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The principles and function of chromatin and nuclear architecture have been extensively
studied in model organisms, such as Drosophila melanogaster. However, little is known
about the role of these epigenetic processes in transcriptional regulation in other insects
including mosquitoes, which are major disease vectors and a worldwide threat for
human health. Some of these life-threatening diseases are malaria, which is caused
by protozoan parasites of the genus Plasmodium and transmitted by Anopheles
mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes
aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp.
In this contribution, we review what is known about chromatin-associated mechanisms
and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes,
and Culex spp. We also discuss the similarities between epigenetic mechanisms in
mosquitoes and the model organism Drosophila melanogaster, and advocate that the
field could benefit from the cross-application of state-of-the-art functional genomic
technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory
genome can lead to the discovery of unique regulatory networks associated with
the parasitic life-style of these insects. It is also critical to understand the molecular
interactions between the vectors and the pathogens that they transmit, which could hold
the key to major breakthroughs on the fight against mosquito-borne diseases. Finally,
it is clear that epigenetic mechanisms controlling mosquito environmental plasticity
and evolvability are also of utmost importance, particularly in the current context of
globalization and climate change.

Keywords: epigenetics, ATAC-seq, ChIP-seq, vector-borne diseases, transcriptional regulation, chromatin 3D
architecture

INTRODUCTION

In recent years, there has been an explosive growth of studies focused on the multiple layers
of chromatin organization in metazoans and their function controlling genome activity (Sexton
and Cavalli, 2015; Bonev and Cavalli, 2016). These studies have revealed a major complexity and
plasticity of the 3D genome structure, which must be robust in time as well as flexible enough to
allow for effective responses to environmental constraints. Yet, most evidence is still restricted to
laboratory conditions and model organisms, such as the fruit fly Drosophila melanogaster (Sexton
et al., 2012; Rowley et al., 2017).

Mosquitoes, such as Anopheles, Aedes, and Culex spp., are a major global health concern
because they are vectors of life-threatening diseases. These include malaria, dengue, filariasis, or
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Zika, West Nile, and Chikungunya fevers, which cause millions
of deaths yearly in Africa, Asia, and South America. Despite
the fact that there have been considerable advances in the field
of mosquito genomics, little is known about their regulatory
genome and the epigenetic regulation of gene expression, in
particular in the context of an infection (Shaw and Catteruccia,
2019; Compton et al., 2020b). These gaps of knowledge are
critical, considering the natural variability in their transmission
potential (i.e., vector competence, which is dependent on
environmental factors), and their ability to adapt rapidly to new
environments. Notably, the evolution and spread of insecticide-
resistant mosquitoes are rendering current approaches to fight
disease useless. This, together with the increasing ineffectiveness
of available drugs against the pathogens, has promoted the
development of advanced gene editing strategies for vector and
disease control (Shaw and Catteruccia, 2019; Li et al., 2020).
While harboring great potential, these technologies require a
comprehensive knowledge about mechanisms of transcriptional
regulation in the targeted organisms, as well as a detailed
characterization of the gene regulatory networks operating at
different developmental stages and in different tissues.

The focus of this review is to provide an overview of
studies that have begun to describe the mechanisms of
transcriptional regulation in vector mosquitoes, including 3D
genome organization, chromatin structure, and epigenetic
mechanisms, mainly in Anopheles, which is the most intensively
studied genus, but also in Aedes and Culex spp. We also aim
to discuss the gaps that remain unexplored in these insects,
in particular, how the regulatory genome changes dynamically
through development and which are the epigenetic mechanisms
underlying regulatory plasticity in response to external stimuli.
Finally, we advocate that such new insights into mosquito
biology can be revolutionary in the field and are fundamental to
overcome the plasticity and adaptation of these deadly insects to
environmental heterogeneity in the efforts to eradicate old and
novel infectious diseases.

