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Abstract

Inflammation plays an important role in the pathogenesis of intervertebral disc (IVD)

degeneration. The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) has

shown markedly higher expression in degenerated human disc tissue compared with

healthy controls. Anti-inflammatory treatment targeting TNF-α has shown to allevi-

ate discogenic pain in patients with low back pain. Therefore, in vitro and ex vivo

inflammatory models utilizing TNF-α provide relevant experimental conditions for

drug development in disc degeneration research.

The current method article addressed several specific questions related to the model

establishment.

(a) The effects of bovine and human recombinant TNF-α on bovine nucleus pulposus

(NP) cells were compared. (b) The required dose for an inflammatory IVD organ cul-

ture model with intradiscal TNF-α injection was studied. (c) The effect of TNF-α

blocking at different stages of inflammation was evaluated.

Outcomes revealed that bovine and human recombinant TNF-α induced equivalent

inflammatory effects in bovine NP cells. A bovine whole IVD inflammatory model was

established by intradiscal injection of 100 ng TNF-α/ cm3 disc volume, as indicated by

increased nitric oxide, glycosaminoglycan, interleukin 6 (IL-6), and interleukin 8 (IL-8)

release in culture media, and upregulation of MMP3, ADAMTS4, IL-8, IL-6, and cyclo-

oxygenase (COX)-2 expression in NP tissue. However, results in human NP cells

showed that the time point of anti-inflammatory treatment was crucial to achieve sig-

nificant effects. Furthermore, anticatabolic therapy in conjunction with TNF-α inhibi-

tion would be required to slow down the pathologic cascade of disc degeneration.
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1 | INTRODUCTION

Low back pain (LBP) is the leading cause of disability worldwide.1 One

major cause for chronic LBP is symptomatic intervertebral disc

degeneration (IVDD).2-4 IVDD is characterized by extracellular matrix

(ECM) degradation, accelerated cartilaginous, and bone remodeling,

release of proinflammatory cytokines, altered spine biomechanics, angio-

genesis and neoinnervation, altogether potentially leading to chronic
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LBP, and disability.5-9 IVDD can be induced by mechanical stress, trauma,

