteins, which may be functionally
classified as either anti-apoptotic or pro-apoptotic proteins (17).
The anti-apoptotic BCL-2 proteins, which include four BCL-2
homology domains (BH1–4), include BCL-2, BCL-XL (BCL-2-
like protein 1), MCL-1 (induced myeloid leukemia cell
differentiation protein MCL-1), BCL-W (Bcl-2-like protein 2),
BFL-1/A1 (BCL-2-related protein A1), and possibly BCL-B (Bcl-
2-like protein 10). The pro-apoptotic proteins can be divided
into effector proteins and BH3-only proteins. The former group
contains three BH domains and includes BAX (BCL-2 associated
X protein), BAK (BCL-2 antagonist killer), and possibly BOK
(BCL-2-related ovarian killer). The latter group possesses only a
single BH3 domain and includes BID (BH3-interacting domain
death antagonist), BIK (BCL2 interacting killer), BIM (BCL-
22L11; BCL2-interacting mediator of cell death), BAD (BCL2
antagonist of cell death), BMF (BCL-2 modifying factor), HRK
(activator of apoptosis hara-kiri), PUMA (p53 upregulated
modulator of apoptosis; also called BBC3 [BCL2 binding
component 3]), and NOXA (PMA induced protein 1; also
called PMAIP1 [phorbol-12-myristate-13-acetate-induced
protein 1]) (11, 17, 18). Once BAX and BAK are activated,
they oligomerize and form pores to induce MOMP, releasing
cytochrome c from mitochondria and finally inducing cell
apoptosis (19). The anti-apoptotic BCL-2 proteins can protect
cells from apoptosis by directly binding to BAX/BAK or
antagonizing pro-apoptotic BH3-only proteins. Furthermore,
the BH3-only proteins can be subdivided into activator and
sensitizer proteins. The activator proteins, which include BID,
BIM, Puma, and NOXA, directly bind to and interact with BAX
and BAK to promote MOMP. The sensitizer proteins bind to
anti-apoptotic proteins with higher affinity, freeing the activator
proteins from the BH3 binding pockets in the anti-apoptotic
proteins and executing cell death by binding to BAX or BAK (20,
21) (Figure 1).

Owing to subtle differences in their BH3 domains and in the
grooves of the anti-apoptotic proteins, the various BCL-2 family
proteins have differential specificity of binding to one another.
For example, BAX and BAK have high affinities for BCL-XL, and
BAK has higher affinities for MCL-1, as do BAX and BCL-2 (22).
Interestingly, some BH3-only proteins, such as BAD and NOXA,
are selective for subsets of their anti-apoptotic relatives, whereas
other BH3-only proteins, particularly BIM, BID, and PUMA,
probably neutralize all of the anti-apoptotic proteins (23)
(Figure 2). In healthy cells, anti-apoptotic proteins and pro-
apoptotic proteins maintain a delicate balance, while cancer cells
overexpress different anti-apoptotic proteins to facilitates
prolonged tumor cell survival (24). A good knowledge of the
roles of BCL-2 family proteins in promoting tumorigenesis
has contributed to the development of numerous novel drugs
targeting aberrant apoptotic pathways in cancer. Thus, targeting
Frontiers in Oncology | www.frontiersin.org 3
BCL-2 family proteins may be a prominent strategy for
cancer therapy.
BCL-2 IN AML

A number of early studies showed that BCL-2 was overexpressed in
CD34+ AML cells and was associated with poor prognosis and
resistance to chemotherapy (25–27). Overexpression of MCL-1 and
BCL-XL also confers chemotherapy resistance in AML (4, 28, 29).
Thus, antisense oligonucleotides targeting BCL-2 were explored and
decreased the number of leukemia cells in vitro (30). A better
understanding of the intrinsic apoptosis pathway has contributed to
the focus on the development of novel small molecules that mimic
the BH3 domain found in all pro-apoptotic BCL-2 family proteins.
These drugs mimic the action of certain pro-apoptotic BH3-only
proteins by binding directly to the BH3-binding domains of anti-
apoptotic molecules, thereby displacing native BH3-only proteins
and thus inducing apoptosis (Figure 1). These protein-protein
interaction inhibitors that directly activate apoptosis represented a
milestone event in medicinal chemistry, as well as in the cell death
field. With the inspired success in B cell lymphoid malignancies,
these new BH3 mimetics have also been used in AML.
EARLY ATTEMPTS TO TARGET
BCL-2 IN AML