3D GENOME ORGANIZATION

The genome organization within the nucleus has different
components, such as the distribution of chromosomal territories,
the intra- and inter-chromosomal contacts, and the attachment
with the nuclear envelope (Deng and Blobel, 2014; Misteli,
2020; Figures 1A,B). Importantly, the spatial configuration of
the genome has been shown to play a role in orchestrating
tissue-, cell-, and stage-specific transcriptional regulation during
development and in differentiation, pathogenesis, as well as in
response to external stimuli (Cremer et al., 2014; Belyaeva et al.,
2017; Cattoni et al., 2017; Rowley et al., 2017; Finn and Misteli,
2019; Ing-Simmons et al., 2020). Studies on Drosophila have been
a rich source of information about the way the metazoan genome
is organized and compartmentalized at the 3D level (Sexton
et al., 2012; Rowley et al., 2017) and the functional consequences
of changes in genome topology, with many general principles
of Drosophila chromatin organization and dynamics being
evolutionary conserved (Rowley et al., 2017). Similar studies in

disease-vector mosquitoes have just started to emerge (Sharakhov
and Sharakhova, 2015; Wiegmann and Richards, 2018; Li F.
et al., 2019; Ruzzante et al., 2019; Compton et al., 2020b).
Traditional physical mapping approaches, such as FISH and
optical mapping, have been applied in Ae. aegypti (Sharakhova
et al., 2011; Timoshevskiy et al., 2013, 2014), Cx. quinquefasciatus
(Naumenko et al., 2015), Cx. tarsalis (Little, 2020), and several
Anopheles species (Cornel and Collins, 2000; Sharakhov et al.,
2002, 2004, 2016; Sharakhova et al., 2010; George et al., 2010,
2020; Xia et al., 2010; Jiang et al., 2014; Artemov et al., 2015,
2017, 2018; Neafsey et al., 2015; Wei et al., 2017; Lukyanchikova
et al., 2020; Waterhouse et al., 2020), and they contributed not
only to the improvement of the genomes annotation, by assessing
the ordering and orientation of the contigs and scaffolds, but also
to the study of the organization of centromeres in different cell
types (Sharakhova et al., 2019; Lukyanchikova et al., 2020). The
advantage of these methods is that they make genome mapping
more generalizable to non-model mosquitoes (Sharakhova et al.,
2019). Hi-C is a high-throughput sequencing technique based on
chromosome conformation capture that aims to study the 3D
genome folding and chromatin interactions by measuring the
frequency of contacts between loci (van Berkum et al., 2010).
Until recently, the application of Hi-C had been limited to
the improvement of the genome assembly of several mosquito
species: Culex quinquefasciatus (Dudchenko et al., 2017), Aedes
aegypti (Dudchenko et al., 2017; Matthews et al., 2018), Ae.
albopictus (Palatini et al., 2020), Anopheles albimanus (Compton
et al., 2020a), An. funestus (Ghurye et al., 2019a,b), An. stephensi
(Chakraborty et al., 2020), An. coluzzi (Zamyatin et al., 2020),
and An. arabiensis (Zamyatin et al., 2020). Lukyanchikova et al.
(2020) recently applied Hi-C to map genome-wide chromatin
contacts in five Anopheles species (An. coluzzi, An. merus, An.
stephensi, An. atroparvus, and An. albimanus), revealing unique
features of their 3D genome structures. For example, this work
delineated five scaffolds that correspond to known chromosomes
(X, 2R, 2L, 3R, 3L) and revealed several regions characterized
by butterfly contact patterns, that is, splits between chromatin
blocks in the Hi-C map that are typically associated with
chromosomal rearrangements, which in the case of Anopheles
correspond to known balanced inversions (Corbett-Detig et al.,
2019; Lukyanchikova et al., 2020).

Topologically Associating Domains (TADs) are considered
to be the basic units in the genome structure and function
(Dixon et al., 2012; Szabo et al., 2018; Misteli, 2020). In
mosquitoes, as in other metazoans, these TADs correspond
to regions of the genome with a high degree of contacts that
reflect the regulatory events that are taking place (Dixon et al.,
2012; Cubenas-Potts and Corces, 2015; Chen et al., 2018;
Figures 1C,D). As expected based on the TADs found in
Drosophila (Eagen et al., 2015; Ulianov et al., 2016), Anopheles
spp. chromosomes appear to be partitioned into two non-
overlapping compartments: euchromatin (A-compartments)
and heterochromatin (B-compartments). TADs found in
A-compartments tend to be smaller and are associated with
active gene expression, while longer TADs in B-compartments
are gene-poor and correspond to regions with low levels of gene
expression (Lukyanchikova et al., 2020; Figure 1C). The Hi-C
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FIGURE 1 | The regulatory genome of mosquitoes. (A) In Anopheles mosquitoes, as previously described for Drosophila (Moretti et al., 2020), the attachment of
the chromatin fiber to the nuclear envelope and lamina contributes to the organization and functional 3D structure of the genome, and it determines the contact
frequencies between and within chromosomes (George et al., 2020; Lukyanchikova et al., 2020). (B) The Rabl-like configuration described in Anopheles spp.