infection, genetic predisposition, and inflammation.10-16

Inflammation plays a major role in disc degeneration, as

proinflammatory cytokines (ie, tumor necrosis factor alpha [TNF-α],

interleukin 1 beta [IL-1β], interleukin 6 [IL-6], interleukin 8 [IL-8],

interleukin 17 [IL-17], and interferon gamma [IFN-γ]) induce and trig-

ger discal ECM breakdown and accelerated catabolism by stimulation

of catabolic enzymes such as matrix metalloproteinases (MMPs) and a

disintegrin and metalloproteinase with thrombospondin motifs

(ADAMTS).6,17-20 Proinflammatory cytokines have shown elevated

expression in degenerative and symptomatic compared to healthy and

asymptomatic IVDs.16,21 Since therapeutic approaches for IVDD

remain limited, biological anti-inflammatory approaches to IVD regen-

eration have gained increasing interest. In cases of refractory LBP due

to IVDD, anti-inflammatory and/or anti-degenerative therapies such

as cytokine inhibition may relieve pain and slow down the progression

of the disease.22-31 Several studies indicated that cyclooxygenase-2

(COX2) inhibitors can reduce the inflammatory response in different

models.25-27 Soluble TNF receptor type II is able to significantly atten-

uate the effects of TNF-α on primary human IVD cells in vitro.28

Intradiscal administration of a TNF-α inhibitor, Etanercept, in LBP

patient can alleviate intractable discogenic LBP for up to 4 weeks.31

A degenerative disc exhibits increased TNF-α expression, not only

produced by immunocytes, but also by disc cells themselves.15,19,32

Furthermore, TNF-α can induce nucleus pulposus (NP) cells to pro-

duce other cytokines and chemokines that can further enhance the

inflammatory state by recruiting and activating immune cells.33 So far,

it is widely accepted that TNF-α contributes to disc degeneration by

decreasing the anabolism and increasing the catabolism of ECM.34

Additionally, exogenous TNF-α induces neuropathology and sensory

nerve growth into IVD, which indicated TNF-α might be the chemical

mediator of discogenic pain.35,36 Therefore, multiple in vitro, ex vivo,

and in vivo inflammatory IVD models have been established with

TNF-α.20,28,37-39 NP cells cultured with TNF-α in vitro showed

upregulated expression of catabolic enzymes, ADAMTS 4&5 and

MMP-1,-2,-3,-13, and inflammatory mediators, IL-1β, IL-6, IL-8, and

COX2, downregulated expression of ECM markers collagen II,

aggrecan, and versican.34,40-44 TNF-α has been shown to induce

MMP3 expression via nuclear factor κB (NF-κB) and mitogen-acti-

vated protein kinase pathways.45 Intradiscal injection of TNF-α in a

porcine model was sufficient to induce early-stage disc degeneration,

characterized by matrix loss, annular fissure formation, and vasculari-

zation.46 Lai et al reported that annular puncture with TNF-α injection

enhanced painful behavior with disc degeneration in a rat model.39

Ex vivo explant culture models bridge the gap between in vitro

and in vivo systems and reveal many advantages by maintaining the

native tissue environment and decreasing the consumption of experi-

mental animals. Compared with the small animals like mouse, rat and

rabbit, the IVDs from large animals such as sheep, dog and cow are

more similar to human. They show comparable size and loss of noto-

chordal cells in early adulthood as human IVD.47,48 Notochordal cells

have been reported to present anti-inflammation and regenerative

effect in IVDs.49,50 With those similarities, many bovine caudal IVD

organ culture models were established. van Dijk et al developed a NP tis-

sue explant culture model, and found that using polyethylene glycol to

raise culture medium osmolarity was able to maintain the NP tissue spe-

cific matrix composition.25,51 Whole bovine caudal IVD cultured under

either limited glucose condition or high-frequency loading condition led to

a significant drop in cell viability, while combined treatment with limited

glucose and high-frequency loading resulted in an additive increase in cell

death in both the NP and annulus fibrosus (AF), and an increase in

MMP13 gene expression.52 Purmessur et al cultured whole IVD organ

excluding the endplates with exogenous TNF-α in medium. Aggrecan deg-

radation products and β-galactosidase staining were enhanced by TNF-α

on day 21 without any recovery, when TNF-α was removed on day 7.38

Recently, our group has developed a proinflammatory and degenerative

IVD whole organ culture system to investigate the proinflammatory and

degenerative microenvironment operant in IVDD. Results indicated that a

combination of detrimental dynamic loading, nutrient deficiency and

intradiscal TNF-α injection could synergistically simulate the

proinflammatory and degenerative disease condition. However, intradiscal

TNF-α injection alone did not lead to a significant inflammatory effect.7

In the present study, we sought to establish TNF-α induced in

vitro and ex vivo IVD inflammation models, which would represent

preclinical testing systems for screening of anti-inflammatory drugs

for disc degeneration treatment. Specifically, the following questions

were addressed within this study:

1 Does TNF-α from bovine and human have the same

proinflammatory effect on bovine NP cells?

2 What is the optimal dose of TNF-α when utilized within an IVD inflam-

mation organ culture model induced by TNF-α intradiscal injection?

3 Does TNF-α inhibition at different stages of inflammation have

equal anti-inflammatory and/or regenerative effects on NP cells?

2 | MATERIALS AND METHODS

2.1 | Medium selection

Alpha Minimum Essential Medium (αMEM) has shown an advantage

compared with Dulbecco's Minimum Essential Medium (DMEM) in

terms of numbers and quality of cells acquired in mesenchymal stem

cells isolation and expansion.53 In the current study, human and

bovine NP cells isolation and expansion were performed with αMEM

according to previous publication.54 DMEM contains much higher

amount of vitamins, amino acids and glucose than αMEM. Therefore,

cells and IVD organ culture experiments with TNF-α and Etanercept

were performed with DMEM, due to a much higher cell density and

nutrition requirement in these experiments.

2.2 | NP cells isolation and expansion

Human NP cells were isolated from traumatic IVDs (2 donors, 34/

49 years old, male) with ethical approval (Cantonal Ethic Commission
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Bern 2016). General consent was obtained from all patients before

surgery. All studies were performed in accordance with the ethical

standards as laid down in the 1964 Declaration of Helsinki and its

later amendments or comparable ethical standards. The IVDs were

classified as mildly degenerated by MRI (Pfirrmann grade 2-3). Bovine

NP cells were isolated from caudal intervertebral discs of 6 to 12-

month-old calves from local abattoirs immediately after death. NP cell

isolation was performed as described previously.55 The collected NP

tissue was cut into small pieces. Human NP tissue was incubated with

red blood cell lysis buffer (155 mM NH4Cl, 10 M KHCO3, and 0.1 mM

EDTA in Milli-Q water) to remove the red blood cells. The chopped

tissue was digested with 0.2% w/v Pronase (Roche, Mannheim, DE) in

αMEM (Gibco, Paisley, UK) for 1 hr, then digested with 65 U/mL colla-

genase type II (Worthington, Lakewood, NL) in αMEM / 10% fetal

bovine serum (FBS, PAN Biotech, Germany) in a spinner flask for 12

to 14 hours at 37�C. The digested cell suspension was filtered through

a 100 μm cell strainer to obtain a single-cell suspension. NP cells were

expanded in αMEM supplemented with 10% FBS and 100 U/mL peni-

cillin and 100 mg/mL streptomycin (1% P/S, Gibco, Paisley, UK), incu-

bated at a hypoxic condition of 2% O2 at 37�C. Culture medium was

changed twice a week. Passage 2 and 3 NP cells were used in the

current study.

2.3 | Effect of human and bovine recombinant
TNF-α on bovine NP cells

Bovine NP cells were seeded at a concentration of 60 000/cm2 in 12-

well plates with DMEM medium (containing 4.5 g/L glucose) sup-

plemented with 10% FBS. After cell attachment (24 hours after cell

seeding), the medium was exchanged to serum-free experimental

medium (DMEM supplemented with 1% ITS+, 1% nonessential amino

acid [NEAA, Gibco, Paisley, UK], 50 μg/mL ascorbate 2 phosphate and

1% P/S) with or without inflammatory inducers 10 ng/mL human

recombinant TNF-α (R&D systems, Zug, Switzerland) or 10 ng/mL

bovine recombinant TNF-α (R&D Systems, Zug, Switzerland). After

another 72 hours of culture, the cell monolayer was lysed and RNA

was isolated for gene expression analysis.