Oblimersen
Oblimersen, which can target the first six codons of the human
BCL-2 mRNA, is an 18-mer phosphorothioate Bcl-2 antisense
oligonucleotide. It can increase cancer cell apoptosis and
overcome chemotherapy resistance by binding to BCL-2
mRNA, thus downregulating BCL-2 protein expression (30,
31). The first use in a clinical trial of AML was a phase I study
in relapsed or refractory acute leukemia in which patients
received a combination with fludarabine, cytarabine, and
granulocyte colony-stimulating factor (FLAG) salvage
chemotherapy (32). Seventeen patients with relapsed and
refractory AML and 3 patients with acute lymphoblastic
leukemia (ALL) were recruited. Five of 17 (29%) achieved
complete response (CR), and 2 patients achieved complete
response with incomplete blood count recovery (CRi) (11%),
yielding an objective response of 41%. Furthermore, no dose-
limiting toxicity was observed in any of the cohorts examined.
Another phase 1 trial conducted by the same group combined
two different doses of oblimersen with chemotherapy in
untreated older patients with AML (33). In this trial, 14 of 29
(48%) patients achieved CR, with no significant increase
compared with the previously reported remission rates of 40%
in the absence of oblimersen. The side effects were similar to
those expected with chemotherapy alone and were not dose
limiting at either dose level, which proved that the drug was safe
and tolerable. The preclinical and early clinical data led the
Cancer and Leukemia Group B (CALGB) to conduct a large
November 2020 | Volume 10 | Article 584974
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phase III trial in which older adults with newly diagnosed AML
were randomized to standard induction chemotherapy with or
without oblimersen (34). Regrettably, there were no differences
observed in CR rates (48% vs 52%; p=0.75) or overall survival
rates (OS at 1 year 36% vs 40%; p=0.83), which may lead to no
further trials of this drug in AML. However, the failure of this
trial did not dispel the exploration of BCL-2 inhibitors in AML.

Obatoclax (GX15-070)
Obatoclax is a pan-Bcl-2 antagonist and was the first BH3
mimetic used in clinical trials of AML. It can bind to the BH3
domain of BCL-2 (as well as those of BCL-XL, MCL-1, BCL-w,
A1, and BCL-b) (35) and then prevent the anti-apoptotic
Frontiers in Oncology | www.frontiersin.org 4
proteins from sequestering pro-apoptotic BH3-only proteins.
Obatoclax potently induced apoptosis and decreased leukemia
cell proliferation in AML cell lines and primary AML samples
(36). In a phase I trial of 44 patients with advanced hematological
malignancies, which included 25 AML, 14 myelodysplasia
(MDS), 4 chronic lymphocytic leukemia (CLL), and 1 ALL,
patients showed good tolerance but modest efficacy in the
clinic (37). Only one patient with AML with mixed lineage
leukemia t(9;11) rearrangement achieved complete remission.
In addition, obatoclax had neurological side effects, which
further limited its clinical development. In addition, another
phase I/II study of obatoclax in older patients with previously
untreated AML showed similar results in that obatoclax did not
A

B

FIGURE 2 | The selectivity of BCL-2 family proteins. (A) BAK is inhibited predominantly by BCL-XL, MCL-1 and BFL-1, while BCL-2 contributes in some situations.
However, BAX is probably inhibited by all of the pro-survival proteins. (B) Some BH3-only proteins, such as BAD and NOXA, are selective for subsets of their anti-
apoptotic relatives, whereas other BH3-only proteins, particularly BIM, BID and PUMA, probably neutralize all of the anti-apoptotic proteins.
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seem to be associated with an objective response (38). The failure
of this drug may encourage a future study on its combination
with other new drugs, such as histone deacetylase inhibitors or
sorafenib (39, 40). Furthermore, the insolubility of this
compound also limits its function, so new BH3 mimetics
should be explored.
DUAL BCL-2/BCL-XL INHIBITORS