(Continued)
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FIGURE 1 | Continued
would contribute to the reduction of DNA entanglement by attaching heterochromatic centromeres and telomeres at opposite poles of the cell (George et al., 2020;
Lukyanchikova et al., 2020). Panels A and B are partly adapted from Figure 4B in Lukyanchikova et al. (2020). (C) A representation of Topologically Associating
Domains (TADs). First panel shows chromosomal territories inside the nucleus. Panels with higher magnification show the regulatory landscape (not to scale)
reported by Ahanger et al. (2013), around the An. gambiae Hox genes cluster known as the bithorax complex, which is conserved in D. melanogaster (Ahanger
et al., 2013). The name of some known insulators in Drosophila that seem to be conserved in An. gambiae are included. (D) Model of transcriptional regulation
based on the extrusion of chromatin loops, which allows for the interaction between cis-regulatory elements (i.e., enhancers) and their target promoters. One
example is the lrim1 gene and its enhancer region, which was characterized using STARR-seq in An. coluzzi (Nardini et al., 2019). How the interaction between the
enhancer and the lrim1 promoter alters the chromatin structure and the transcriptional status of the gene remains to be studied. (E) Model of the mechanisms of
transcriptional regulation in mosquitoes. Chromatin structure is dynamic during development or in response to external stimuli. Post-translational modifications of
histones control transcription by recruiting chromatin modifiers or by modulating the accessibility of regulatory proteins. Transcription factors bind to regulatory
sequences in accessible regions and activate or repress transcription. Certain histone modifications, such as H3K27ac, are enriched at accessible regions and active
genes, whereas others such as H3K27me3 are associated to gene silencing and heterochromatin (Gómez-Díaz et al., 2014; Ruiz et al., 2019). Adapted from Ruiz
and Gómez-Díaz (2019). (F) Snapshot of the genomic region in An. gambiae containing the lrim1 gene and its enhancer region located 2 Kb upstream. This
enhancer was originally described and validated in An. coluzzi by Nardini et al. (2019). The chromatin accessibility and gene expression profiles obtained for this
region in An. gambiae (Ruiz et al., 2020) are included. According to Ruiz et al. (2020), lrim1 is differentially expressed between midguts and salivary glands, and this
is associated with differential chromatin accessibility at the enhancer region (pink box). Adapted from Ruiz et al. (2020).

study by Lukyanchikova et al. (2020) defined 200–400 Kb as
the characteristic TAD length in Anopheles, which is similar to
the typical length that they defined for D. melanogaster TADs,
and smaller than the TAD length reported in Ae. aegypti, of
around 500–800 Kb. In addition, by studying chromatin contact
probability they found that, as expected, contact frequency
decays as a function of genomic distance between chromatin
loci, but this happens non-uniformly (i.e., in two different decay
phases, with the second phase falling sharply), meaning that
short-range interactions occur more frequently. Accordingly,
the vast majority of Anopheles loops are less than 1 Mb-sized,
but they also found a number of long chromatin loops (2–6
loops of dozens of megabases, up to a distance of 31 Mb) that
appear to be evolutionary conserved between Anopheles spp.
(Lukyanchikova et al., 2020). Compared to Drosophila, these Mb-
scaled loops represent extremely long-range interaction contacts
(Lukyanchikova et al., 2020). Strikingly, they do not appear to be
associated with the clustering of active genes and also display low
levels of H3K27me3 enrichment, which indicates that neither
correspond to Polycomb-mediated loops. These findings have led
the authors to suggest new principles of 3D genome organization
in Anopheles spp. With regards to the functionality of these
TADs in mosquitoes, we know relatively little. Despite some
controversy on whether genome conformation or transcription is
more important to gene control (Ing-Simmons et al., 2020), it is
well-established that TAD structure plays a role in transcriptional
regulation (Beagan and Phillips-Cremins, 2020). Several studies
in Drosophila and other eukaryotes have shown that disruption
of TAD boundaries and TAD rearrangements alter enhancer-
promoter interactions and dysregulate gene expression (Liao
et al., 2020). This has led to suggestions that TAD structure
should be highly evolutionary constrained between related
species, for example, across dipterans. Indeed, TADs have been
shown to be conserved across Drosophila species (Renschler
et al., 2019; Liao et al., 2020; Torosin et al., 2020). However, the
differences in TAD length reported above between Anopheles
spp., Ae. aegypti, and D. melanogaster suggest some of these
TADs could be mosquito species- or genus-specific. Further
work profiling TADs in different mosquito species and tissues,
combined with epigenomic and transcriptomic data, for example,