2.4 | Effect of human recombinant TNF-α and
TNF-α inhibition on human NP cells

Human NP cells were seeded into a six well-plate at a cell density of

30 000/cm2. One day after seeding, cells were treated with 10 ng/mL

(low dose) or 50 ng/mL (high dose) TNF-α in serum-free experimental

medium as described above for bovine NP cells TNF-α experiments.

The samples were collected at three timepoints, 6, 24, and 48 hours

after treatment, for gene expression analysis.

To investigate the effect of TNF-α blocking with the TNF-α inhib-

itor Etanercept (Enbrel, Pfizer, New York, New York), NP cells were

seeded as described above and cultured for 24 hours to allow for cell

attachment. Hereafter, cells were divided into 4 different groups:

(1) iNP—cells were treated with 10 ng/mL TNF-α for 48 hours, (2)

iNP-Eta—cells were treated with 10 ng/mL TNF-α and immediately

after 1 μg/mL Etanercept was added for 48 hours, (3) iNP-24 hours-

Eta—cells were treated with 10 ng/mL TNF-α, 24 hours after 1 μg/mL

Etanercept was added, and (4) iNP-24 hours-FM—cells were treated

with 10 ng/mL TNF-α, 24 hours after replaced to fresh medium with-

out TNF-α. Cells treated with serum-free culture medium as described

above served as negative control. All the cells were harvested for

gene expression analysis at 72 hours after seeding. The concentration

of Etanercept used here was selected according to previous studies,

showing that Etanercept at 0.01, 0.1 and 1 μg/mL induced less than

8% cell death in TNF-α transfected Jurkat cells, and in human NP cells

and AF cells cultured with Etanercept at 100, 250, 500, 1000, and

2000 μg/mL, cell proliferation was only suppressed with Etanercept at

500 μg/mL or higher.56,57 Therefore, the selected Etanercept concen-

tration at 1 μg/mL was assumed to have no cytotoxic effect on NP

cell culture in vitro.

2.5 | IVDs dissection

Bovine caudal IVDs were collected from fresh sacrificed 6 to 12-

month-old calves from local slaughterhouses. Disc dissection was per-

formed as described previously.58 Briefly, most of the muscle and soft

tissue were removed, whole IVDs with cartilage endplates (EPs) were

isolated with a band saw and redundant vertebral bone and growth

plate were carefully cut off to ensure two parallel planes of discs. Disc

height and diameter was then measured with a caliper. Disc vol-

ume = (long diameter + short diameter)/2)2 × π × disc height. The sur-

faces of EPs were cleaned using a Pulsavac Wound Debridement

Irrigation System (Zimmer, Minneapolis, USA) with Ringer's buffer to

remove the cutting debris and blood clots. After prewashing in PBS

with 10% P/S, IVDs were cultured in 6-well plates with 7.5 mL IVD

culture medium, DMEM supplemented with 1% P/S, 50 mg/mL

Primocin (Invitrogen, San Diego, California), 2% FBS, 50 μg/mL ascor-

bate 2 phosphate, 1% ITS+, 1% NEAA, at 37�C, 5% CO2.

2.6 | IVD culture and intradiscal injection

IVDs having a diameter of 1.5 to 2.0 cm were selected for the current

study. IVDs were cultured free swelling during the night. Dynamic

loading was performed, at 0.02 to 0.2 MPa, 0.2 Hz for 2 hours per day

within a bioreactor.7 IVDs from each donor were randomly divided

into three groups: PBS, TNF-α and TNF-α + Etanercept. TNF-

α + Etanercept: 40 μL of TNF-α, containing 100 ng TNF-α/cm3 of disc

volume, was firstly injected into the disc, 30 minutes after 20 μL

Etanercept, containing 10 μg Etanercept per 100 ng TNF-α, was

injected into the disc. TNF-α: 40 μL of TNF-α, containing 100 ng TNF-

α/cm3 of disc volume, was injected into disc 30 minutes after 20 μL

PBS was injected. PBS: 40 and 20 μL PBS was injected into disc

sequentially. The injection was performed using a 30-gauge insulin

needle, after the first dynamic loading on day 1. The intradiscal
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injection dose of Etanercept was kept at the same ratio of TNFα to

Etanercept as in vitro, which is 1:100. IVDs were cultured with daily

dynamic loading and free swelling recovery overnight, the disc size of

IVDs was measured before and after loading.7 Culture media were

collected daily after free swelling for further analysis. The NP tissue

(gel-like inner core of 6-8 mm of diameter) was collected for gene

expression analysis on day 2 and day 5.

2.7 | Gene expression analysis

RNA samples were collected from monolayer NP cells by adding

0.5 mL TRI reagent (Molecular Research Centre Inc., Cincinnati, Ohio)

with 2.5 μL polyacryl carrier (Molecular Research Centre Inc) per well.