ABT-737
ABT-737 is a BH3 mimetic with high potency activity against
BCL-2, BCL-XL, BCL-W, and, to a lesser extent, MCL-1. It was
discovered as the first high-affinity inhibitor of BCL-2 family
proteins by using nuclear magnetic resonance (NMR)-based
screening (41). In a preclinical study, ABT-737, which can
effectively trigger Bax/Bak-mediated apoptosis, induced AML
cell apoptosis in vitro, and the same activity was demonstrated in
a murine xenograft model in vivo (42–44). High expression of
MCL-1 and phosphorylation of BCL-2 are associated with
resistance to ABT-737, as they lead to a reduction in MCL-1.
Thus, targeting these changes may be a potential way to enhance
ATB-737 response. For example, ABT-737 could be combined
with pan-Bcl-2 family inhibitors, MEK inhibitors, or PI3K/
mTOR inhibitors (45–47). However, owing to its poor oral
bioavailability and solubility in water, further studies on this
drug are likely to be limited.

Navitoclax (ABT-263)
Navitoclax, which is a derivative of ABT-737, is an improved
orally bioavailable BH3 mimetic with high affinity for BCL-2,
BCL-XL, and BCL-w and substantially lower affinity for MCL-1
than ABT-737 (48). Navitoclax also showed efficacy in AML
preclinical studies (49–51). In early clinical trials, it has shown
activity in CLL and small-cell lung cancer (52, 53). However, it
can cause thrombocytopenia due to its effect on BCL-XL (54–56).
This on-target toxicity of navitoclax has undoubtedly limited its
further development, which prompted AbbVie’s development of
venetoclax (ABT-199).
SELECTIVE BCL-2 INHIBITORS

Venetoclax
Venetoclax is a highly selective small molecule BH3 mimetic
with subnanomolar affinity (Ki<0.01 nM) for BCL-2 and
nanomolar affinity (Ki<245 nM) for BCL-XL. Based on this
feature, it circumvents significant thrombocytopenia due to
concomitant inhibition of BCL-XL, making it clinically
available for the treatment of AML, a disease typically
associated with thrombocytopenia (57, 58). In preclinical
studies, venetoclax induced rapid cell death in AML cell lines
and primary patient samples in vitro and in a mouse xenograft
model in vivo (58). In the study of this drug, mitochondrial BH3
profiling could be used as a biomarker for predicting the
response of AML primary cells to venetoclax in vitro and in a
Frontiers in Oncology | www.frontiersin.org 5
patient-derived xenograft model in vivo. Considering the
preclinical data for ABT-767 and navitoclax and the efficiency
and safety of venetoclax in CLL, venetoclax was immediately
moved into clinical trials.
SELECTIVE BCL-XL INHIBITORS

To date, many studies on BCL-XL inhibitors have focused on
solid tumors (such as breast cancer, non-SCLC, ovarian
cancer, colorectal cancer, and multiple myeloma) because
solid tumors rely on BCL-XL for their survival. Selective
BCL-XL inhibitors include WEHI-539, A-1155463, and
A-1331852 (59–63), and further study may focus on the use
of these inhibitors in AML.
SELECTIVE MCL-1 INHIBITORS

MCL-1 has been shown to play a significant role in promoting
cell survival in AML cell lines (64), and its overexpression in
tumor cells may be associated with resistance to radiotherapy,
chemotherapy, and BH3-mimetics targeting BCL-2/BCL-XL
(65–67). Overexpression of MCL-1 has been identified in many
primary AML cells and as a major factor in the development of
resistance to venetoclax (68, 69). Thus, it led to the development
of MCL-1 inhibitors. There are a number of MCL-1 inhibitors,
and we reviewed several MCL-1 inhibitors that have entered
clinical trials.