by using HiChIP experiments, could support the conclusion
that these variable patterns in mosquitoes reflect different
cis-regulatory mechanisms.

Architectural proteins are important regulators of the 3D
genome organization in metazoans that contribute to the
establishment of interactions between regulatory elements across
multiple spatial scales (Gomez-Diaz and Corces, 2014; Misteli,
2020). Different protein combinations are present in the genomes
at specific binding sites, generally at TAD boundaries, and
they show varied roles in genome organization and function.
For instance, they may have an insulator function preventing
unspecific enhancer-promoter communication, and/or mediate
the interaction with the proper target promoter by chromatin
looping (Gomez-Diaz and Corces, 2014). Five insulator proteins
have been found in D. melanogaster, but only CTCF has
orthologs in other phyla (Ong and Corces, 2014; Schoborg and
Labrador, 2014). Interestingly, other Drosophila architectural
proteins, such as Su(Hw), CP190, and GAF, also have orthologs
in mosquito genomes, including Anopheles spp., Ae. aegypti,
and Cx. quinquefasciatus (Kriventseva et al., 2019; Thurmond
et al., 2019). Initial studies about CTCF in An. gambiae and
Ae. aegypti also reported that the protein is constitutively
expressed and binds to known insulator sequences (Gray
and Coates, 2005). Their role is further supported by the
findings regarding the Hox complex of Drosophila, which
contains several architectural proteins binding sites at the genes
boundaries that appears to be conserved inAn. gambiae (Ahanger
et al., 2013; Figure 1C). Some boundary elements in An.
gambiae were also functionally validated in enhancer-blocking
assays in transgenic flies, demonstrating that they function as
insulators to the same extent as other endogenous architectural
proteins in the fly, such as Fab-7 and Fab-8 (Figure 1C;
Ahanger et al., 2013). Exploring which are the regulatory
binding sequences and the architectural proteins controlling
TADs function in mosquitoes will likely contribute to a better
understanding of the molecular machinery regulating genome
structure and function.

The spatial organization of the genome within the nucleus
is also known to be controlled by chromatin interactions with
the nuclear envelope (Cavalli and Misteli, 2013; Figure 1A).
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In Anopheles spp., the nuclear envelope attachment has been
proposed to reduce topological entanglement of chromosomes
(George et al., 2020; Lukyanchikova et al., 2020), and Hi-
C data supports a Rabl-like configuration, as in Drosophila
(Moretti et al., 2020). This is characterized by the clustering of
centromeres and telomeres to the nuclear envelope at opposite
poles of the nucleus, and the more elongated shape of the
chromosome territories (Wilkie et al., 1999; Lukyanchikova et al.,
2020; Figure 1B). However, when comparing the results of
experiments in Anopheles spp. embryos with those in adults of
An. merus, the Rabl-like configuration was less pronounced in
the adult tissues (Lukyanchikova et al., 2020). Another study
using confocal microscopy and FISH in three Anopheles spp. (An.
gambiae, An. coluzzi, and An. merus) (George et al., 2020) found
chromosome territories that appeared ellipsoidal in shape, not
spherical, as in mammals (Khalil et al., 2007; Sehgal et al., 2014).
This is important because these various shapes can influence
the distance and frequencies of the spatial interactions in the
genome (Lukyanchikova et al., 2020). Given these incongruities,
it would be necessary to study the dynamics of this configuration
considering different species tissues, and developmental stages.

