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Abstract: With the increase of life expectancy, neurodegenerative disorders are becoming not only a
health but also a social burden worldwide. However, due to the multitude of pathophysiological
disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for
new therapeutic strategies focusing on more integrated, personalized and effective approaches.
The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however
several issues still need to be addressed. In particular, the potential actions of pharmacological agents
used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage
for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation,
there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several
neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we
review in detail how cannabinoids act as potent regulators of NSC biology and their potential to
modulate several neurogenic features in the context of pathophysiology.
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1. Introduction

The development of a multicellular organism can be compared to a choreographed dance of
cellular and molecular interactions involving cell reorganization during precise stages. Although in
most regions of the mammalian brain the production of neurons is largely confined to the prenatal
period, in specific brain regions, neurogenesis occurs postnatally and continues into adulthood.

In the mammalian central nervous system (CNS), neural stem cells (NSCs) are characterized by
their self-renewal capability and multipotency, i.e., the ability to give rise to both neurons and glial
cells, such as oligodendrocytes and astrocytes. A “neurogenic niche” can be defined as a complex
microenvironment that supports NSCs and their progeny, helping to determine whether NSCs remain
dormant or divide, by providing signals that guide early stages of proliferation or differentiation.
One of these signals has been shown to come through the action of endocannabinoids (eCBs), mainly via
activation of cannabinoid receptors type 1 and 2 (CB1R and CB2R). Cannabinoid research has been
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capturing the interest of physicians, researchers, pharmaceutical companies and of the general
population worldwide because of its broad range of applications. Importantly, increasing data has
been showing an important role for cannabinoids in NSC modulation, which might allow combining
their wide range of actions with the multitude of applications that stem cells offer.

In this review, we provide a summary of cannabinoid actions and its effects in NSC modulation
both in development and in the adult brain, highlighting the role of cannabinoids in pathophysiology
and as therapeutic agents for neuroregeneration.

2. Endocannabinoid System and Cannabinoids

Cannabis has long been used by humans due to its therapeutic value, for recreational and religious
purposes, to produce food for livestock and, for its fibers, to manufacture clothing [1]. Nowadays,
a growing body of scientific evidence has been attesting the immense potential of this plant to
ameliorate symptoms of several diseases. Indeed, medical-cannabis is being used or proposed to treat
neuropathic pain and muscle spasticity associated with multiple sclerosis (MS), neurodevelopmental
forms of refractory epilepsy, neurodegenerative and chronic diseases [1–10]. Additionally, there is
strong scientific support for its use in eating disorders, to reduce vomiting and nausea associated
with chemotherapy, and to alleviate human immunodeficiency virus infection and acquired immune
deficiency syndrome (HIV/AIDS) related weight loss [1].

On the other hand, chronic consumption or therapeutic exposure to cannabis can be related
with detrimental health effects. Specifically, heavy and sustained cannabis use is associated with
cognitive and memory impairments, increased probability of developing schizophrenia-spectrum
disorders, acute psychosis and mania [11–15]. Regular cannabis abuse can result in chronic bronchitis
and impaired respiratory function if consumed through inhalation. It can also induce physical and
significant mental dependence, tolerance and withdrawal symptoms [1,16]. Therefore, one of the
challenges of cannabis research is to find ways to prevent the negative side-effects associated with
cannabis-based medicines [17,18].

According to the World Drug Report 2017, marijuana (dried leaves, flowers, stems and seeds
from the Cannabis sativa or Cannabis indica plants) is consumed by up to 238 million people
worldwide, making it, by far, the most widely used drug [19]. The psychoactive effects of cannabis
consumption include euphoria, appetite stimulation, sedation, altered perception, impairments in
motor control and memory deficits [20]. These effects are almost exclusively related with the presence
of ∆9-tetrahydrocannabinol (∆9-THC), which was firstly isolated in its pure form and structurally
described in 1964 [21]. Regardless of its psychoactive effects, ∆9-THC has therapeutic value and unique
applications [22].

More than 120 phytocannabinoids (natural occurring cannabinoids) have now been identified
as constituents of the cannabis plant [23]. Besides ∆9-THC, the most abundant cannabinoids present
in the cannabis plant are ∆8-tetrahydrocannabinol (∆8-THC), cannabinol (CBN), cannabidiol (CBD),
cannabigerol (CBG), cannabichromene (CBC), ∆9-tetrahydrocannabivarin (THCV), cannabivarin (CBV)
and cannabidivarin (CBDV) [23].

2.1. Endocannabinoid System

The endocannabinoid system (ECS) is a phylogenetically old modulatory system, found in both
vertebrate and invertebrate species [24–26]. The ECS encompasses eCB molecules, amongst which
the two best known and characterized are N-arachidonoylethanolamine (anandamide, AEA) and
2-arachidonoglycerol (2-AG), their synthetizing and degrading enzymes, the two major cannabinoid
receptors CB1R and CB2R, the endocannabinoid membrane transporter (EMT) and the CB1R
interacting protein 1a (CRIP1a) [1].

The first identified eCB was AEA [1]. Briefly after, two other eCBs were identified, namely 2-AG
and 2-arachidonoyl glyceryl ether, commonly known as noladin. eCBs are equivalent regarding the
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presence of a polyunsaturated fatty acid moiety (such as the arachidonic acid) and a polar head group,
composed by ethanolamine or glycerol (Figure 1) [27–30].

Figure 1. Endocannabinoid signaling. (A) Endocannabinoid Retrograde Signaling and Metabolism.
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2-arachidonoglycerol (2-AG) is synthesized by two different metabolic pathways: via the cleavage
of diacylglycerol by diacylglycerol lipase (DAGL), where diacylglycerol is released from membrane
phospholipids by phospholipase C (PLC) or via the action of phospholipase A1 (PLA1), releasing an sn-1
lysophospholipid from membrane phospholipids, which is cleaved by lyso-PLC in order to generate
2-AG. On the other hand, a calcium-dependent trans-acylase (NAT) acts on glycerophospholipids
and phosphatidylethanolamine, resulting in N-arachidonoyl-phosphatidyl ethanolamine (NArPE),
which is then cleaved by a calcium-dependent NAPE (N-acyl-phosphatidylethanolamine)-specific
phospholipase D (NAPE-PLD), releasing N-arachidonoylethanolamine (anandamide, AEA) from
membrane lipids. While hydrolysis of AEA occurs postsynaptically, via fatty acid amide hydrolase
(FAAH) into arachidonic acid and ethanolamine, 2-AG is hydrolyzed by monoacylglycerol lipase
(MAGL) into arachidonic acid and glycerol presynaptically. AEA and 2-AG are usually synthesized
postsynaptically and are released “on demand” to the synaptic cleft, where they modulate presynaptic
glutamatergic or GABAergic signaling by binding to CB1R or CB2R. (B) Non-retrograde Signaling.
AEA and 2-AG signal autocrinally and non-retrogradely, the postsynaptic neuron, modulating synaptic
transmission. (C) Neuron-glia Signaling. Endocannabinoids produced by neurons can bind to the
cannabinoid receptors expressed in astrocytes and microglia. This neuron-glia signaling is able to
modulate several responses. (D) eCB structures. 2-AG and AEA have similar molecular structures.
They are both polar ester lipids formed by the bond of the omega-6 fatty acid arachidonic acid with
either glycerol (to form 2-AG) or ethanolamine (to form AEA).

AEA is known to act as a partial agonist of CB1Rs and CB2Rs, while 2-AG as a
full agonist of both receptors. AEA is synthesized via the action of a calcium-dependent
trans-acylase (NAT) on phosphoglycerides and phosphatidylethanolamine. The resulting
N-arachidonoyl-phosphatidyl ethanolamine (NArPE) is then cleaved by a calcium-dependent NAPE
(N-acyl-phosphatidylethanolamine)-specific phospholipase D (NAPE-PLD), releasing the AEA from
membrane lipids. This eCB is hydrolyzed into arachidonic acid and ethanolamine by fatty acid amide
hydrolase (FAAH) [31]. 2-AG, on the other hand, can be synthesized by two different metabolic
pathways: via the cleavage of diacylglycerol by diacylglycerol lipase (DAGL), where diacylglycerol is
released from membrane phospholipids by phospholipase C (PLC) or via the action of phospholipase
A1 (PLA1), releasing an sn-1 lysophospholipid from membrane phospholipids, which is cleaved by
lyso-PLC in order to generate 2-AG. This eCB is hydrolyzed by monoacylglycerol lipase (MAGL) into
arachidonic acid and glycerol (Figure 1A) [31]. These molecules are not stored in vesicles but rather
are synthetized and released “on demand,” with AEA being less abundant than 2-AG [1,32].

eCBs display a broad spectrum of physiologic relevant roles, particularly in the CNS and
peripheral nervous system (PNS) [30,33]. These roles are mainly mediated through the activation
of CB1Rs and CB2Rs, both being G protein-coupled seven transmembrane domain receptors
(GPCR) [33]. A common feature usually associated with CB1R and CB2R activation is the modulation
of either spontaneous or evoked release of chemical messengers, although this effect is much better
characterized for CB1Rs [34]. eCBs are produced and released from postsynaptic neurons either
phasically (in an activity-dependent manner), or tonically (under basal conditions). The released eCBs
then act retrogradely by activating presynaptic receptors (Figure 1A) [33,35]. Hence, regulation of
neurotransmitter release constitutes a major physiological role of the ECS [30]. Indeed, eCBs are
involved in important forms of short and long-term plasticity, by suppressing neurotransmitter release
transiently (short-term depression, STD) or persistently (long-term depression, LTD), mainly through
the activation of presynaptic CB1Rs [33]. Importantly, eCBs can control both inhibitory synaptic
transmission (a process designated as depolarization-induced suppression of inhibition, DSI) and
excitatory synaptic transmission (the depolarization-induced suppression of excitation, DSE) [36,37].