To date, S63845 has been identified as the most promising
selective MCL-1 inhibitor. It showed low nanomolar cytotoxic
activity in multiple hematological cancer-derived cell lines in
vitro and potent efficacy in vivo in preclinical mouse models of
diverse hematological malignancies (70). A side-by-side
comparison of BH3 mimetics showed that MCL-1 may be a
more potent therapeutic target than BCL-2 in AML (71).
Therefore, the utilization of S63845 should be the first line of
choice in future clinical trials.

Very little information on S64315 (MIK665) has been disclosed,
with two clinical trials under investigation in patients with AML or
myelodysplastic syndrome (NCT02979366, NCT03672695) (72).

AZD5991, which has high selectivity and affinity for MCL-1, has
been shown to cause an effective apoptotic response in AML cell
lines at a low nanomolar range. Furthermore, AZD5991 binds
directly to the MCL-1 and BAK interaction and was shown to have
potent antitumor activity in vivo, as demonstrated by high tumor
regression in an AML xenograft model. Based on these promising
data, a phase I clinical trial is undergoing relapsed or refractory
hematological malignancies (NCT03218683) (73, 74).

AMG176 is a first-in-class selective MCL-1 inhibitor that is
being studied in humans. It targets the BH3-binding groove of
MCL-1 and thus frees BAX, resulting in activation of the intrinsic
apoptotic pathway. In preclinical studies, it showed potent effects on
AML cell lines, xenograft models, and primary patient samples.
Based on this background, AMG176 is under several clinical
investigations for AML (NTC02675452, NCT03797261) (75, 76).
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CLINICAL USES OF VENETOCLAX

Single-Agent Venetoclax in Patients
With Relapsed/Refractory AML
The first clinical trial of venetoclax in AML was a phase 2 single-
agent study in patients with relapsed/refractory disease or
untreated patients ineligible for intensive chemotherapy (77).
In this study, they recruited 32 patients, with a median age of 71
years, which consisted of 30 relapsed/refractory patients and 2
treatment-naïve patients that were ineligible for intensive
chemotherapy. This study showed a modest overall response
rate of 19% (6/32), with 6% of patients (2/32) achieving CR and
13% of patients (4/32) achieving CRi; another 19% of patients
had anti-leukemic activity that did not meet the criteria for
response. The median duration of remission was only 48 days,
and the median time spent on the study was only 63.5 days. Most
patients had high-risk features, including pre-existing
myelodysplastic syndrome or myeloproliferative neoplasm
(MDS or MPN, 41%), FLT3-ITD mutations (13%), and older
age (median 71 years).

Interestingly, patients with IDH1/2 mutations had a
stronger response, with 4 of 12 (33%) patients achieving
CR/CRi. Moreover, another 2 patients with IDH mutations
demonstrated anti-leukemic activity that did not meet formal
criteria for response due to a lack of hematological recovery.
This is consistent with preclinical studies, in which IDH1/2
mutant AML suppresses the activity of cytochrome c oxidase
and lowers the mitochondrial threshold to trigger apoptosis
upon BCL-2 inhibition (78). Another impressive discovery was
that all 6 patients who achieved CR/CRi received prior
hypomethylating agents, which may lead to the exploration of
its combination with hypomethylating agents. The most
common grade 3/4 adverse events (AEs) were febrile
neutropenia (31%), hypokalemia (22%), and pneumonia
(19%), and no tumor lysis syndrome (TLS) events were
reported. Overall, this study showed that single-agent
venetoclax demonstrated antitumor activity in AML with
good tolerability.

Venetoclax-Based Combinations in
Treatment-Naïve Patients With AML
Preclinical models have proven a synergistic effect upon
combining venetoclax and hypomethylating agents (HMAs) in
AML cell lines and primary AML patient samples (79, 80).
Moreover, studies have shown that azacitidine can reduce the
protein levels of MCL-1, an anti-apoptotic protein that is
associated with potential mechanism of resistance to
venetoclax (81, 82). Based on these data, the combination of
venetoclax with HMAs for the treatment of AML may be a
promising therapeutic approach.