Taken together, the studies above have been pioneers in the
characterization of the 3D genome organization in mosquitoes
and provided first insights into how it relates to transcriptional
regulation. However, a considerable amount of work is still
needed to unravel fundamental processes such as TAD formation,
maintenance and function, the role of architectural proteins in
mediating chromatin looping, or the formation and function of
Polycomb and trithorax complexes.

CHROMATIN STRUCTURE AND
REGULATION OF GENE EXPRESSION

Together with the spatial genome organization within the
nucleus, the local structure of chromatin also contributes to
transcriptional regulation. Post-translational modifications
of histone tails, such as methylation, acetylation, and
phosphorylation, can significantly alter chromatin accessibility
and protein binding at regulatory regions, and this in turn
affects gene expression (Sharakhov and Sharakhova, 2015;
Figure 1E). The histone modifications landscape seems to be
generally well-conserved between Drosophila and Anopheles spp.
(Gómez-Díaz et al., 2014; Ruiz et al., 2019; Ruiz et al., 2020).
Unfortunately, no available data exists for mosquito species
of the genera Aedes and Culex. In the case of An. gambiae,
Gómez-Díaz et al. (2014) profiled the transcriptome by RNA-seq
and the global occupancy of H3K27me3 and H3K27ac histone
modifications by Chromatin Immunoprecipitation sequencing
(ChIP-seq). This allowed the identification of various chromatin
states that correlate with tissue-specific functions, and resemble
those previously found in D. melanogaster (Kharchenko et al.,
2011; Negre et al., 2011). For instance, the authors reported
mutually exclusive distribution of H3K27ac and H3K27me3:
H3K27ac enrichment was found downstream from transcription
start sites (TSSs) of active genes, while H3K27me3 filled broader
intergenic regions and appeared associated with heterochromatic

clusters of silenced genes, which correspond to Drosophila
Polycomb-associated domains. Another study interrogated the
dynamics of histone modification patterns in An. gambiae in
the context of an infection by the malaria parasite Plasmodium
falciparum (Ruiz et al., 2019). In particular, the authors examined
changes in the abundance of various active and repressor
histone modifications (H3K9ac, H3K27ac, H3K4me3, and
H3K9me3) in infected and uninfected An. gambiae mosquitoes.
This comparison allowed the identification of regions with
changing histone modifications profiles that annotated to
malaria-responsive genes involved in immune functions, such
as antimicrobial peptides, CLIP proteases, or members of the
melanization and complement systems. Overall, these studies
have given an initial view of the histone modifications landscape
in malaria mosquito vectors and their implications in chromatin
regulation, providing evidence that they play a key role in
directing transcriptional responses to environmental stimuli,
such as a parasitic infection. Yet, a precise characterization of
the underlying mechanisms is still lacking, including the writers
and erasers that modulate histone modifications dynamics and
the readers that can interpret them. Whether these epigenetic
patterns are evolutionary conserved in other mosquito species
also requires further investigation.