RNA isolation was performed according to the manufacturer's specifi-

cations. RNA isolation from NP tissues was performed as described

before.59 NP tissues, 150 to 200 mg per sample isolated from discs,

were cut into small pieces, snap-frozen in liquid nitrogen and pulver-

ized. The pulverized tissue was carefully collected and put into 3 mL

TRI reagent with 15 μL polyacryl carrier. The volume of the TRI

reagent was added according to the original NP tissue weight (3 mL

TRI for 150-200 mg tissue) with a volume ratio of >10:1 to supply

adequate TRI volume for RNA isolation. Samples were homogenized

immediately by a tissue-lyser. After centrifugation, the supernatant

was collected. Phase separation was performed by adding 100 μL

bromochloropropane per 1 mL of TRI reagent and centrifugation. The

aqueous phase was mixed with the same volume of 70% ethanol. The

following steps were performed using the QIAGEN RNeasy MINI kit

according to the manufacturer's protocol.

SuperScript VILO cDNA Synthesis Kit (Invitrogen) was used for

cDNA synthesis with 400 ng RNA per sample. The quantitative real-

time polymerase chain reaction (qRT-PCR) was conducted on

QuantStudio6 PCR System (Applied Biosystems). The primers and

probes used in qRT-PCR for human and bovine samples are shown in

Table 1. All the data were analyzed using 2−ΔΔCT method, with RPLP0

as an endogenous control. The RPLP0 showed similar Ct value with

different treatments, indicating TNFα and Etanercept did not show an

influence on the house keeping gene expression.

2.8 | Enzyme-linked immunosorbent assay

IL-6 and IL-8 content in bovine IVD organ culture media were

measured with enzyme-linked immunosorbent assay (ELISA) kits

(Kingfisher Biotech, St. Paul, Minnesota). Capture antibody:

anti-bovine IL-6 polyclonal antibody (KP0652B-100, Kingfisher

Biotech), anti-bovine IL-8 polyclonal antibody (PB1164B-100,

Kingfisher Biotech). Detection antibody: Biotinylated-anti-bovine

IL-6 (KPB0653B-050, Kingfisher Biotech), Biotinylated-anti-

bovine IL-8 (PBB1165B-050, Kingfisher Biotech). Experiments

were performed according to the manufacturer's protocol. The

results of the ELISA were presented as the original concentration

in the media without normalization.

2.9 | Glycosaminoglycan and nitric oxide
measurement

The amount of Glycosaminoglycans (GAGs) released in IVDs culture

media was measured by using the 1,9-dimethylmethylene blue dye

method.60 The level of GAG release from each IVD at each time point

after injection was normalized to the amount released on day 1 before

injection by dividing the corresponding day's GAG release content

with the amount of GAG release on day 1. The concentration of nitric

oxide (NO) in the culture media of IVDs was detected as the level of

its stable oxidation product, nitrite (NO2−), using the Griess Reagent

Kit (Promega, USA). The NO concentrations in the media are pres-

ented in the results section without normalization.

2.10 | Statistical analysis

Statistical analyses were performed using the GraphPad Prism 7

software (GraphPad Software, Inc., La Jolla, California). D'Agostino-

Pearson omnibus normality test was used to define whether the data

were normally distributed. For data that were normally distributed,

unpaired t-test was used to determine differences between two

groups; One-way ANOVA was used to determine differences

between three or more groups. For the not normally distributed

data, Mann-Whitney U test was used to determine differences

between two groups; Kruskal-Wallis test was used to determine dif-

ferences between three or more groups. P < .05 was considered sta-

tistically significant.

3 | RESULTS

3.1 | Bovine and human recombinant TNF-α
comprise equivalent proinflammatory potency in
bovine NP cells

Bovine NP cells were treated with 10 ng/mL bovine or human recom-

binant TNF-α. Catabolic gene expression as well as proinflammatory

mediators are illustrated in Figure 1 (median and interquartile range).

COL2A1 (0.31 (0.21 to 0.46) bovine, 0.25 (0.20 to 0.74) human)

expression was significantly downregulated, while ACAN (1.80 (0.60

to 1.91) bovine, 1.26 (0.83 to 2.19) human) expression was not chan-

ged. Degradative proteinases, MMP3 (26.48 (21.98 to 36.76) bovine,

41.48 (34.61 to 71.81) human), ADATMS4 (3.70 (3.05 to 6.70) bovine,

2.84 (2.34 to 5.30) human), ADAMTS5 (12.78 (10.17 to 18.02) bovine,

12.50 (8.33 to 26.50) human), and inflammatory mediators, IL-6

(34.13 (28.00 to 66.33) bovine, 57.99 (34.60 to 121.90) human), IL-8

(15.90 (6.14 to 21.89) bovine, 26.32 (20.81 to 49.62) human), COX2

(14.55 (3.73 to 16.64) bovine, 9.54 (7.04 to 11.03) human), were sig-

nificantly upregulated by both types of TNF-α. There was no differ-

ence in the gene expression between treatment with human or

bovine TNF-α.
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3.2 | TNF-α induced inflammation in human NP
cells

Human NP cells were treated with human recombinant TNF-α at a

concentration of 10 or 50 ng/mL. Samples were collected at three

time points, 6, 24, and 48 hours, for gene expression analysis. As

shown in Figure 2 (median and interquartile range, 10 ng: 6, 24, and

48 hours, 50 ng: 6, 24, and 48 hours respectively), MMP3 (124.7

(106.6-175), 364.0 (348.4-403.2), 624.3 (363.5-765.0), 288(219.1-

402.5), 997.1 (775.3-1123.0), 2222.0 (1544.0-3104.0)) and IL-8

(12 139 (7916-16 423), 52 191(10 034-120 284), 111 110 (101 742-

146 623), 23 167 (16 714-25 564), 155 345 (35 201-319 280), and

564 964 (324 997-804 055)) expression were upregulated over time

with a dose-dependent effect. ACAN (0.73 (0.68-1.08), 0.27 (0.22-

0.33), 0.11 (0.79-0.13), 0.74 (0.71-0.77), 0.24 (0.19-0.28), and 0.11

(0.07-0.13)) was downregulated over time independent of the TNF-

α dose.