Available evidence also suggests that eCB signaling can occur in a non-retrograde mode, through
autocrine signaling. Specifically, eCBs can modulate synaptic transmission through direct activation of
transient receptor potential vanilloid receptor type 1 (TRPV1R), in which AEA is known to act as a full
agonist, or via postsynaptically located CB1Rs (Figure 1B) [38,39].
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The abundancy of CB1Rs in the brain strongly supports that this receptor is responsible for the
majority of the psychoactive effects of exogenous cannabinoids and for the physiological actions of
eCBs [25,33]. This is further supported by the fact that selective CB1R antagonists effectively abolish
the psychoactive effects of these drugs [40]. As reviewed by Solymosi and Köfalvi (2017), the CB1R is
abundantly present in the CNS, with higher densities found in the substantia nigra pars reticulata,
globus pallidus, entopeduncular nucleus, inner granule cell layer (GCL) of the olfactory bulb, layers
I-III, Va and VI of the cerebral cortex, hippocampus (particularly in the molecular layer and Cornu
Ammonis 3 (CA3) region) and dorsolateral striatum; moderate levels of CB1Rs can be found in the
hypothalamus, ventral striatum/nucleus accumbens, septum and amygdala [1,41,42].

CB1R activation has been linked to neuroprotection by controlling excessive excitatory
transmission and calcium release, thus protecting synapses from excitotoxity [43]. Although being
classically viewed as a Gi/o-coupled receptor, hence having mainly inhibitory actions, CB1R coupling
to G proteins is mutable [30,33,44]. Indeed, CB1R is now believed to have few “intrinsic” signaling
properties, and the actions mediated by its activation are largely dependent on cell type, location,
functional state and temporal constrains (for a detailed review see [44]). All these nuances can
drastically modify the effects of endo-, exo- and synthetic cannabinoids.

Contrary to initial belief that CB2Rs were exclusively present in the periphery, particularly in the
immune system, such as in the spleen, leukocytes and tonsils, these receptors were later identified
in microglial cells [33,45–48]. New and more advanced technological approaches have allowed the
identification of CB2Rs in astrocytes and, to a larger degree, in neurons (Figure 1C) [49–51]. In the
CNS, they were first identified in brainstem neurons and later in inhibitory and excitatory neurons in
the hippocampus [52,53]. Nowadays, CB2Rs are known to be expressed in the presynaptic terminals of
gaminobutyric acid-containing (GABAergic) interneurons in the hippocampus and medial entorhinal
cortex, and in cortical and hippocampal astrocytes, where CB2R activation leads to higher glucose
uptake [54,55]. CB2R levels can be increased in neurons and astrocytes following specific insults
(such as neuroinflammation) and also in certain disease states [56–58]. Additionally, considering the
lack of psychoactive effects following CB2R modulation, this receptor is becoming popular as a very
promising therapeutic target [46].

When taking into account the psychoactive and therapeutic properties of cannabinoids, it is
important to consider that the phytocannabinoids existent in the cannabis plant, and in other plants,
affect brain activity by coupling to other receptors beyond the classic CB1Rs and CB2Rs [1,23]. Being so,
serotonin 5HT1-3A receptors (5HT1AR, 5HT2AR, 5HT3AR), G protein-coupled receptors 18 and 55
(GPR18, GPR55), transient receptor potential (TRP) family, glycine receptors and the peroxisome
proliferator-activated receptor (PPAR) assume a particular importance when considering the possible
therapeutic applications of cannabinoids [1,23]. Anatomical and functional co-localization studies
have shown that these receptors are expressed in the same regions as CB1Rs and CB2Rs in the CNS
and PNS [59–62].

2.2. Cannabinoid Pharmacology and Actions

∆9-THC and CBD are the two best known and characterized phytocannabinoids. The cataleptic
effect of ∆9-THC was the first psychoactive effect described of a cannabinoid [63]. This effect is used as
a standard of cannabinoid psychoactivity, with which it has been shown to be strongly correlated [64].

∆9-THC is known to act as a partial agonist of CB1Rs and CB2Rs, presenting a mixed
agonist-antagonist profile depending on the cell type, concentration, receptor expression and presence
of other endo- and exo-cannabinoids acting as full agonists [23,65,66]. As reviewed by Solymosi and
Köfalvi (2017), ∆9-THC can have different coupling profiles [1]. In fact, some reports show that ∆9-THC
can be more potent on the CB2Rs and, paradoxically, at higher concentrations it may even act as an
antagonist of CB1Rs [65,67,68]. ∆9-THC is considered a “classic cannabinoid” because it passes the
mouse tetrad bioassay through the activation of CB1Rs, by eliciting the cannabinoid-induced tetrad
(hypothermia, hypolocomotion, catalepsy and analgesia) [64,69]. As thoroughly reviewed by Solymosi
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and Köfalvi (2017), besides its actions on CB1Rs and CB2Rs, ∆9-THC binds to several other receptors
such as GPR55, as well as serotonin, opioid, glycine and PPARγ receptors, which may account for some
of the effects described for this phytocannabinoid [1,23]. However, ∆9-THC has been shown to have
no effect on the TRPV1R, although it acts on other TRPV channels (for detailed reviews see [1,23]).

CBD is a non-psychoactive cannabinoid, therefore, has high medicinal value, being widely
studied. This cannabinoid has been shown to act as an anti-inflammatory, antioxidant, anti-epileptic,
antirheumatic, anxiolytic and analgesic drug [1,23]. CDB was also shown to reduce congestion and
nausea and to be neuroprotective [1,23]. Furthermore, CBD positively modifies the effects of ∆9-THC
by reducing its psychoactive effects and by increasing its clinical efficacy and the duration of its
beneficial effects [1,22]. CBD was early characterized as absent of cataleptic effects, which prompted
the now well accepted evidence that CBD is devoid of psychoactive effects [63,64].

As reviewed by Solymosi and Köfalvi (2017), CBD has low affinity to CB1Rs and CB2Rs, exhibiting
no agonist activity [1,67,70]. On the contrary, in vitro studies have shown that CBD has surprisingly
high potency as an antagonist of both CB1Rs and CB2Rs [71]. Recently, however, it is being proposed
that CBD may actually act as a negative allosteric modulator of CB1Rs [72]. Furthermore, it inhibits
the cellular reuptake of AEA, directly affecting eCB tone [23]. It also acts as an agonist of GPR55 and
as an antagonist of GPR18 [68,73,74]. In a recent work, the anti-inflammatory and immunosuppressive
effects of CBD were proposed to be linked with its ability to activate adenosine type 1 receptors [75].
CBD effects on TRPV, glycine, GABAA and PPARγ receptors were described in detail in [23].

eCBs, phytocannabinoids such as ∆9-THC and CBD, as well as other synthetic cannabinoids, were
shown to modulate embryonic and postnatal neurogenesis. In the next sections of this review, we will
further explore the role of the ECS in NSC modulation and its implications for pathophysiology.

3. Neurogenesis

3.1. Neurodevelopmental Neurogenesis

During embryonic development, neurogenesis can be distinguished in two different stages
that, although having different cellular and molecular mechanisms, occur simultaneously. These are
neurulation and embryonic neurogenesis.

3.1.1. Neurulation

Arising from the ectoderm, one of the three primary germ layers, the CNS begins developing
when the neural plate folds into the neural tube, through a process called neurulation, giving origin to
the brain in the rostral region and the spinal cord in the caudal region [76]. During this stage there is an
increase in the number of neuroectoderm-derived proliferating cells, expanding the neural epithelium
at different rates in order to form more specialized regions of the mature CNS [77]. These then become
the forebrain, the midbrain and the hindbrain. Simultaneously, several factors are released from
the notochord and the somites around the neural tube, establishing a dorsoventral polarity [78].
This polarity is further reinforced by the formation of the anterior-posterior axis through the Wnt
signalling gradient (Figure 2A) [79].
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Figure 2. Neurogenesis. (A) Neurulation. Schematic representation of the neurulation process.
Neuroectoderm derived cells proliferate at different rates along the apicobasal polarity. (B) Embryonic
Neurogenesis. During embryonic development the central nervous system develops in an inside-out
fashion. Neuroepithelial stem cells, via asymmetrical divisions, differentiate into radial glial cells
(RGCs), establishing the Ventricular Zone near the apical surface. Near the pial surface, Cajal- Retzius
(CRCs) cells will make the marginal zone during embryogenesis and the cortical layer I postnatally.
The other cortical layers are formed in sequential waves during neurogenesis. Later in development,
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neural progenitors enter a gliogenic mode, generating astrocytes and oligodendrocytes. Neuroepithelial,
radial glial and intermediate progenitor cells are capable of symmetric and asymmetric divisions.
(C) Postnatal Neurogenesis. In the adult brain, neural stem cells can be found in two neurogenic niches,
the Subventricular Zone (SVZ) and in the Subgranular cell layer of the Dentate Gyrus (DG). In rodents
(C1), after differentiating in the SVZ, immature neurons migrate along the rostral migratory stream
(RMS) to the olfactory bulb (OB) where they will mature mainly into GABAergic interneurons. On the
other hand, in humans (C2), immature neurons are thought to migrate along the RMS to the striatum
(STR). In rodents and humans, differentiating neurons from the DG mature by making functional
connections with pyramidal CA3 hippocampal neurons.