AbbVie launched a phase 1b clinical study (NCT02203773)
that recruited 212 patients over the age of 60 years with
treatment-naïve AML. They conducted a dose escalation and
expansion study of venetoclax (83, 84). At first, a total of 45
patients were enrolled in the dose escalation, a dose of 400 mg of
venetoclax was administered to 10 patients (4 in the azacitidine
Frontiers in Oncology | www.frontiersin.org 6
group, and 6 in the decitabine group), a dose of 800 mg of
venetoclax was administered to 24 patients (12 each in the
azacitidine and decitabine groups), and a dose of 1200 mg of
venetoclax was administered to 11 patients (6 in the azacitidine
group, and 5 in the decitabine group). Although the maximum
tolerated dose was not reached in any group, the 1200 mg dose
led to a high frequency of gastrointestinal AEs (nausea in 82%
and diarrhea in 64% of patients) (83). As a result, the 400 mg and
800 mg dose cohorts for both azacitidine and decitabine were
expanded, and 50 patients were added to each group. This study
demonstrated a remarkable overall response rate of 68% and
included CR and CRi rates of 37% and 30%, respectively. The
median follow-up was 15.1 months, and the median OS for all
groups was 17.5 months. In addition, the patients who received
400 mg venetoclax plus HMA achieved a remarkable CR/CRi
rate of 73% (76% for azacitidine and 74% for decitabine), which
revealed that the combinations with azacitidine or decitabine
were not significantly different and that 400 mg of venetoclax
might be a favorable dose (84, 85). Furthermore, patients with
IDH1/2 mutations, FLT3 mutations, or NPM1 mutations had
CR/CRi rates of 71%, 72%, and 91.5%, respectively. Even patients
with poor risk features showed impressive responses, including
those with high-risk cytogenetics (60% CR/CRi) and TP53
mutant patients (47% CR/CRi). The most common grade 3/4
adverse effects for all groups were thrombocytopenia (47%),
febrile neutropenia (42%), and neutropenia (40%). No
laboratory or clinical TLS was observed. Further studies
explained how this treatment executed anti-leukemia activity.
Leukemic stem cells (LSCs) rely on amino acid metabolism for
oxidative phosphorylation and survival. Venetoclax with
azacitidine was able to induce LSC toxicity in vitro by
decreasing amino acid uptake, as confirmed by decreased a-
ketoglutarate and increased succinate levels, suggesting
inhibition of electron transport chain complex II. These
metabolic perturbations suppress oxidative phosphorylation,
which in turn efficiently and selectively targets LSCs (86, 87).

Similarly, preclinical studies demonstrated that cytarabine
can boost venetoclax activity in AML by reducing MCL-1
levels (88, 89). An open-label, multicenter phase trial phase
1b/2 study of venetoclax in combination with LDAC recruited
82 patients over the age of 60 years (median age 74 years) with
treatment-naïve AML (90). In the dose escalation phase, most
patients needed dose interruption to permit blood count
recovery and had a higher rate of hematological toxicity.
Therefore, a 600 mg dose was recommended for the phase 2
study of the trial. The CR/CRi rate was 54% (CR, 26%; CRi, 28%).
The median OS was 10.1 months, and the median duration of
response was 8.1 months. Fifty-eight patients were treatment
naïve; the CR/CRi rate for this group was 62%, which is similar to
the 67% observed with venetoclax+ HMAs, whereas the group of
patients who had prior HMA exposure only obtained a CR/CRi
rate of 33%. Patients with mutations in NPM1 or IDH1/2
mutations had CR/CRi rates of 89% and 72%, respectively,
which are higher than the average CR/CRi rate. However,
patients with TP53 or FLT3 mutations had worse CR/CRi rates
(30% and 44%, respectively). The most common grade 3/4 AEs
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were febrile neutropenia (42%), thrombocytopenia (38%), and
neutropenia (27%). There were 2 cases of laboratory TLS and no
evidence of clinical TLS.