To investigate the anti-inflammatory treatment with TNF-α block-

ing at different time points, NP cells were treated with TNF-α 10 ng/

mL for 48 hours (iNP), TNF-α immediately followed by 1 μg/mL

Etanercept for 48 hours (iNP-Eta), TNF-α for 24 hours followed by

1 μg/mL Etanercept for 24 hours (iNP-24 hours-Eta), and finally TNF-

α for 24 hours then replacing to fresh basal medium without TNF-α

for 24 hours (iNP-24 hours-FM). NP cells treated with basal

medium served as control (Figure 3; median and interquartile range).

Inflammation induced by TNF-α (iNP) caused an increased MMP3

TABLE 1 Oligonucleotide primers and probes (bovine and human) used for qRT-PCR

Gene Primer/probe type Sequence

bIL6 Primer fw (50-30) TTC CAA AAA TGG AGG AAA AGG A

Primer rev (50-30) TCC AGA AGA CCA GCA GTG GTT

Probe (50FAM/30TAMRA) CTT CCA ATC TGG GTT CAA TCA GGC GATT

bCOL2A1 Primer fw (50-30) AAG AAA CAC ATC TGG TTT GGA GAA A

Primer rev (50-30) TGG GAG CCA GGT TGT CAT C

Probe (50FAM/30TAMRA) CAA CGG TGG CTT CCA CTT CAG CTA TGG

bACAN Primer fw (50-30) CCA ACG AAA CCT ATG ACG TGT ACT

Primer rev (50–30) GCA CTC GTT GGC TGC CTC

Probe (50FAM/30TAMRA) ATG TTG CAT AGA AGA CCT CGC CCT CCA T

bMMP3 Primer fw (50–30) GGC TGC AAG GGA CAA GGA A

Primer rev (50–30) CAA ACT GTT TCG TAT CCT TTG CAA

Probe (50FAM/30TAMRA) CAC CAT GGA GCT TGT TCA GCA ATA TCT AGA AAA C

bADAMTS5 Primer fw (50–30) GAT GGT CAC GGT AAC TGT TTG CT

Primer rev (50–30) GCC GGG ACA CAC CGA GTA C

Probe (50FAM/30TAMRA) AGG CCA GAC CTA CGA TGC CAG CC

bADAMTS4 Primer fw (50–30) CCC CAT GTG CAA CGT CAA G

Primer rev (50–30) AGT CTC CAC AAA TCT GCT CAG TGA

Probe (50FAM/30TAMRA) AGC CCC CGA AGG GCT AAG CGC

bCOX2 Bt03214492_m1

bIL8 Bt03211906_m1

bRPLP0 Bt03218086_m1

hACAN Primer fw (50–30) AGT CCT CAA GCC TCC TGT ACT CA

Primer rev (50–30) CGG GAA GTG GCG GTA ACA

Probe (50FAM/30TAMRA) CCG GAA TGG AAA CGT GAA TCA GAA TCA ACT

hMMP3 Hs00968305_m1

hIL8 Hs00174103_m1

hRPLP0 Primer fw (50–30) TGG GCA AGA ACA CCA TGA TG

Primer rev (50–30) CGG ATA TGA GGC AGC AGT TTC

Probe (50FAM/30TAMRA) AGG GCA CCT GGA AAA CAA CCC AGC

Note: Primers and probes with the sequence shown were custom-designed; primers and probes with the catalog number were from Applied Biosystems.

Abbreviations: ACAN, aggrecan; ADAMTS4, a disintegrin and metalloproteinase with thrombospondin motifs 4; ADAMTS5, a disintegrin and

metalloproteinase with thrombospondin motifs 5; COL2A1, type II collagen; FAM, carboxyfluorescein; fw: forward; Gene prefix “b” bovine, prefix “h”
human; rev, reverse; IL6, interleukin 6; IL8, interleukin 8; MMP3, matrix metalloproteinase-3; RPLP0: Ribosomal Protein Lateral Stalk Subunit P0; TAMRA,

tetramethylrhodamine.
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(61.7 (48.3-73.1)) and IL-8 (8289 (4700-12 572)) expression and

decreased ACAN (0.22 (0.10-0.35)) expression. Etanercept applied at

the beginning of the proinflammatory processes completely inhibited

inflammation in iNP-Eta, as shown by decreased MMP3 (1.5 (1.2-1.6))

and IL-8 (9.3 (3.1-14.7)) expression and increased ACAN (1.01 (0.80-

1.09)) expression compared with iNP group, but comparable to the

control group. Etanercept treatment in the middle of the inflammation

process can block the inflammation effect, as shown by decreased IL-

8 (19.6 (10.1-31.4)) expression and partly decreased MMP3 (28.6

(24.9-30.0) compared with iNP. However, the ACAN (0.39 (0.30-0.41)

expression was comparable with iNP. Removal of TNF-α after

24 hours (iNP-24 hours-FM) showed the similar effect as iNP-

24 hours-Eta, partial recovery from inflammation, observed by partly

decreased IL-8 (135.6 (121.3-149.6) and MMP3 (32.64 (19.51-46.40)

expression compared with iNP, but ACAN (0.13 (0.11-0.13) expres-

sion cannot be recovered.