Another area in the mosquito field that is accumulating new
evidence is the characterization and mapping of cis-regulatory
elements (CREs), i.e., regions of non-coding DNA that are
involved in the transcriptional regulation of their neighboring
genes (Li et al., 2011; Voss and Hager, 2014; Reiter et al.,
2017). These regulatory elements include sequences such as
promoters, enhancers, and silencers. Thousands of CREs have
been discovered in Drosophila over the last decades (Gallo et al.,
2006, 2011; Halfon et al., 2008; Kvon et al., 2014; Slattery et al.,
2014; Vizcaya-Molina et al., 2018; Rivera et al., 2019; Gao and
Qian, 2020), and this knowledge has enabled some progress
about their existence and function in various mosquito species,
including An. gambiae, Ae. aegypti, and Cx. quinquefasciatus
(Sieglaff et al., 2009; Ahanger et al., 2013; Kazemian et al.,
2014). While there have been many studies characterizing the
regulatory sequences of specific genes, for example, for the sog
gene controlling the dorsal-ventral patterning in Ae. aegypti
(Behura et al., 2016; Suryamohan et al., 2016; Mysore et al.,
2018), and An. gambiae (Goltsev et al., 2007; Cande et al.,
2009; Kazemian et al., 2014), or the cytochrome P450 Cyp9m10
gene involved in insecticide resistance in Cx. quinquefasciatus
(Itokawa et al., 2011; Wilding et al., 2012), the vast majority of
mosquito CREs reported to date are computational predictions
and/or still lack experimental verification (Sieglaff et al., 2009;
O’Brochta et al., 2012; Ahanger et al., 2013; Kazemian et al.,
2014; Price et al., 2015; Behura et al., 2016; Perez-Zamorano
et al., 2017; Mysore et al., 2018; Nardini et al., 2019; Ruiz et al.,
2019, 2020; Brody et al., 2020). The application of state-of-the-art
methods for the genome-wide profiling of chromatin accessibility
that allow the identification of functional CREs is therefore
crucial. The first studies in this area used Formaldehyde-Assisted
Isolation of Regulatory Elements (FAIRE-seq) (Giresi et al.,
2007) for the discovery of active regulatory sequences in the
genomes of An. gambiae (Perez-Zamorano et al., 2017) and Ae.
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aegypti (Behura et al., 2016; Mysore et al., 2018). The study
by Mysore et al. (2018) reported a set of CREs driving tissue-
specific gene expression in neurons of the olfactory system of
Ae. aegypti. For example, they studied some CREs that are
adjacent to odorant receptor (Or) genes and TFs that regulate
Or expression in the adult antennae, such as orco, Or1, Or8,
and fru, which also drove transgene expression in Drosophila.
On the other hand, the study by Behura et al. (2016) also
reported a set of active regulatory sequences in whole Ae.
aegypti embryos, which were functional in transgenic Drosophila
reporter assays for multiple tissues. While these studies represent
the first chromatin accessibility maps in mosquitoes, the FAIRE-
seq technique displays low resolution and limited accuracy in
identifying DNA-protein binding events. In contrast, the Assay
for Transposase Accessible Chromatin with sequencing (ATAC-
seq) has emerged as one of the most powerful approaches for
genome-wide chromatin accessibility profiling, allowing a more
precise identification of regulatory regions, such as promoters,
TSSs, or enhancers, as well as the prediction of TF binding
events (Buenrostro et al., 2013; Karabacak Calviello et al., 2019;
Li Z. et al., 2019; Li, 2020). A recent study using ATAC-seq
in combination with RNA-seq in different An. gambiae tissues
(Ruiz et al., 2020) revealed a precise genome-wide map of CREs
involved in the control of tissue-specific gene expression and
predicted in vivo binding sites of relevant transcription factors.
Results showed that a great portion of regulatory sites are located
at introns, followed by those annotated to TSSs and exons,
suggesting a predominant role of intragenic CREs in mosquito
transcriptional regulation. They also combined the ATAC-seq
data and a homology-based sequence prediction from Drosophila
to identify CTCF-like binding sites that could function as
insulators. Furthermore, by comparing chromatin accessibility
and transcriptional profiles at different tissues, this study allowed
for the functional characterization of hundreds of enhancers
and TSSs, some of which appear to control genes involved in
Anopheles responses against Plasmodium infection (Figure 1F).
This data is of great potential in the pursuit of new vector-
control and anti-malaria strategies. Future work applying gene
editing techniques to confirm the novel An. gambiae enhancers,
together with ChIP-seq experiments of the predicted TFs, would
be valuable tools in further validating these CREs. These results
also open the door to similar ATAC-seq experiments in other
mosquitoes that are vectors of major diseases including Aedes and
Culex spp.

ADDITIONAL LAYERS OF EPIGENETIC
REGULATION

One basic epigenetic mechanism that mediates local chromatin
structure and gene activity in metazoans is DNA methylation,
which involves the covalent transfer of a methyl group to
the cytosines by the action of several DNA methyltransferases
(Kumar et al., 2018). The methylated state alters gene expression
by recruiting repressors or by inhibiting the binding of
transcription factors. However, dipterans belonging to the
“Dnmt2 only” organisms do not contain any of the canonical