In addition, a “real-world” report of venetoclax combined with
azacitidine for the same patient populations at the same institution
has been published (91). Thirty-three patients who received
venetoclax + azacitidine off-trial were retrospectively analyzed and
compared with 33 patients who received the same therapy on trial.
The CR/CRi rate was 63.3% for off-trial patients who received
treatment and 84.9% for trial patients, with a median OS periods of
381 days and 880 days, respectively. Although the responses and
survival with venetoclax in real-world AML were inferior to those
treated in a clinical trial, it still remained effective and tolerable
compared with induction chemotherapy.

In summary, venetoclax in combination with HMAs or
LDAC seemed to achieve a positive outcome in similar patient
populations. On the basis of the above-described clinical data,
two phase 3 trials comparing venetoclax + azacitidine/LDAC
with azacitidine/LDAC alone are ongoing (NCT02993523,
NCT03069352). The promising responses observed in these
trials led to the FDA approval of venetoclax in combination
with HMAs or LDAC for treatment-naïve AML patients who
were at least 75 years old or ineligible for intensive induction
chemotherapy because of comorbidities.

Venetoclax-Based Combinations in
Relapsed/Refractory Patients With AML
Less than 10% of patients with relapsed/refractory AML are
cured with current standard chemotherapy. Allogeneic HSCT is
the only realistic hope of a cure for these patients, but only a
minority of patients consider this option (92). There is an urgent
need to explore new strategies for these patients. Several
retrospective studies of relapsed or refractory patients receiving
venetoclax-based therapies have been reported. A single
institution retrospectively analyzed 33 consecutive adults with
relapsed/refractory AML in the real world, and the combination
with HMAs achieved a CR/CRi rate of 33%, which included
patients with no prior HMAs or allogeneic stem cell transplants
(93). However, another series of 39 patients with relapsed/
refractory AML achieved a dismal CR/CRi rate of 12% (8/39)
(94). Moreover, in a series of 90 patients analyzed after either
HMA treatment (51%) or allogeneic stem cell transplant (29%),
the combination of venetoclax and HMAs achieved a CR/CRi
rate of 46% in patients at a younger median age than the former
study (95). Hence, the data revealed that venetoclax-based
combinations may be a potential treatment strategy for
patients with relapsed/refractory AML.
VENETOCLAX RESISTANCE AND
COMBINATION STRATEGIES TO
OVERCOME

Although numerous reports have shown that venetoclax-based
therapies exert a promising effect on AML, they still remain
partly resistant to venetoclax. It is necessary to explore how
Frontiers in Oncology | www.frontiersin.org 7
resistance evolves and how this can be overcome. The
upregulation of MCL-1 protein in AML cells is one of the
most well-known reasons for resistance to treatment with
venetoclax (69). Therefore, targeting MCL-1 directly or
indirectly is a new way to solve the resistance. Moreover,
mitochondrial cristae structure may be another reason for
resistance. Targeting mitochondrial architecture may provide a
promising approach to circumvent it (96). Directly targeting
MCL-1 has been introduced previously.