3.3 | Proinflammatory IVD organ culture model

According to our previous study, intradiscal injection of 100 ng human

TNF-α per disc did not induce a significant inflammatory effect.7 As

shown in Figure 1, both bovine and human TNF-α can induce inflam-

mation equally in bovine NP cells. Hence, the difference in species ori-

gin of TNF-α was excluded. Therefore, we hypothesized that the dose

of TNF-α may influence the results. A preliminary experiment was

performed by intradiscal injection of 100, 200, or 400 ng human

recombinant TNF-α into IVDs with various sizes (1.5-3 cm3). Results

(Figure S1) showed a trend of enhanced disc inflammation and its

response with increasing TNF-α dose, evaluated by NO and GAG

release in IVD culture media. When results were normalized to the

injected TNF-α amount/cm3 disc volume, a threshold at 100 ng TNF-

α/cm3 disc volume was observed, with significant inflammatory effect

above this injection dose.

Consequently, intradiscal injection was performed with TNF-α at

100 ng/cm3 disc volume after the first dynamic loading on day 1 to

induce inflammation in the IVD organ culture model (TNF-α).

Etanercept was injected 30 minutes after TNF-α injection, at a ratio of

Etanercept(w): TNF-α(w) = 100:1 as anti-inflammation positive control

(TNF-α + Etanercept). Discs were injected with the same volume of

PBS as negative control (PBS). Discs were cultured with daily physio-

logical loading and culture media after overnight free swelling were

collected daily for NO, IL-6, IL-8, and GAG measurement. NP tissue

was collected at two time points, at 1 (day 2) or 4 days (day 5) after

TNF-α injection. As shown in Figure 4 (Mean ± SD), starting from day

4, TNF-α injected discs released significantly higher NO (5.73 ± 5.02)

and IL-8 (2.20 ± 0.78) compared with PBS (2.08 ± 0.91 NO,

F IGURE 2 Relative mRNA expression of human NP cells treated with different dose of TNF-α at different time points. Human NP cells
treated with 10 ng/mL or 50 ng/mL TNF-α for 6, 24, and 48 hours. Gene expression data of MMP3 (A), IL-8 (B), ACAN (C) were normalized to the
basal medium without TNF-α as 1. Min to Max with median and interquartile range, n = 4, #P < .05, ##P < .01, ###P < .001 vs basal medium,
*P < .05, **P < .01, ***P < .001, TNF-α 10 ng/mL vs 50 ng/mL at the same time point

F IGURE 1 Relative mRNA expression level of bovine NP cells
cultured with bovine or human recombinant TNF-α. Bovine NP cells
cultured with 10 ng/mL bovine or human recombinant TNF-α for
72 hours. The mRNA expression level was normalized to the control
group with basal medium. Min to Max with median and interquartile
range, n = 9, **P < .01, ***P < .001 vs Basal Medium group
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1.61 ± 0.44 IL-8) and TNF-α + Etanercept (2.70 ± 1.61 NO,

1.60 ± 0.84 IL-8). On day 5, TNF-α injected discs showed significantly

higher amount of GAG (1.34 ± 0.47) and IL-6 (6.24 ± 1.53) release

compared with PBS (0.72 ± 0.18 GAG, 4.38 ± 0.82 IL-6) and

TNF-α + Etanercept (0.76 ± 0.16 GAG, 4.21 ± 1.23 IL-6). As shown in

Figure 5 (median and interquartile range, day 2: TNF-α, TNF-

α + Etanercept, day 5: TNF-α, TNF-α + Etanercept, respectively), the

gene expression of MMP3 (9.59 (5.90-14.23), 1.12 (0.49-1.29), 9.22

(1.23-19.94), 2.35 (0.92-5.85)), ADAMTS4 (3.25 (3.06-3.51), 1.70

(1.09-2.03), 2.14 (1.48-3.56), 1.02 (0.60-1.41)), IL-8 (3.76 (1.66-6.07),

0.65 (0.45-0.99), 5.17 (2.07-14.16), 1.67 (1.48-3.01)), IL-6 (3.85 (1.96-

5.51), 1.12 (0.50-2.82), 7.43 (3.19-8.94), 0.79(0.59-2.20)), and COX2

(2.06 (1.74-2.27), 1.18 (1.02-1.67), 1.89 (0.98-2.64), 0.92 (0.74-1.36))

were significantly increased at day 2 and day 5 by TNF-α injection,

and ADAMTS5 (1.81(1.73-2.47), 0.54 (0.21-1.22), 2.53 (0.70-13.78),

and 1.05 (0.63-10.66)) was upregulated at day 2. All genes'

upregulation can be eliminated by Etanercept. Nevertheless, COL2A1

(1.03 (0.79-1.40), 0.90 (0.80-1.28), 1.22 (1.05-1.47), 0.93 (0.58-1.30)),

and ACAN (0.63 (0.45-1.32), 0.78 (0.66-1.05), 0.80 (0.70-2.02), 0.84

(0.72-1.49)) expression were not changed by TNF-α. After free swell-

ing disc height increased by proximately 5% and disc volume

increased by proximately 18%. After daily loading disc height

decreased by approximately 10% and disc volume by approximately

5%, compared with day 0 when discs were isolated. However, the fold

changes of disc height and volume did not show any difference among

these three groups (Figure 6).