DNA methyltransferases (Dnmt1 and Dnmt3) (Krauss and
Reuter, 2011; Bewick et al., 2017; Provataris et al., 2018;
Lewis et al., 2020). The remaining Dnmt2 does not appear to
methylate DNA, but instead it methylates tRNA (Goll et al.,
2006; Bewick et al., 2017). Despite some authors arguing that
Dnmt2 may serve as a methyltransferase of both specific DNA
and tRNA targets (Krauss and Reuter, 2011), the level of 5-
methylcytosine found in D. melanogaster (<0.5%), is very low
compared to the levels in other metazoans and seems to be
restricted to embryonic development (Gowher et al., 2000; Lyko
et al., 2000; Marhold et al., 2004; Phalke et al., 2009; Krauss
and Reuter, 2011; Zhang et al., 2015; Bewick et al., 2017).
In An. gambiae, initial studies reported 0.49% of methylation
based on slot blots and capillary electrophoresis (Marhold et al.,
2004). More recently, there have been other studies that analyzed
DNA methylation in various mosquito species using whole-
genome bisulfite sequencing (Falckenhayn et al., 2016; Bewick
et al., 2017). Falckenhayn et al. (2016) reported the lack of
DNA methylation and known DNA methyltransferases in Ae.
aegypti. Bewick et al. (2017) analyzed several dipterans, including
Ae. aegypti, Ae. albopictus, Cx. quinquefasciatus, An. gambiae,
and D. melanogaster, showing genome-wide methylation levels
very close to 0%. Contrarily, DNA methylation was present
in all other orders of insects with variable levels reaching
10–15%. The low levels of DNA methylation in dipterans
are consistent with the proposed residual role of Dnmt2 as
RNA methyltransferase. However, the functional significance
of Dnmt2-mediated methylation is being challenged in recent
years (Takayama et al., 2014; Lewis et al., 2020). For example,
this mechanism has been suggested to be involved in immune
responses in D. melanogaster (Durdevic and Schaefer, 2013;
Bhattacharya et al., 2020), and in this species the encoding
gene has been shown to display positive selection signatures
(Bhattacharya et al., 2020). In mosquitoes, Ye et al. (2013)
showed changes in the methylation patterns of Ae. aegypti linked
to Wolbachia infection, but the link with Dnmt2 remained
unclear. More recently, Claudio-Piedras et al. (2019) reported
that the pharmacological inhibition of the methyltransferase
activity (Dnmt2) impacted An. albimanus larval viability and
susceptibility to the malaria parasite Plasmodium berghei,
and these changes in the phenotype were accompanied with
changes in global levels of DNA methylation detected by
immunodetection (dot blot). Further, using an in silico analysis,
this study identified components of a methylation system in
An. albimanus, including the genes mbd, tet2, and dnmt2.
Together, these results suggest a functional role of Dnmt2-
mediated methylation in the mosquito response to infection,
but this study has some caveats. First, the precise relationship
between the decitabine and azacytidine treatments with genome-
wide transcriptional regulation was not assessed (Claudio-
Piedras et al., 2019). Second, the systemic cytotoxic effects of
these treatments are known from studies in other organisms,
including Drosophila (Katz, 1985; Cunha et al., 2002). In
these studies, the effects and toxicity of the drugs have been
shown to be variable across developmental stages, tissues,
and cell types (Laurent et al., 2010; Foret et al., 2012;
Rasmussen et al., 2016; Cook et al., 2019) and also depend on
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the drug dosage (Yang et al., 2006; Cook et al., 2019). The study
by Claudio-Piedras et al. (2019) did not report toxicity in
the mosquito An. albimanus using a concentration of 50 µM.
Cunha et al. (2002) tested a range of concentrations from 25 to
250 µM in D. melanogaster, showing global mutagenic activity
independently of the dose. The mutagenic effects of this drug
on DNA, which is the result of the formation of the Dnmt2-
nucleoside adduct and the subsequent repair, is expected to
be proportional to the number of cytosines in the DNA that
are targeted by Dnmt2. Therefore, such a global toxicity does
not seem to agree with the Diptera’s low Dnmt2 activity, and
instead a marginal effect would be expected (Stresemann and
Lyko, 2008; Cook et al., 2019). Beyond these initial observations,
to validate the function of DNA methylation in mosquitoes, it
will be necessary to silence the Dnmt2 enzyme, with iRNA or
CRISPR/cas9, and to study the genome-wide effects at the level
of DNA methylation, using bisulfite sequencing, and at the level
of gene expression by RNA-seq.