3.1.2. Embryonic Neurogenesis

Neuroepithelial progenitor cells (NECs) can be found lining inside the neural tube, which will
develop into the ventricles [80]. They form a pseudostratified epithelium, as their nuclei migrate
with the cell-cycle stage (interkinetic nuclear migration), being near the apical side during mitosis
and more basally during the S phase [81]. Like other stem cells, NECs divide in either a symmetric
proliferative manner, in which both daughter cells remain mitotic, or in a differentiative manner, in
which at least one daughter cell exits the cell cycle and differentiates into a more specialized cell [82].
This foundational process forms several layers surrounding the lumen of the developing nervous
system, the inner-most apical layer, where the progenitor cells reside, being the ventricular zone
(VZ). Radial glial cells (RGCs) are the earliest type of cells to be distinguishable within the neural
epithelium. The cell bodies of these cells can be found in the VZ and their long processes extend
outwards, to the pial surface [83]. Outer RGCs and intermediate progenitors will then establish the
subventricular zone (SVZ), which becomes one of the adult neurogenic niches. RGCs will originate
transit amplifying cells to increase neuronal production [83,84]. NECs exit the cell cycle near the
ventricular surface and invade the preplate (PP—a primordial plate above the VZ). Migrating neurons
move past the subplate, displacing this layer away from the Cajal-Retzius cells (CRCs), which remain
adjacent to the pial surface of the developing brain in a cell-sparse area known as the marginal zone [85].
Distinct projection neuron subtypes are born in sequential waves over the course of neurogenesis [86].
As new cortical plate neurons arrive to the RGCs, they migrate past the older subplate and cortical
plate neurons before inserting beneath CRCs [87]. This inside-out arrangement of projection neurons
makes the oldest neurons (cortical layer VI) closest and the youngest neurons (cortical layer II/III)
farthest from their birthplace near the ventricle (Figure 2B). This cortical expansion, despite being
conserved within all mammalian species, is different whether organisms have a smooth (lissencephalic,
e.g., mouse, rat) or highly convoluted (gyrencephalic, e.g., ferret, human) neocortex [88,89]. One key
difference is associated with the size of the neocortex, which can be better correlated with its surface
area than with its thickness, which only varies slightly across species [90]. Brain convolutions appeared
as an evolutionary solution to the problem of increasing cortical surface area (e.g., neuron numbers)
without prohibitively increasing the size of the skull [91]. Another striking interspecies difference
is related to the expansion of the basal progenitors [92]. In gyrencephalic species, the SVZ can be
further dissected in two distinct germinal zones: the inner SVZ, which largely resembles the SVZ
of lissencephalic rodents, and the outer SVZ, which is absent in most lissencephalic species [92].
This subdivision of the SVZ has a tremendous impact on the number of basal progenitors contained
in each layer. Indeed, during peak stages of embryonic neurogenesis, the outer SVZ harbors up to
four times as many progenitors as the VZ and inner SVZ combined [93]. However, this does not
correlate with a higher number of neurons in the adult brain. In fact, in later developmental stages, after
embryonic neurogenesis is complete, neural progenitors transition into a gliogenic mode, generating
astrocytes and oligodendrocytes [94,95]. CRCs will migrate into the neocortical layer I of the cortex
from non-cortical locations, whereas projection neurons born in the neocortical VZ and SVZ, migrate
along radial processes to reach their final laminar destinations in the cortex [96]. The presence of
NSCs in most CNS regions decreases dramatically after embryonic development but, in many species,
remains throughout life in localized neurogenic niches [97–100].



Molecules 2019, 24, 1350 9 of 59

3.2. Adult Neurogenesis

Adult NSCs can be mostly found in two neurogenic niches, the SVZ and the subgranular zone
(SGZ) of the hippocampal dentate gyrus (DG) (Figure 2C) [101]. The existence of self-renewing adult
NSCs in the brain led to the hypothesis that NSCs are tri-potent, having the capacity to generate
neurons, astrocytes, and oligodendrocytes. However, the pioneering in vivo studies in the adult
hippocampus by Eriksson and colleagues have only found the generation of neurons and astrocytes,
but not oligodendrocytes [102]. On the other hand, in vivo studies focusing on the adult SVZ suggest
that NSCs can give rise to the three neural cell types, but whether neurons and glia arise from distinct
stem cell lineages in vivo is still unknown [103].

Adult NSCs are mostly quiescent in vivo due to the specific cellular and molecular characteristics
of the niches where they reside, allowing them to withstand metabolic stress and to preserve genome
integrity over long periods of time [104,105]. The balance between the cytoarchitecture of the niches
and the factors that regulate quiescence and activation of NSCs is so delicate that it has been proposed
that tumorigenic or brain tumor stem cells may arise from an imbalance of those factors [106]. In fact,
both NSCs and tumorigenic cells share many of the molecular pathways that regulate proliferation,
such as sonic hedgehog (shh) or Wnt-signalling [106].

Despite having been shown to exist in several mammals since the 1960s (e.g., mice, rats, cats,
song birds, treeshrews, marmosets, macaques), in humans, adult neurogenesis has sparked an intense
debate regarding its existence [107–112]. Reports of human neurogenesis are mostly based on the
analysis of neurogenic markers, namely doublecortin (DCX) and polysialic acid neural cell adhesion
molecule (PSA-NCAM) on post-mortem brain samples [102,113–115]. It has been suggested that the
differences found in studies where human adult neurogenesis is either proved or disproved could
be due to several factors around the time of death, namely stress hormones, protein integrity and
the general health state of subjects; or even the post-mortem delay between sample collection and
preparation [116,117]. In fact, it has been shown in animal studies that the DCX signal becomes weak
within a few hours of post-mortem delay, therefore time is a crucial factor on neurogenesis studies,
impacting the overall analysis of data [118]. A recent study by Sorrells and colleagues (2018) showed
that adult neurogenesis drops to undetectable levels with aging. This study was conducted with
samples from patients with epilepsy, where normal hippocampal circuitry and neurogenesis is known
to be disrupted and had a post-mortem delay of around 48 h between collection and fixation [113].
On the other hand, in Boldrini et al. (2018) and more recently in Moreno-Jiménez et al. (2019) studies,
reported lifelong neurogenesis in humans. In these studies the post-mortem delay was no longer than
26 h and samples were collected from both control and pathological subjects [114,115]. Surprisingly,
in Moreno-Jiménez et al. (2019) study, samples from patients with Alzheimer’s disease (AD) also have
immature progenitor cells, i.e., DCX positive cells, although the number and maturation of these cells
progressively declined as AD advanced, again reinforcing the idea that tissue handling is essential for
the preservation and detection of neurogenic markers [115].

3.2.1. Subventricular Zone

Ependymal cells are organized into rosette shaped structures bordering the SVZ which is lining
the lateral wall of the lateral ventricles. There are three cell types that mainly compose the SVZ niche:
B cells, C cells and A cells. B cells (or radial glia-like NSCs) extend radial processes to contact with
blood vessels and a single cilium through the ependymal rosettes to contact the cerebrospinal fluid
in the ventricular space [119]. These processes allow the detection of both intrinsic (e.g., shh, Wnt
or Notch-signaling) and extrinsic factors (e.g., neurotransmitters, hormones or growth factors) that
will signal for either proliferation, differentiation, or both [120]. B cells can divide and differentiate
into C cells (or transit amplifying cells), which then generate A cells (or neuroblasts) [121]. In rodents,
neuroblasts migrate down the rostral migratory stream (RMS) to the olfactory bulb where they
differentiate mainly into GABAergic interneurons and are integrated either in the GCL or in the
periglomerular layer. Thus, SVZ neurogenesis plays an important role in the neuroplasticity and
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olfactory memory [122,123]. Importantly, in the case of brain injury, neuroblasts can also migrate to
lesion sites where they differentiate into other types of neural cells [124,125]. Additionally, astrocytes
and microglia are also present in the SVZ contributing to the cellular architecture of the niche
(Figure 3A) [104].

Several reports have shown that in humans, neurogenesis in the SVZ is slightly different when
compared with rodent models [126,127]. One key aspect regarding these differences is the RMS,
which is shorter in humans due to the extensive frontal lobe development [128]. These anatomical
characteristics are also consistent with observations in other primate brains [129]. Another difference
described is directly related with the way neuroblasts migrate along the RMS. It has been suggested
that glial tubes can support the proliferation and migration of neuroblasts. In rodents, glial fibrillary
acidic protein (GFAP) positive glial cells form tubes and, within these glial tubes, neuroblasts pack in
chain-like structures [130]. In humans, however, there is a ‘meshwork’ of glial cells supporting the
migration of neuroblasts, most likely to the striatum [131,132].

3.2.2. Subgranular Zone

The hippocampal DG can be dissected into two layers, the GCL and the molecular layer (ML) [133].
The SGZ is found underneath the GCL, where radial glia-like NSCs (or type 1 cells) reside and extend
processes from the GCL to the ML [134]. These cells generate intermediate progenitor cells (IPCs, or
type 2 cells), which generate neuroblasts (or type 3 cells) that differentiate into mostly GABAergic
mature granule cells (GCs), which then migrate into the GCL of the DG [135]. Type 2 cells are closely
associated with the vasculature of the hippocampus [136]. In addition to the aforementioned cell
types, astrocytes, microglia, and interneurons contribute to the cellular architecture of the niche
(Figure 3B) [137]. It is theorized that the rapid maturation of newly formed GCs is responsible for the
creation of new memory representations and their storage in the circuit [133]. This process is possible
because of the high levels of excitability of new GCs which, in early stages of maturation, receive
excitatory input connections from hilar cells, and at the same time, start forming outgoing synapses
with CA3 pyramidal cells [138]. The new GCs then proceed to form scarce excitatory connections
with mature GCs [139]. This glutamatergic input together with back-propagating activation from
CA3 pyramidal cells and hilar cell signals constitutes the only early source of excitatory inputs which
is crucial for the survival of these cells [140]. Current hypothesis states that the new neurons act
specifically on the mechanisms of pattern separation, decorrelating the new input from existing
memory traces. Importantly, numerous environmental factors, like exercise, stress and antidepressants
have been shown to affect the rate of neurogenesis in the SGZ of rodents [141,142].