4 | DISCUSSION

Anti-inflammatory therapy has been considered as a promising

approach to delay the IVD degeneration and relieve discogenic pain.

TNF-α, as a pro-inflammatory factor, has been reported to be associ-

ated with IVD degeneration and discogenic pain.21,61 Anti-inflamma-

tory therapies targeting TNF-α are widely reported, with preserved

matrix production and restraint of matrix degradation.31,37,42 There-

fore, in vitro and ex vivo IVD inflammatory culture systems induced

by TNF-α are clinically relevant models for drug development for

treatment of disc degeneration.

In the current study, several specific questions related to the

inflammatory model were investigated. Firstly, due to the scarce

access to human IVD tissue and especially to healthy samples, bovine

IVD cells and bovine caudal whole IVDs have been widely used in

spine research. While using TNF-α for inflammation induction of

bovine disc cells or organs, one question which has not been well

addressed is whether human and bovine recombinant TNF-α imply

the same effect on bovine disc cells, or whether the TNF-α receptors

on bovine disc cells can also transmit the signaling from human

F IGURE 3 Relative mRNA
expression levels of human NP cells.
Human NP cells were cultured with
basal medium (Control), TNF-α
10 ng/mL for 48 hours (iNP), TNF-α
immediately followed by 1 μg/mL
Etanercept for 48 hours (iNP-Eta),
TNF-α for 24 hours followed by
1 μg/mL Etanercept added for

24 hours (iNP-24 hours-Eta), or
TNF-α for 24 hours followed by
fresh basal medium without TNF-α
for 24 hours (iNP-24 hours-FM). (A)
Scheme of treatment, blue: TNF-α
free, red: TNF-α exist, orange: both
TNF-α and Etanercept exist. Gene
expression data of ACAN (B), MMP3
(C), and IL-8 (D) were normalized to
the level of control group as 1. Min
to Max with median and interquartile
range, n = 4, #P < .05, ##P < .01, and
###P < .001 vs basal medium,
*P < .05, **P < .01, and ***P < .001
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recombinant TNF-α. Our results showed both bovine and human

recombinant TNF-α can equally induce inflammation in bovine NP

cells in vitro (Figure 1). These results support most of the studies in

the field, confirming that human recombinant TNF-α can be used for

inflammation induction in bovine disc cells.38,62

Secondly, the required dose for an inflammatory IVD organ cul-

ture model based on intradiscal TNF-α injection is unclear. Takahashi

et al reported that the concentration of TNFa in herniated disc tissue

is a dozens of pgs per 100 mg tissue.32 However, the dose of TNF-α

used in all the artificial inflammatory models is much higher than the

pathological dose, since such low dose of TNF-α may fail to induce

significant inflammation response or need a very long time to reach

significance in vitro and ex vivo. According to our previous study,

TNF-α injection at a fixed dose of 100 ng per disc did not induce a

consistent inflammatory response.7 In contrast, TNF-α added into disc

culture media at a dose 200 ng/mL induced significant inflammation

in discs without cartilage endplates.38 The current study showed that

an injection dose normalized to the disc volume was necessary to

induce a reproducible inflammatory effect in the IVD organ culture

model. The injection dose was optimized to 100 ng TNF-α/cm3 disc

volume. This has effectively induced inflammation in bovine NP tis-

sue, as shown by increased NO, GAG, IL-6, and IL-8 release in culture

media, and upregulated MMP3, ADAMTS4, IL-8, IL-6, and COX2

expression in NP tissue on both day 2 and day 5. These results

showed that TNF-α intradiscal injection at the adjusted dose

increased expression of catabolic enzymes and inflammatory media-

tors in the whole IVD organ culture system, which is consistent with

previous NP tissue and cell culture studies.34,45 This may be a realistic

way to mimic the inflammatory and degenerative condition of IVD

disease in preclinical models.

Our result showed that TNF-α downregulated gene expression of

type II collagen in cell culture, but not in whole organ culture. In con-

trast, Seguin et al showed that TNF-α decreased expression of type II

collagen in NP tissue culture.34 This suggests that the whole IVD organ

culture system is beneficial for maintaining disc cell homeostasis, which

may be due to the physiological osmolarity inside the intact organ that

has been shown to maintain the NP tissue specific matrix composition.51

Annular puncture may induce disc degeneration depending on

the disc size and needle size.63 A recent goat study revealed that 22G

needle puncture did not result in degenerative changes in lumbar

IVDs, nor was degeneration found in IVDs of Beagles injected using

25G needles.64,65 Also in bovine caudal IVD we found that IVD punc-

ture using a 30-gauge needle did not cause dysregulation on expres-

sion of anabolic, catabolic and inflammatory markers.7 Therefore,

injection using a 30-gauge needle is not expected to cause an effect

on the state of IVD degeneration in the current experiments.