Another field that has experienced considerable advances
in recent years is the study of mosquito non-coding RNAs,
particularly micro-RNAs (miRNAs). Whether these RNA species
can be considered truly epigenetic is still the subject of intense
debate, but it is now clear that they play important functions in
several chromatin-associated processes, including: RNA directed
gene silencing, chemical (i.e., Xist) and structural changes to
chromatin (i.e., enhancer RNAs), and mediation of the regulation
of gene promoters (Kurokawa et al., 2009; Wang et al., 2011;
Lam et al., 2014; Maleszka, 2016; Moutinho and Esteller, 2017).
In mosquitoes, their role in the regulation of gene expression
at the transcriptional and post-transcriptional levels has been
shown to contribute to physiological and immune pathways,
and to affect processes such as development, metabolism, blood
digestion, host-pathogen interactions, and insecticide resistance
(Li et al., 2009; Bryant et al., 2010; Liu et al., 2014; Lucas
et al., 2015; Tian et al., 2016; Zhang et al., 2016; Feng et al.,
2018; Fu et al., 2020). The type and abundance of miRNAs vary
across mosquito species, between sexes, stages, tissues, and organs
(Feng et al., 2018), with some being specific and evolutionary
conserved (Li et al., 2009; Skalsky et al., 2010). Regarding their
mechanisms of action, a recent study used CLEAR-CLIP to build
miRNA-mRNA interaction networks during egg maturation in
female An. gambiae (Fu et al., 2020) and revealed multi-target
interactions, so some miRNAs may use different regions to bind
several targets without changing their sequence. This implies a
considerable expansion of the miRNA target repertoire, allowing
mosquitoes to regulate a more diverse array of target genes in
a tissue- and stage-specific manner. Despite this diversity, few
miRNAs have been functionally validated. This is the case of the
ovarian-specific miRNA-309, whose silencing in Ae. aegypti led to
repression of genes involved in development, sex determination,
and chromatin regulation (Zhang et al., 2016). Other studies
have focused on miRNAs involved in the regulation of mosquito-
pathogen interactions. In particular, four miRNAs have been
shown to be altered upon An. gambiae infection by the rodent
malaria parasite P. berghei, whereas the silencing of Dicer1 and
Ago1 increased parasite survival (Winter et al., 2007). Another
case is miR-2940, which has been reported to be upregulated in

Wolbachia- and arbovirus-infected Ae. aegypti and Ae. albopictus
mosquitoes (Skalsky et al., 2010; Hussain et al., 2011, 2013; Zhang
et al., 2013; Slonchak et al., 2014). This miRNA upregulates the
metalloprotease m41 FtsH, which is required for efficient West
Nile Virus replication (Slonchak et al., 2014) and Wolbachia
infection (Hussain et al., 2011), and it also downregulates the
dnmt2 gene, which is required for dengue replication (Zhang
et al., 2013). Similarly, Ae. aegypti miR-375 may play a role in
dengue virus infection by controlling the immune function of
the transcription factors cactus and REL1 (Hussain et al., 2013),
and miR-92 and miR-989 were differentially expressed in Cx.
quinquefasciatus after West Nile Virus experimental infections
(Skalsky et al., 2010). Altogether, the studies above illustrate
well the implications and relevance of the study of RNA–
chromatin interactions in mosquitoes, an area that calls for
future research.

CONCLUDING REMARKS

Collectively, the evidence discussed in this review points
to multiple epigenetic mechanisms controlling transcriptional
regulation during development and the dynamic responses of
mosquitoes to the environment. The principles governing the
chromatin structure and 3D organization of the genome appear
to be mostly conserved between the few mosquito species studied,
and the patterns are in most cases shared with Drosophila. There
are, however, some exceptions that remain to be confirmed,
for example, the existence of Polycomb-independent chromatin
looping mechanisms or the still controversial role of DNA
methylation. Areas for further work include the functional
validation and characterization of the recently described
enhancer maps in different mosquito tissues and stages, and
the identification of the molecular components and mechanisms
regulating the architecture and function of the mosquito genome.
These advancements would not only serve to gain new knowledge
on the biology of these organisms, but they could also inform
novel mosquito control strategies that block disease transmission.
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