As previously discussed, the existence of human adult hippocampal neurogenesis (AHN) has
been a long theme of debate since it was reported, with evidence that support or reject it [102,143].
Despite the controversy, most evidence agrees that there is currently no reason to abandon the idea
that, similar to what happens in rodent models, human adult-generated neurons make important
functional contributions to neural plasticity and cognition across human lifespan [144].
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Figure 3. The neurogenic niches. (A) Cytoarchitecture of the Subventricular Zone. Type B cells
extend cellular processes to the ventricle where they come into contact with cerebralspinal fluid (CSF)
and to nearby blood vessels, detecting intrinsic and extrinsic factors that will signal for proliferation
and/or differentiation. B cells differentiate into C cells, which generate neuroblasts. Astrocytes and
microglia are also found in the neurogenic niche and support the stem cell pool and the development
of newborn cells. (B) Cytoarchitecture of the Subgranular Zone. The dentate gyrus (DG) is composed
of three layers: the molecular layer; the granule cell layer, which are densely packed granule cells;
and the subgranular zone, containing neural stem and progenitor cells. Here, type 1 cells extend
cellular processes to the molecular layer and can generate intermediate progenitor cells, or type 2 cells,
which are closely associated with the hippocampal vasculature and the detection of signaling factors.
Neuroblasts differentiate from type 2 cells and into GABAergic dentate granule cells. These mature by
making functional connections with CA3 hippocampal cells, whilst migrating towards the molecular
layer of the DG. Interneurons, microglia and astrocytes contribute to the maintenance and support of
the niche.
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3.3. Regulators of Neurogenesis

Several signals are key factors in the regulation of NSC proliferation, differentiation, migration
and survival. These include morphogens, growth factors, neurotrophins, cytokines, neurotransmitters,
extracellular matrix, cell-cell signaling molecules and systemic factors [145–151].

3.3.1. Morphogens and Growth Factors

Fibroblast growth factor (FGF) signaling contribution ranges from regional patterning to the
control of cortical size and neuronal fate. Wnt-dependent signaling on cortical neurogenesis are various
and highly dependent on the cell stage and type [152,153]. Similarly to Wnts, bone morphogenic
proteins are expressed dorsally in the midline and regulate regional patterning of the dorsal-most parts
of the forebrain, but their impact on neurogenesis remains essentially unexplored [154,155]. In vitro,
epidermal growth factor (EGF) was shown to be an important regulatory factor of adult NSCs [146].

3.3.2. Neurotrophins

Neurotrophic factors such as brain-derived neurotrophic factor (BDNF), nerve growth factor
(NGF), and neurotrophin-3 (NT-3) are known to be implicated in AHN [156]. Among these, BDNF is
being intensively studied and has been shown to be involved in learning, memory and synaptic
plasticity [157].

3.3.3. Cytokines

Depending on the their type and mode of action, cytokines may have distinct roles in the brain
and in NSC modulation: besides confering immune protection, by clearing the system of dead and/or
damaged neurons, they can also exert harmful effects on NSC niches, leading to cell death [158–160].

3.3.4. Neurotransmitters

Different neurotransmitters have been proposed as being regulators of different stages of the
neurogenic process [149]. Dopamine has been linked to the modulation of cell proliferation [161].
Serotonin, however, depending on which receptor it acts, can either increase or decrease the
proliferation of NSCs [162]. GABA has been shown to increase dendritic growth in neuroblasts
migrating to the olfactory bulb [163]. Glutamate can influence both proliferation and neuronal
commitment and can act as a positive regulator of neurogenesis [164].

3.3.5. Extracellular Matrix

Cell behavior can be affected by the extracellular matrix in two main ways. One, by harboring
growth factors or growth factor-binding proteins, and the other by cell–extracellular matrix interactions,
which can directly regulate cell behavior through receptor-mediated signaling or by modulating the
cellular response to growth factors [165].

3.3.6. Cell-cell Signaling Molecules

The apical–basal polarity of NSCs is a decisive factor regarding symmetric versus asymmetric
division, having an impact on cell proliferation. Lateral cues for spindle orientation, like occludins and
epithelial (E)-cadherin coming from tight or adherens junctions, respectively, and other cytoskeletal
components are overexpressed when cells are undergoing symmetrical cell division and downregulated
during asymmetrical division [82,166].

3.3.7. Systemic Factors

The proximity of adult NSCs to blood vessels, together with the cellular architecture of the niches,
raises the possibility that the function of NSCs may be regulated by the balance of two independent
forces, internal CNS-derived cues and external peripheral cues delivered in part by the circulatory
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system. Any external factor such as exercise, drugs, aging, among others, may change this delicate
balance and, therefore, have an impact on NSC dynamics [167–169].

4. Cannabinoid Regulation of Neurogenesis

4.1. Cannabinoid Actions in Embryonic Neurogenesis

eCB signaling is involved in the regulation of several aspects of neural development, namely
neural progenitor proliferation, lineage commitment, radial and tangential migration of pyramidal
cortical neuron and interneurons, as well as axonal guidance, neuronal maturation and synaptogenesis.
Both eCBs and cannabinoid receptors are present in the brain since early developmental
periods [170,171]. eCBs, such as AEA and 2-AG, have been shown to be present from mid-gestation to
adulthood. With low levels being present prenatally, AEA expression progressively increases during
the perinatal period until reaching its maximum levels in the adult brain. 2-AG, in contrast, is highly
expressed prenatally, displaying similar levels to those found in the adult brain [170]. Importantly,
CB1Rs and CB2Rs have also been detected in the developing nervous system. In fact, embryonic
stem cells have been shown to display both types of cannabinoid receptors [172]. CB1R expression
levels increase during neuronal differentiation and gradually localize to developing axonal projections,
whereas CB2Rs are more expressed in less committed cells and in microglia/macrophage lineages
during development [171,173–176]. Both CB1R and CB2R activation were shown to boost, in vitro,
mouse neural stem and precursor cell proliferation [175,177–179]. eCB signaling is active in
ventricular/subventricular zones from embryonic day 12 onwards, being responsible for controlling
the proliferation of pyramidal cell progenitors [174,180]. In addition, AEA, through CB1R activation,
was shown to enhance NSC differentiation into neurons, namely the differentiation into corticospinal
motor neurons, with CB1R basal activity playing a role in the initial development of dendrites and,
indirectly, in axon initial segment development [177,181,182].

Cannabinoids have an essential role in creating the architecture and wiring of the brain.
Through CB1R signaling, they regulate radial and tangential migration of post-mitotic neurons. Indeed,
CB1R signaling is involved in the regulation of long-distance migration of late-gestational GABAergic
interneurons, as well as radial migration of immature pyramidal cells [174,183,184]. In addition to this,
axonal growth cones of cortical GABAergic interneurons, which are enriched with CB1Rs, are activated
by eCBs, acting as axon guidance cues that trigger CB1R internalization and elimination from filopodia,
thus contributing to pathfinding [173,185]. In fact, when these receptors are antagonized or CB1R gene
is knocked down, the resulting lack of CB1R signaling impairs axon pathfinding and fasciculation in
zebrafish embryos [186]. Long-range axonal connectivity is modulated by CB1R signaling through
regulation of corticofugal axon navigation and fasciculation during corticogenesis [174,187].

During gestation, phyto- and synthetic cannabinoids can pass the blood-placental barrier,
consequently affecting fetal brain development [188]. As this is a critical period, ECS manipulation may
have an impact on cognition and behavior [189]. Indeed, children born from women who consumed
marijuana during pregnancy display cognitive deficits, namely in executive function, working memory
tasks, sustained attention and learning, as well as psychiatric disorders [190–195]. However, it is
important to mention that cognitive deficits derived from heavy marijuana use during the prenatal
period alone were shown to be less severe than the ones resulting from the combined effect of marijuana
with other drugs of abuse, namely nicotine and alcohol [192,196]. Prenatal exposure to marijuana
was also negatively associated with performance in tasks that required visual memory, analysis and
integration in adolescents [197]. Accordingly, prenatal exposure to WIN 55,212-2 (a non-selective
cannabinoid receptor agonist) in rodents was shown to impair tangential and radial migration of
post-mitotic neurons in the dorsal pallium [198]. Moreover, ∆9-THC administration in mouse models
was shown to induce rapid neuronal remodeling, such as retraction of neurites and axonal growth
cones, elevated neuronal rigidity and reshaping of somatodendritic morphology [184,199]. In addition
to this, in rat models, prenatal exposure to WIN 55,212-2 or ∆9-THC induced long-lasting learning and
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memory impairments in the adult offspring, as well as permanent alterations in hippocampal long-term
potentiation, hippocampal glutamate release and cortical glutamatergic neurotransmission [200,201].
Although maternal consumption of AEA did not affect CB1R expression in the brains of pups,
enhancing eCB signaling led to subtle behavioral deficits in the adult offspring, revealed by reduced
cocaine-conditioned preference test, increased depressive-like behaviors and impaired working
memory [202,203]. Moreover, ∆9-THC administration during pregnancy was shown to interfere with
corticospinal connectivity and to produce long-lasting alterations in the fine motor performance of
the adult offspring [204]. Due to CB1R-mediated regulation of both glutamatergic and GABAergic
neuronal development, ∆9-THC administration in this period also increased seizure susceptibility [204].
In addition, ∆9-THC was also reported to trigger the stress-activated protein kinase c-jun N-terminal
kinase and the pro-apoptotic protease caspase-3 in in vitro cerebral cortical slices, obtained from
neonatal rat brains, an effect that was not observed in adult rat brain slices, which demonstrates the
brain vulnerability during the perinatal period [205]. Furthermore, early ∆9-THC exposure during
brain development was also shown to compromise astroglial cells since GFAP and glutamine synthetase
expression was reduced [206].