F IGURE 4 NO, IL-6, IL-8, and GAG release in the IVD culture medium. NO (A), IL-6 (B), IL-8 (C), and relative GAG (D, normalized to day 1)
release in the conditioned medium of IVDs with PBS injection (PBS), TNF-α injection (TNF-α), and TNF-α plus Etanercept injection (TNF-
α + Etanercept). Intradiscal injection performed after day 1 loading. Mean + SD, n = 9, *P < .05, **P < .01, and ***P < .001
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Analysis of the culture medium was undertaken to investigate

whether the molecule release was related to the disc volume. This was

performed with IVDs cultured under physiological loading and without

TNF-α injection. The initial GAG release on day 1 from discs of different

donors showed a high variation, which may result in an inundating differ-

ence between experimental groups. The day 2 GAG release was highly

related with day 1, evaluated with linear regression (R2 = .935, Figure S2).

The NO, IL-6, and IL-8 release data did not show such inter-donor varia-

tion (Figure S2). Therefore, the results of GAG release from the inflam-

matory model experiments (Figure 4D) were analyzed with normalized

relative fold changes instead of using the original absolute content.

TNF-α induced a nonrecoverable catabolic shift of NP cells even

when it was removed from the medium at 24 hours after supplementa-

tion, which is consistent with previous studies.38,42 More interestingly,

our results showed that the time point of anti-inflammatory treatment

with Etanercept is crucial for reversing the catabolic effect caused by

TNF-α, where only Etanercept application at early time point could

show a positive effect. This may explain the available clinical data

where intradiscal Etanercept injection in patients with back pain

showed controversy in pain relieving results. Etanercept epidural injec-

tion in patients with lumbosacral radicular pain of 6 to 26 weeks dura-

tion provided clinically significant reductions in mean daily worst leg

F IGURE 5 Relative mRNA expression level of NP tissue from IVDs. IVDs cultured with TNF-α injection (TNF-α), and TNF-α plus Etanercept
injection (TNF-α + Etanercept), the gene expression level in NP tissue on day 2 (A) and day 5 (B), data were normalized to IVDs with PBS injection
(PBS) as 1. Min to Max with median and interquartile range, samples on day 2, n = 5, samples on day 5, n = 8, #P < .05, ##P < .01, and
###P < .001 vs PBS group, *P < .05, **P < .01, and ***P < .001, TNF-α group vs TNF-α + Etanercept group

F IGURE 6 Disc height and volume change of cultured IVDs. IVDs with PBS injection (PBS), TNF-α injection (TNF-α), and TNF-α plus
Etanercept injection (TNF-α + Etanercept) at different time points: after free swelling culture overnight (FS) and after dynamic loading (DL) over
5 days of organ culture. Data were normalized to initial disc height (A) or volume (B) after dissection on Day 0 in percentage. Mean + SD, n = 9
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pain and worst back pain.66 However, Etanercept injection in patients

with chronic LBP, more than 6 months' duration, was unable to resolve

chronic discogenic pain.67 Hence, anti-inflammatory treatment with

Etanercept at early onset of disc inflammation may be beneficial to

relieve discogenic pain by reversing the degenerative cascade. There

seems to be a time-point dependent window of therapeutic applicabil-

ity for anti-inflammation strategies. However, radicular pain indicates

IVD herniation, which is a different entity from chronic LBP related to

IVD degeneration and may therefore intrinsically respond differently to

anti-inflammatory treatment. In clinics, patients are usually treated at a

certain period after an acute inflammation or during chronic inflamma-

tion process. At this stage, targeting or removal of the inflammatory

factor may not be sufficient. Also, treatment to prevent continuous

degeneration needs to be included as well.

Limitations: This study solely focused on TNF-α induced acute

inflammation within IVDs. Other proinflammatory factors such as IL-1β

and lipopolysaccharide may also be used for the same purpose, while

the differences in the effects of various factors need to be further eval-

uated. Both in vitro and ex vivo experiments were only performed

within 1 week. Therefore, further studies should be designed to investi-

gate the effect of prolonged or repeated stimulation of TNF-α. The

exogenous dose of TNF-α in the current study is much higher than in

vivo pathological conditions, and a high dose of TNF-α can induce cell

apoptosis and senescenc, which play important roles in IVD degenera-

tion..32,38,68 In rat NP cells cultured with TNF-α at 50 ng/mL for

12 hours apoptosis was induced.68 Also in IVD organs cultured with

200 ng/mL TNF-α for 21 days cell senescence was induced.38 Further

study is warranted to evaluate the effect of TNF-α on cell apoptosis

and senescence in long-term within the current model in the future.

5 | CONCLUSION

The present work sought to address several specific questions on the

establishment of an IVD inflammatory model with TNF-α. Bovine and

human recombinant TNF-α induced equal inflammatory effects in

bovine NP cells. A bovine whole IVD inflammatory model was

established by intradiscal injection of 100 ng TNF-α/cm3 disc volume,

as indicated by increased NO, GAG, IL-6, IL-8 release in culture media,

and upregulated MMP3, ADAMTS4, IL-8, IL-6, and COX2 expression

in NP tissue. The time points of anti-inflammatory treatment are cru-

cial, and additional anti-catabolic treatment to prevent degeneration

would be needed to completely maintain disc biology and function.
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