Here, we introduce several combinations that can reduce the
MCL-1 level indirectly to circumvent the resistance. Indirect
MCL-1 inhibitors include the following compounds:
bromodomain extra-terminal protein inhibitors (BETis), which
reduce MCL-1 and BCL-XL levels while increasing BIM levels
and enhance the lethal effects of venetoclax on AML (97); cyclin-
dependent kinase 9 (CDK9) inhibitors, which inhibit the
transcription of MCL-1 (98); midostaurin or gilteritinib, FLT3
inhibitors that induce downregulation of MCL-1 to increase
venetoclax activity (99); CUDC-907, a dual PI3K and histone
deacetylase inhibitor that downregulates MCL-1, upregulates
BIM, and induces DNA damage (100); MEK inhibitors (101);
MDM2 inhibitors (102); PI3K inhibitors (103); and selinexor, an
XPO1-selective inhibitor (104). In addition, an inhibitor of the
Nedd8-activating enzyme (MLN4924) can upregulate Noxa, and
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR)
inhibitors (statins) can upregulate PUMA. These two pro-
apoptotic proteins, NOXA and PUMA, can neutralize Mcl-1 to
boost the activity of venetoclax (105, 106). Ibrutinib, a Burton’s
tyrosine kinase inhibitor, and ArQule 531, a multi-kinase
inhibitor of Src family kinases and Burton’s tyrosine kinase,
can also synergize with venetoclax (107, 108). Pharmacologic
inhibition of mitochondrial protein synthesis with antibiotics
that target the ribosome, including tedizolid and doxycycline,
can potently reverse venetoclax resistance. Thus, inhibition of
mitochondrial translation may be a new approach to overcoming
venetoclax resistance (109). Owing to these preclinical results, an
increasing number of clinical trials are ongoing.
PREDICTORS OF RESPONSE TO
VENETOCLAX

The specific population that is most suitable for venetoclax
remains unknown. However, recent studies have shown that
mutations in NPM1, RAD21, MLL, or IDH1/IDH2 may predict
venetoclax sensitivity (110, 111). In addition, a FLT3 internal
tandem duplication gain or TP53 loss confers cross-resistance to
both venetoclax and cytotoxicity-based therapies (112).
According to a retrospective analysis, HMA plus venetoclax
produces better results than traditional standard-of-care
regimens in older patients with NPM1+ AML (113). To date,
an increasing number of studies have shown that tumor cells
with an NPM1 or IDH1/IDH2 mutation may more sensitive to
venetoclax. Regarding other mutations, including FLT3 and
TP53, VEN-based therapy may be a more effective therapy
than traditional chemotherapy. Furthermore, blast cells of FAB
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M0/1 AML show higher sensitivity to venetoclax, while
differentiated monocytic cells abundantly present in M4/5
subtypes show resistance to BCL-2 inhibition (114, 115). This
may be associated with decreased expression of BCL-2 and a
reliance on MCL-1 to mediate oxidative phosphorylation and
survival. Therefore, as the number of patients treated with
venetoclax increases, precise predictors of the response will
be revealed.
CONCLUSIONS AND PROSPECTS

Targeting the BCL-2 protein has shown compelling clinical promise
in AML. Venetoclax, a selective BCL-2 inhibitor that was approved
by the FDA for treatment-naïve elderly AML patients, has shown
potential to be further explored. According to a recent study,
previously untreated patients aged 75 years or older who were
ineligible for intensive chemotherapy experienced a longer overall
survival and a higher incidence of remission after treatment with
azacitidine plus venetoclax than patients who received azacitidine
alone (116). In addition, venetoclax+HMA has also been confirmed
to be safe and effective in younger patients (117). Based on the
encouraging results achieved with venetoclax, the scope of
application of venetoclax is expected to be expanded in the near
future for patients who are 75 years of age or older who are not
suitable for standard chemotherapy, and potentially even for
younger patients. In our center, we administer this treatment to
elderly patients and even considered administering it to some young
patients who are sensitive to venetoclax in a previous study. Of
course, more standardized and larger clinical trials are needed to
confirm the safety and effectiveness of VEN in younger patients.
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Chimeric antigen receptor T cells, which have shown exciting
results in B cell lymphocytic leukemia, are another a novel
strategy for AML treatment. What outcomes would occur if
this or other immune therapies was combined with venetoclax?
Moreover, venetoclax-based therapies have shown effects on
some high-risk AML subtypes. Could these therapies be
combined with allogeneic HSCT or be used as a consolidation
therapy after HSCT? Will these therapies affect graft versus-host
disease or graft anti-leukemia? All of these questions remain
unanswered. Furthermore, preclinical studies with MCL-1
inhibitors have demonstrated effective antitumor activity in
AML. Will MCL-1 inhibitors be another promising strategy to
cure AML? In summary, continued efforts to explore BCL-2
family proteins are necessary.
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