The effects on brain function and behavior, mediated by cannabinoid signaling modulation during
neurogenesis, are also dependent on cannabinoid concentrations. For instance, low concentrations
of ∆9-THC and AEA did not affect neuronal and dopaminergic (DA) maturation, with AEA only
enhancing the frequency of synaptic activity. In contrast, higher doses of these CB1R agonists reduced
neuronal function by decreasing synaptic activity and ion currents [207].

These findings show the importance of eCBs as key regulatory factors of brain structuring and
wiring, warning, at the same time, for the impact that exogenous cannabinoids may have on cognition
and behavior when administered during this critical period of neurodevelopment.

4.2. Cannabinoid Actions in Postnatal Neurogenesis

In addition to their modulatory role of embryonic development, discussed above, there is
considerable evidence to suggest that both endogenous and exogenous cannabinoids are able to
regulate postnatal neurogenesis by acting on distinct steps of NSC regulation, although the effects
can vary considerably according to the cannabinoid, dose and protocol of administration [208–211].
In this section we focus on emerging literature that proposes cannabinoids as regulatory agents of
NSC proliferation and maturation in the SVZ and SGZ of the adult brain. Importantly, cannabinoid
signaling influences the identity and cellular features of adult NSCs because its expression changes
during differentiation and its mechanisms of action promote the activation of proliferative and/or
pro-survival cascades, which are essential in the regulation of cell cycle [210,212].

Several studies have provided compelling evidence linking cannabinoids and NSC regulation
in the adult brain [210,213,214]. Notably, more attention has been given to the actions of the major
cannabinoid receptors on adult NSCs.

CB1R contribution to adult neurogenesis has been shown to be fairly robust [180,208,213].
Indeed, early studies indicated that CB1R knockout (KO), in mice, results in impaired neurogenesis,
suggesting a regulatory role of CB1Rs in adult neurogenesis [213]. Moreover, the use of ACEA
(CB1R selective agonist) was shown to promote mice neural precursor differentiation towards a
neuronal lineage, suggesting that CB1R activation may represent a pro-neuronal differentiation
signal [177]. Similarly, CB1R activation (with R-m-AEA) was shown to induce proliferation,
self-renewal and neuronal differentiation in mouse neonatal subventricular cell cultures [215].
Interestingly, treatment with a CB1R antagonist AM251 abolishes an exercise-induced increase of
hippocampal cell proliferation, indicating that endogenous cannabinoid signaling is required for
exercise-mediated NSC proliferation [216]. Moreover, a recent study elegantly shows that activation of
CB1Rs within the NSC lineage itself is essential to control neurogenesis in adult mice by regulating
NSC pool, dendritic morphology, activity-dependent plasticity and behavior [217]. In line with this,
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numerous studies have found CBD to increase both NSC proliferation and overall neurogenesis, with
some indication that it may do so through interactions with CB1Rs, CB2Rs and PPARγ [218–221].

In accordance, CB2R activation with selective agonists was also shown to influence the
proliferation, differentiation and survival of adult NSCs [222,223]. In one study, a CB2R KO was
shown to have reduced self-renewal capacity of murine embryonic cortical NSCs, while activation
with CB2R agonists increased primary neurosphere generation and neural progenitor self-renewal
in vitro [175]. In another study, the administration of HU-308 (a CB2R selective agonist) was shown to
induce the proliferation of NSCs via phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target
of rapamycin (mTOR)-dependent signaling both in vitro and in vivo [224]. Moreover, treatment with
a cannabinoid receptor agonist (WIN 55,212-2) or with a CB2R selective agonist (JWH-133) in an
in vivo study showed an increase in SVZ NSC proliferation, this effect being more pronounced in aged
mice [225]. Another example is found in the use CB2R agonist AM1241, which has been shown to
promote the proliferation/differentiation of primary human NSCs in vitro, as well as a reduction in
astroglyosis and gliogenesis in vivo, suggesting a neuroprotective role of CB2Rs [226].

Several studies using technology to limit the availability of eCBs, by targeting endogenous
cannabinoid metabolism, also show compelling evidence linking cannabinoids and adult NSC
regulation. For example, chronic inhibition of the enzyme responsible for the production of 2-AG
(DAGL) was shown to abolish cell proliferation, while inhibition of FAAH, the enzyme responsible for
AEA hydrolysis, promoted an increase in cell proliferation in the mouse SVZ [225]. Supporting this,
it was observed that knockdown of FAAH promoted a substantial increase in cell proliferation in the
DG of adult mice [180]. Another study showed that complete knockdown of the DAGLα subtype
enzyme promoted a general reduction of 2-AG and AEA levels, with a concomitant decrease in
cell proliferation and reduction in the expression of immature neurons in the mouse hippocampus,
suggesting the importance of basal eCB tone in maintaining NSC homeostasis [227].

Apart from affecting the production of new neurons in the adult brain, existing evidence
shows that cannabinoids are also modulators of astro- and oligodendrogenesis in the early postnatal
brain [214,228,229]. In fact, it was observed that postnatal CB1R activation was able to promote
astroglial differentiation of mouse neural progenitor cells in vitro and in vivo [228,230]. Moreover, both
CB1Rs and CB2Rs were detected in oligodendrocyte progenitor cells (OPCs) and 2-AG was reported to
enhance early OPC proliferation [231,232]. Additionally, either non-selective activation of cannabinoid
receptors by WIN 55,212-2 or selective activation of CB1Rs or CB2Rs stimulates OPC differentiation
into oligodendrocytes [229,233,234]. In fact, pharmacological activation of CB1Rs and CB2Rs was
shown to enhance the expression of myelin basic protein in the subcortical white matter and to promote
oligodendrogenesis in the SVZ of adult animals [235]. Evidence suggests that activation of CB1Rs
and CB2Rs was found to enhance the survival of OPCs in vitro via activation of ERK and PI3-AKT
signaling pathways [178,231]. Moreover, the administration of WIN 55,212-2 was found to stimulate
the survival of adult-born OPC in a viral encephalitis-induced animal model, depicting the role of eCB
signaling in modulating the survival and generation of glial cells during postnatal stages [236].

Further data supporting the role of cannabinoids in adult NSCs shows that cannabinoids can
interact with other neuromodulatory signals. Indeed, recent evidence shows that CB1R agonist
ACEA can target fascin, an actin-bundling protein, and interact with protein kinase C (PKC) signaling
pathway promoting the migration of neuroblasts [237]. Moreover, administration of CBC, a non-THC
phytocannabinoid, to adult neural precursor cells extracted from brains of eight week-old mice was
found to promote cell survival during differentiation and to dampen astroglial differentiation through
the involvement of ERK, ATP and adenosine signaling cascades [238]. CB1Rs and CB2Rs were also
shown to cooperate with EGF receptors in the regulation of NSC expansion [239]. In the same way,
CB1Rs have been shown to activate FGF receptors in order to promote axonal growth in rat cerebellar
granule neurons [240]. Further evidence has shown that pharmacological blockade of CB1Rs and/or
CB2Rs leads to a decrease in NSC proliferation, accompanied by a decline in the expansion of mouse
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brain-derived neurospheres, and that interleukin 1 (IL-1) signaling pathway was involved in this
process, emphasizing the neuroimmune interactions of cannabinoid signaling [241].

Overall, most evidence shows that genetic ablation of cannabinoid receptors or treatment with
CB1R and CB2R selective antagonists leads to a decrease in NSC proliferation in the hippocampus
and SVZ [175,213,217]. By contrast, either direct activation of cannabinoid receptors using synthetic
agonists and/or an indirect approach aiming at increasing eCBs, by inhibiting their degrading enzymes,
stimulates the formation and maturation of new neurons in both adult niches [213,242,243].

The complexity/variability of these findings also illustrates that study design, animal species,
strain, gender and/or compound selectivity and dosage are very important when studying the effects
of cannabinoids in NSC regulation. Moreover, data disparity of many studies involving adult NSCs
may in part be explained by the varying properties of each NSC population and the heterogeneity
within each NSC pool, which suggests that eCB signals, acting in a particular spatial and temporal
manner, could differentially affect the proliferative capacity of NSCs, limiting the lineage specification
of succeeding progenies. In fact, there are divergences between the two niche microenvironments
regarding the molecules that regulate morphogenesis, rates of division, self-renewal and survival
which may account for the observed differences [244,245].

5. Role of Cannabinoids in Neurogenesis and Pathophysiology

Neurological and mental disorders comprise a broad range of disabling conditions with different
phenotypic outputs. Some symptoms of these disorders may arise from early impairment in neural
development or aberrant adult neurogenesis [246]. In fact, alterations in the mechanisms behind NSC
regulation in the embryonic and adult brain have been reported in both patients and animal models of
AD, Parkinson’s disease (PD), MS, epilepsy and mood disorders [247–251].

Despite the extensive evidence suggesting that both exogenous and endogenous cannabinoids
regulate NSC proliferation, which in turn may be affected by disease loading, the link between NSCs,
cannabinoids and brain disorders remains to be established. This unclear vision may arise from the
poor/varied design of pre-clinical studies, the lack of post-mortem analyses of brains from patients with
neurological disorders as well as the lack of clinical studies involving cannabinoid usage. However,
several data suggest that manipulation of cannabinoid signaling promotes a fine-tuned regulation of
NSCs, which is resultant from their anti-inflammatory and antioxidant properties. Therefore, eCBs may
have an impact in delaying, preventing or restoring some neural deficits in animal models that
mimic some features of neurodegenerative and psychiatric disorders, therefore, constituting potential
therapeutic targets for neuroregeneration.

5.1. Cannabinoids and Neuroprotection

Brain damage and neurodegeneration are leading causes of long-term disability, disease burden
and mortality worldwide [252]. They are characterized by the progressive loss of specific neuronal
subpopulations in the CNS, with different clinical features being exhibited and can result from the
natural process of brain aging or brain injury/trauma. Available treatments usually act on transient
symptomatic relief, being poorly active at fighting the cellular events occurring as brain damage
advances [253]. Therefore, it is essential to seek for molecules with disease-modifying activity that
take into consideration the mechanisms that underlie disease progression and enable the repair of
neuronal loss.

The neuroprotective potential of ECS-targeting compounds (e.g., cannabinoid agonists or
antagonists, inhibitors of eCB degradation or biosynthesis or other modulators) has been extensively
investigated over the last 20 years [253]. This neuroprotective nature of cannabinoids arises not only
from their pleiotropic profile, i.e., the capacity to interact with neuromodulatory systems not directly
related with the eCB signaling, but also from the presence of these targets in key cellular components
of the CNS (i.e., neurons, astrocytes, microglia, oligodendrocytes and neural progenitor cells) and
brain structures like the blood–brain barrier [58]. These features then translate into an ability to restore
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the CNS to a physiological homeostatic state after an acute or chronic perturbation, by fighting an
array of cellular processes caused by brain insults or damage, like excitotoxicity, increased state of
neuroinflammation, oxidative stress and protein aggregation, as well as other processes that interfere
with neuronal homeostasis and integrity [253]. Given the relationship between all these pathological
cellular hallmarks, the protection of CNS components must act on all or most of these targets in a
multifaceted manner. Therefore, cannabinoids are valuable candidates for this strategy.

Excessive release of glutamate generates accumulation of toxic concentrations of intracellular
calcium and oxygen free radicals, resulting in excitotoxicity, a process common to many brain
disorders which often leads to neuronal death [254]. A number of observations indicate the ability
of cannabinoids to control glutamate release through the activation of CB1Rs and have revealed a
crucial role of this receptor in excitotoxicity control, BDNF being a key mediator of this process [43,255].
Others have also demonstrated that cannabinoid-mediated neuroprotection against excitotoxicity relies
on CB1R and CB2R modulation in glial cells [256]. Moreover, inhibition of eCB uptake with UCM707
was shown to have a protective role against AMPA-induced excitotoxicity through activation of CB1Rs,
CB2Rs and PPARγs [257].

While the mechanisms of neuroprotection aimed at regulating glutamate homeostasis are
mainly due to CB1R actions, the anti-inflammatory effects of cannabinoid-mediated protection are
mostly attributed to the modulation of CB2Rs. Hence, the involvement of the ECS, particularly of
CB2Rs, in reducing local or systemic inflammatory events is a crucial part of cannabinoid-mediated
neuroprotection. Neuroinflammation is the process by which the release of cytotoxic agents and cell
death occurs after acute or chronic CNS damage [258]. The regulation by cannabinoids of mechanisms
like modulation of immune responses and the release of inflammatory mediators was extensively
reviewed in [259]. For instance, mouse microglial cell cultures treated with CB2R selective agonist
JWH015 showed a reduction in interferon-γ (IFN-γ)-induced upregulation of CD40 expression, which
lead to a decrease in the production of proinflammatory cytokines and an enhancement of amyloid-β
(Aβ) phagocytosis [260]. Moreover, administration of CBD and WIN 55,212-2 was shown to reduce
the levels of proinflammatory cytokine IL-6 derived from Aβ exposure [261]. Further studies have
reported that oral administration of JWH-133, a potent CB2R agonist, decreased microglial activation,
proinflammatory factors COX-2 and tumor necrosis factor α (TNF-α) mRNA expression and the
cortical levels of Aβ in a transgenic mouse model of AD [262]. In the context of aging, which is closely
related with an increase in neuroinflammation, aged rats administered with WIN 55,212-2 showed a
reduced number of activated microglia in the hippocampus and DG. Furthermore, the same treatment
was found to decrease the mRNA levels of the IL-6, as well as the protein levels of the inflammatory
factors TNF-α and IL-1β [263].

In like manner, cannabinoid receptor ligands are often reported as having antioxidant properties
because they are able to fight oxidative stress and reduce reactive oxygen species (ROS) load,
processes intimately associated with excitotoxicity and neuroinflammation. For example, ∆9-THC
exposure was shown to rescue the pharmacologically-induced inhibition of mitochondrial function,
ubiquitin proteasome and production of free radicals in a human neuroblastoma cell line [264].
Moreover, treatment with CBD promoted potent antioxidant actions in both in vitro and in vivo studies
by reducing ROS burden [265,266].

In addition to the benefits resulting from direct activation of the ECS, the ability of eCBs to interact
with other molecules/systems can also provide neuroprotective actions. In fact, cannabinoid-mediated
neuroprotective effects also result from interactions with transcription factors, neurotrophic factors,
receptors of the PPAR family or with elements of other transmission systems, like the serotonin 5-HT1A
receptors or adenosine A2A receptors [267–272].

Importantly, the ECS has been shown to be involved in the neuroprotection of NSCs and their
resulting progeny. In fact, CB1Rs were shown to be involved in the excitotoxicity-induced neural
progenitor cell proliferation and neuronal differentiation [273]. Moreover, activation of CB2Rs was
shown to increase the survival of NSCs and progenitor cells, as well as to rescue impaired hippocampal
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neurogenesis caused by chronic insult by HIV-1 neurotoxic protein gp120 [226]. More recently,
activation of GPR55 has demonstrated a neuro-immune regulatory role of human and murine NSCs by
protecting them against chronic inflammation in vitro (with IL-1β treatment) and in vivo (with chronic
LPS administration) [274].

Despite the neuroprotective actions associated with the ECS modulation, cannabinoid-induced
neurotoxic effects have also been reported [252]. This inconsistency may be due to numerous factors,
such as the severity and timing of the pathologically-induced insult and, the kind of pharmacological
intervention implemented. The dosage and timing of administration of cannabinoids are also of
great importance, given that high exposure usually induces neuronal cell death [275]. Moreover,
different cannabinoids have different mechanisms of action depending on the type of receptors they
modulate and the corresponding signaling pathways.

In the next sections, illustrative examples of ECS system modulation in disease context will be
described in more detail (Supplementary Table S1).

5.2. Cannabinoids and Brain Disorders

5.2.1. Alzheimer’s Disease

Late-onset AD (≥65 years-old) is responsible for about 70% of all cases of dementia [276].
The disease is characterized by a number of Aβ oligomerization and aggregation-induced neurotoxic
mechanisms, including tau hyperphosphorylation, neuroinflammation with reactive gliosis (astro and
microgliosis), excitotoxicity and oxidative damage [277–279]. These changes, which primarily impact
on the cortex and the hippocampal formation, result in disrupted synaptic plasticity, loss of synaptic
function, namely cholinergic, and cell death [277–279]. Despite being one of the most debilitating
neurodegenerative disorders, present available treatment options have failed to stop or even
significantly delay disease progression [278]. Due to its broad range of actions at the PNS and CNS,
modulation of the ECS has been extensively discussed as a potential multimodal disease-modifying
therapy for the management of complex multifactorial conditions such as AD (reviewed in [7,280,281]).

AD patients classically show a slow-progressing cognitive impairment, notably affecting short- and
long-term memory performance, which are highly dependent on hippocampal function [277,282,283].
However, clinical evidence assessing the potential benefit of cannabinoids on cognitive decline is
currently lacking [284]. Nonetheless, a few patient trials have focused on the use of the THC-based
pharmaceutical formulation dronabinol (Marinol®) for relieving neuropsychiatric symptoms shown by
most demented individuals, denoting a decrease in agitation, nocturnal motor activity and aggressive
behaviors, as well as an increase in body weight [285–288].

Changes in several components of the ECS have been described in AD post-mortem samples and
animal models of the disease. Despite contradicting results, these changes appear to be dependent
on the type of cells, but also on disease stage, and Aβ aggregation state [7,289]. In this regard,
an initial increase of CB1Rs is proposed to occur, followed by a downregulation at later stages [290].
Interestingly, CB2Rs are overexpressed in microglia surrounding neuritic plaques, yet decreased
in neurons [50,291,292]. Increased 2-AG signaling is also observed around Aβ plaques in late-AD,
in association with diminished MAGL activity and enhanced DAGL expression [293,294]. In addition,
augmented FAAH activity and expression can be denoted in astrocytes near plaques, with subsequent
reduction of AEA [291].

How the regenerative capability of the adult brain is modulated in aging and AD is still a
matter of debate, with variable results from in vitro and in vivo (both pharmacological and transgenic)
animal models and post-mortem human samples [295]. However, most evidence points to a depletion
of proliferation, differentiation and survival of NSCs, as well as compromised morphology and
maturation of GCs in the DG of mouse models of AD [296–302]. Moreover, as for the ECS, alterations
in AHN are suggested to be dependent on disease progression and Aβ conformation, being initially
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elevated as an attempt to compensate for neurotoxicity and cell death, yet fading at later disease
stages [303,304].

The use of different models of AD shows extensive promise regarding the neuroprotective role of
cannabinoids. A relevant function of these compounds in reducing amyloid burden and associated
neurotoxicity has been suggested in vitro. ∆9-THC is a competitive inhibitor of acetylcholinesterase
(AChE) activity, potentially preventing AChE-induced Aβ aggregation [305]. Both 2-AG and AEA,
as well as CB1R/CB2R (WIN 55,212-2 and HU-210), and CB2R (JWH-133, JWH-015) agonists,
have been shown to prevent Aβ-induced toxicity, namely by promoting microglia-mediated Aβ

clearance [260,292,306–308]. Similar effects of CBD or PPARγ activation were also observed,
demonstrating enhanced cell survival, decreased oxidative stress, and regulation of Aβ production
and clearance [309–313].

Furthermore, many authors have focused on the cannabinoid-mediated anti-inflammatory actions,
mainly using transgenic mouse models of AD or models obtained by intracerebral injections of Aβ

to mice and rats. In these models, neuroinflammation and reactive gliosis around neuritic plaques
was shown to be effectively down-regulated by MAGL inhibition, WIN 55,212-2, CB1R agonist ACEA,
CB2R agonists MDA7 and JWH-133, CBD and THC+CBD [218,261,262,292,314–320]. Besides these
effects, various studies using the same compounds and AD models have demonstrated learning
and memory improvements, in tasks that significantly rely on hippocampal function, although some
authors report no effect on Aβ load [261,262,292,293,314–319,321–323]. In line with this, ∆9-THC and
MAGL inactivation have been shown to decrease the occurrence of neuritic plaques in a transgenic
mouse model carrying five mutations related to familial AD (5xFAD) [324,325].

It is still unclear whether cannabinoids might have a positive impact on AD pathology,
partly through regulation of AHN, yet a few common pathways may be mentioned. Some of the
aforementioned anti-inflammatory and neuroprotective actions of cannabinoids have been linked to
the inhibition of glycogen synthase kinase 3β (GSK-3β) overactivation, which is known to promote tau
hyperphosphorylation and Aβ production, and is a negative regulator of AHN [218,262,319,320,326–329].
In fact, CBD has been found to suppress reactive gliosis and rescue neurogenesis in the DG of rats injected
with Aβ1-42 in a PPARγ-dependent manner, likely through inactivation of GSK-3β and subsequent rescue
of Wnt/β-catenin pathway, an important regulator of AHN [218,320,330,331]. Administration of MDA7,
a potent CB2R selective agonist, to AD transgenic amyloid precursor protein/presenilin 1 (APP/PS1)
mice was observed to reduce microgliosis, promote Aβ clearance, restore memory performance, synaptic
plasticity and Sox2 expression, a transcription factor expressed by NSCs in the DG [318,332]. Likewise,
AEA was shown to enhance Notch-1 signaling, a known modulator of AHN, which was impaired by Aβ

in cultured neurons [331,333].
A noteworthy parallelism can be made between a dose-dependent effect of ∆9-THC on memory

and neurogenesis, where low concentrations of the compound appear to improve memory function
and promote AHN, while higher doses seem detrimental (recently reviewed in [334]). Additionally,
given the elevated density of cannabinoid receptors in the hippocampus and the relevance of the ECS
in regulating AHN, it becomes evident that the therapeutic value of cannabinoids for AD pathology
may rely on restoring aberrant neurogenesis [335].

Although preclinical evidence has been supportive of the administration of cannabinoids to
ameliorate AD pathology, a clinical benefit remains to be assessed due to the limited number of clinical
trials, with short duration and low number of subjects, that fail to evaluate cognitive parameters,
as well as biomarkers of neurodegeneration [281,336]. In addition, future studies are needed to
assess long-term safety and effectiveness of natural and synthetic cannabinoids, specifically in older
individuals with AD [280,336]. Importantly, there is a pressing need for a better comprehension of
the underlying mechanisms concerning the interaction of cannabinoids in AD and hippocampal NSC
modulation, namely using specific neurogenic markers.
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5.2.2. Parkinson’s Disease

PD is characterized by a progressive degeneration and subsequent loss of DA neurons in the
substantia nigra pars compacta (SN) [337]. These neurons compose the brain motor system, being
responsible for the initiation of movement and the reward pathway, by innervation of the striatum [338].
The presence of Lewy bodies, which are mainly formed of alpha-synuclein (αSyn) aggregates,
have been identified as a prerequisite for the post-mortem diagnosis of both the pre-symptomatic
and symptomatic phases of the pathological process underlying PD. These aggregates have been
identified as belonging to two distinct categories, the brainstem- and the cortical-derived, with the latter
type being more strongly immunoreactive for αSyn [339–341]. Symptomatically, PD is a progressive
movement disorder that causes muscle rigidity, tremors, bradykinesia and shuffling gait [342]. It can
also cause dementia, especially in advanced stages [338]. The motor dysfunctions, which are the main
feature in PD, become symptomatic when ≈60% of neurons are already lost [341]. Although in the
vast majority of cases PD is idiopathic, epidemiological evidence suggests that environmental toxins
such as pesticides increase PD risk [340,343]. However, in some cases, PD is associated with inherited
mutations in PD-related genes, such as α-Synuclein (SNCA), parkin (PARKIN), PTEN-induced putative
kinase protein 1 (PINK1), ubiquitin carboxyl-terminal esterase L1 (UCH-L1) and leucine-rich repeat
kinase 2 (LRRK2) [344]. Current therapeutics for PD rely mostly on the use of pharmacological agents,
mainly through the use of L-DOPA, a dopamine precursor [345]. These are often used to improve
motor symptomatology of PD patients, rendering no effective cure for PD. Therefore, the development
of new strategies has been the focus of current PD research.

Targeting the ECS may prove as an alternative therapy to improve motor symptoms, as PD
patients reported an amelioration in bradykinesia, accompanied by a reduction in muscle rigidity and
tremors after cannabinoid intake [346]. These reports are supported by three major pieces of evidence.
First, the basal ganglia and cerebellum, brain areas responsible for the control of movement, which are
highly affected in PD, express CB1R, CB2R and TRPV1R [347–349]. Second, it has been shown that
motor activity is repressed by the strong inhibitory action promoted by a variety of cannabinoids,
which are responsible to fine-tune the activity of various classical neurotransmitters [350–353]. Finally,
evidence shows that ECS signaling is altered in the basal ganglia of humans and in animal models of
PD [354–356]. These clinical-based evidence are supported by robust pre-clinical data which indicates
that the ECS has a neuroprotective role in PD [357,358]. One study, using a rotenone-induced rat
model of PD supplemented with β-caryophyllene (BCP), a naturally occurring CB2R agonist, showed
a decrease in the levels of proinflammatory cytokines and inflammatory mediators. These results
were further supported by an increase in tyrosine hydroxylase immunoreactivity, which illustrated the
rescue of the DA neurons and a reduction in the activation of glial cells [359].

In human PD post-mortem studies, the endogenous pool of adult NSCs was shown to be
significantly affected, specifically in the SGZ, suggesting a potential effect of dopamine on NSC
proliferation and survival, as reviewed by [161,360]. New evidence suggests that adult NSCs are
also impaired in animal models of PD, supporting data from human studies. Although the precise
mechanisms and effects of these changes are not yet fully understood, αSyn and aging were shown to
decrease adult neurogenesis throughout the several stages of PD [361–363].

One of the earliest stages of PD is characterized by a non-motor symptom, namely hyposmia or
anosmia, which is the loss of the sense of smell, being reported in 90% of patients [364]. Alterations in
olfaction in PD seem to be related with changes in central olfactory processing, which could be
explained by αSyn pathology being present in the olfactory bulb long before Lewy bodies are detected
in the SN [341]. In fact, neurogenesis in the SVZ and olfactory bulb was shown to be impaired in a
transgenic mouse model expressing the human αSyn carrying the A30P mutation, where significantly
fewer newly generated neurons were observed in the olfactory bulb [365]. Other studies, using the
Parkinson 6-hydroxydopamine (6-OHDA) rat model have shown that 6-OHDA induced SN DA
degeneration and had a major impact on SGZ neurogenesis [366,367]. These reports suggest that
dopamine depletion reduces NSC proliferation and consequently adult neurogenesis [368].
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Therefore, potentiating the intrinsic pool of NSCs has been proposed as an alternative potential
PD therapy. Several studies, with contradictory findings, have been focusing on stimulating the
production of DA neurons from the SVZ and SGZ. In fact, it was shown that the administration of
D1 and D3 receptor agonists in the 6-OHDA rat model, produced an increase in SGZ and SVZ cell
proliferation, respectively [367,369]. Adding to that, a D3 receptor agonist also increased DA newborn
neurons in the SN, leading to the improvement of motor impairments [369]. Another study failed to
induce SN DA neurogenesis using the D2/D3 receptor agonist pramiprexole, however it promoted
olfactory bulb DA neurogenesis [370]. Another growing strategy is the use of human pluripotent
stem cells to induce DA differentiation. These can be derived from early pre-implantation embryos
(embryonic stem cells, ESCs) or by reprogramming adult somatic cells (induced pluripotent stem cells,
iPSCs), and then differentiated into midbrain DA neurons using recently developed protocols [371,372].
However, brain implantation of these cells requires invasive surgical techniques and generates side
effects (e.g., graft-induced dyskinesias) with signs of disease-related pathology in the transplanted cells
being visible years after implantation [373–375]. A cannabinoid induction of DA differentiation from
NSCs is still under debate [207,215]. One recent study compared AEA with ∆9-THC and concluded
that, using higher doses of these compounds, the functional maturation and DA specification from
human cord blood-derived iPSCs was significantly compromised [207].

To conclude, in PD, it has been shown in several studies with both human post-mortem samples
and animal models that both neurogenic niches are significantly impaired by αSyn pathology or DA
depletion [360,361]. Replenishing the DA neuronal loss has been proving a challenge to the scientific
community, whether by using the endogenous pool of NSCs, or by targeting the ECS, to promote
neurogenesis at specific and selective timepoints. The ECS may still be applied clinically in order to
ameliorate PD symptomatology due to the aforementioned neuroprotective properties of cannabinoids
and therefore improving the quality of life of PD patients [358,376,377].

5.2.3. Multiple Sclerosis

MS is one of the most recurrent disorders of the CNS. Despite its unknown etiology, an immune
response and consequent infiltration of immune cells into the CNS together with demyelinating events
culminates in oligodendrocyte loss and neuronal degeneration. Some of the resulting symptoms are
spasticity, tremors, ataxia, bladder dysfunction and neuropathic pain, with a high impairment of the
quality of life of the patient [378–380]. MS patients that consumed cannabis reported relief regarding
several of these symptoms, highlighting a possible role for cannabinoids in MS [380–385]. Furthermore,
the neuroprotective effects of these molecules in MS has been thoroughly described in the literature,
since they are able to diminish oligodendrocyte death and increase remyelination whilst having an
anti-inflammatory role [231,386,387]. Changes in eCB levels and also in the levels of its receptors and
degrading enzymes, FAAH and MAGL, were observed both in blood and post-mortem brain samples
of MS patients and in animal models of MS, such as the experimental autoimmune encephalomyelitis
(EAE) model, in different stages of disease [379,383,388–393].

Studies using EAE-induced mice where CB1Rs and CB2Rs were genetically deleted or
pharmacologically inhibited show elevated neurodegeneration and poorer anti-inflammatory
responses accompanied by an increase in EAE severity and motor impairment [379,386,394–396].
The potential targets for ECS modulation in MS, namely the degrading enzymes and transporters
which actively participate in this mechanism by controlling the levels of eCBs have been a matter of
study [380,397–399]. However, the exact mechanisms for the actions of cannabinoids in MS are still
not totally known.

Using the Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD)
mice, it was possible to observe that the modulation of the ECS by inhibition of AEA uptake
resulted in an improvement of motor performance, reduction of microglial/macrophage activation
and proinflammatory cytokine release, accompanied by an increase in eCB signaling [400].
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Recently, it has been shown that CBD attenuates EAE pathology by activating anti-inflammatory
myeloid-derived suppressor cells in the periphery, or by modulating the increase of anti-inflammatory
and decrease of proinflammatory cytokines, both in vivo and in vitro [401,402]. Additionally,
treatment with WIN 55,212-2, a CB1R/CB2R non-selective agonist, was found to attenuate the
interaction between leukocytes and endothelial cells, which is necessary for immune cells to infiltrate
the CNS, therefore inhibiting infiltration. Moreover, by using selective CB1R and CB2R antagonists,
it was observed that the effect on leukocyte trafficking exerted by cannabinoids is triggered by CB2R
activation [403,404]. Furthermore, as it is intimately-related with immune responses, CB2R selective
activation was shown to improve EAE phenotype by decreasing disease severity and incidence [405].
Additionally, the accumulation of CD4+ T cells in the brain and spinal cord is also decreased in these
animals, with a response depending on the time of administration, at an early or late timepoint of
disease course [405].

Throughout the years, numerous clinical trials worldwide have been using cannabis-based
drugs in an attempt to treat MS symptoms. Three main active principles derived from cannabis
formulate these drugs: dronabinol (Marinol®), a synthetic isomer of ∆9-THC, nabilone (Cesamet®),
a synthetic analogue of ∆9-THC and nabiximols (Sativex®), a 1:1 mix of ∆9-THC and CBD [380].
Sativex® consists of an oral spray approved in some European countries and Canada for the treatment
of spasticity and pain relief in MS patients, with mild-to-moderate side effects that occur scarcely
in patients [379,380,406–416]. Nevertheless, no trial has shown a slower disease progression in MS
patients prescribed with THC-based drugs and, hence, there are still no evidence of its neuroprotective
effect in humans [379,417,418].

Concomitantly, in MS there is myelin damage and oligodendrocyte loss, and thus, finding new
mechanisms to promote both re-myelination and OPC differentiation, either from precursors present
in the brain parenchyma or derived from SVZ NSCs is crucial, since OPCs are able to migrate
and partially remyelinate lesioned areas [249,419–421]. Cells from the oligodendroglial lineage are
directly modulated by cannabinoids in distinct maturation stages, ranging from the regulation of OPC
survival, proliferation, migration and differentiation to the modulation of mature oligodendrocyte
survival and myelinating capacity [422,423]. For instance, it has been observed that OPCs express
CB1Rs and CB2Rs and that cannabinoids promote OPC survival and oligodendrocyte differentiation
through the PI3K/Akt/mTORC1 signaling pathway, which is known to participate in the myelination
process [229,231,422,424–429]. CBD has also been shown to be a modulator of this pathway and its
administration to EAE mice was shown to decrease the infiltration of inflammatory immune cells into
the CNS and to promote the phosphorylation of PI3K, Akt and mTOR, together with the inhibition of
MAPK signaling pathway, leading to an anti-inflammatory response and neuronal survival [423].

Although several studies have looked at the relationship between cannabinoids and
oligodendrocyte differentiation under inflammatory-demyelinating conditions, there is still a major
gap concerning the ability of SVZ-derived NSCs to be modulated by cannabinoids and differentiate
into OPCs, which could be useful for MS therapeutics and should be addressed in future studies [235].

5.2.4. Epilepsy

Epilepsy is a neurological disorder characterized by a persistent predisposition to generate
epileptic seizures which are often associated with neurobiological, cognitive, psychological and
social consequences [430,431]. An epileptic seizure can be defined as an abnormal excessive and/or
synchronous neuronal activity in the brain, which instigates a transient behavioral alteration,
comprising a myriad of signs and symptoms (such as loss of awareness, stiffening, among others) [430].
Although most patients have idiopathic epilepsy, seizures can be induced by lesions or insults that
impact normal brain function and activity. The main causes for epilepsy include lesions or structural
alterations, such as stroke, tumor, traumatic brain injury, infectious diseases, metabolic alterations,
autoimmune diseases and genetic mutations [430,432]. More than 500 genes have been linked to
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epilepsy, including 84 genes that directly cause epilepsies or syndromes with epilepsy as one of their
core symptoms [433].

Epileptogenesis is the multifactorial process that underlies the development of spontaneous
seizures. It occurs before and persists beyond the first unprovoked episode and can progress over
several years in humans [430,432,434]. The mechanisms behind this process are still not completely
understood but include a widespread of alterations in both neuronal and non-neuronal cells, leading
to molecular and structural changes that result in the dysfunction of neuronal circuits [430,434,435].
The main alteration is an imbalance between excitation and inhibition in the neuronal circuits, through
an increase in excitatory neurotransmission, as well as a decrease in inhibitory neurotransmission,
resulting in a state of continuous hyperexcitability [436].

Until recently, epilepsy treatment was primarily focused in stopping seizures, disregarding
the underlying mechanisms behind the disease. Nonetheless, this paradigm is changing, with
research converging into efforts on finding new anticonvulsants, with both neuroprotective and
antiepileptic properties. According to recent data, the ECS and its constituents may represent such
therapeutic targets [437,438]. In fact, epilepsy often induces alterations in the ECS, particularly at the
level of CB1R expression and production of eCBs [437]. Indeed, current evidence in mice suggests
that CB1R expression is upregulated at GABAergic synapses and downregulated at glutamatergic
synapses in epilepsy, although no consensus has been reached [439,440]. Moreover, epilepsy in
humans affects the production of endogenous eCBs by interfering with the levels of cannabinoid
enzymes like DAGL and MAGL, which is suggestive of a pivotal role of cannabinoid tone in this
disease [441,442]. Emerging clinical evidence, mostly coming from epidemiological data and case
reports, depicts the overall positive effects of cannabinoid administration using a high ratio of
CBD:THC in the management of resistant epilepsy [443–445]. Furthermore, cannabinoids and their
endogenous counterparts have been associated with epilepsy treatment, with several studies using
various cannabinoid-based drugs in animal models of epilepsy [446–451]. For example, treatment with
WIN 55,212-2 (a CB1R/CB2R agonist) was shown to prevent chronic epileptic hippocampal damage in
rats by attenuating the severity and frequency of spontaneous recurrent seizures [452]. In particular,
studies using CB1R ligands have shown that the activation of this receptor can delay the progression of
seizure severity as well as the frequency of spontaneous epileptiform activity [446,447,450]. Moreover,
studies using conditional CB1R KO models have demonstrated that eCB signaling plays an important
role in the termination of epileptic activity, depending on the neuronal subpopulation, whilst having
no impact in the initiation of hyperexcitability [451]. Lastly, it has also been shown that the MAGL
inhibition leads to a delay in the development of generalized seizures in the kindling model of temporal
lobe epilepsy [449]. Apart from their intrinsic anticonvulsant properties, cannabinoids have been
shown to potentiate other anti-epileptic drugs [453–455].

Importantly, epileptic seizures were shown to promote aberrant AHN in the granular layer,
characterized by a transient increase in the proliferation of neural progenitors, GCL dispersion,
persistence of hilar basal dendrites and ectopic placing of adult-born GCs [430,435]. Evidence shows
that prolonged seizures induce an increase in cell proliferation in the SGZ (up to 5–10 fold), lasting for
several weeks [435,456–458]. However, approximately three to four weeks after the persistent seizure
period, proliferation returns to baseline levels or even decreases to substantially lower rates when
compared to control animals [435,457,459]. The same has been observed in humans, where it was
described that severe seizures during early childhood prompt a decrease in AHN, negatively affecting
normal brain development and further progression of epileptogenesis [460]. Whether the mechanism
in patients is similar to those found in animal models, i.e., a transient increase in the proliferation of
neural progenitors followed by a reduction of neurogenesis, is not known, instigating further studies
to address this matter [435,460,461].

The alterations in neurogenesis go beyond cell proliferation, also affecting maturation and
migration of adult-born neurons. After status epilepticus, which consists of a single epileptic seizure
lasting more than five minutes or two or more seizures within a five-minute period without recovery
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of consciousness, newborn GCs migrate towards the dentate hilus or the molecular layer instead
of integrating into the GCL, both in rodent models and patients with epilepsy [457,459,462–464].
Moreover, the correct maturation of the GCs upon epileptic stimuli does not occur, being observed an
accumulation of hilar basal dendrites, which are normally a feature of immature cells. This abnormal
maturation may be one of the mechanisms underlying the hyperexcitability of adult-born GCs and the
circuits where they integrate [465–468]. Importantly, cannabinoids, when combined with antiepileptic
drugs, can increase neurogenesis in the pilocarpine mouse model of epilepsy [469,470]. In fact,
co-administration of ACEA, a selective CB1R agonist, with sodium valproate, a classic antiepileptic
drug, was shown to significantly increase the number of proliferating cells in the same model [469,470].
However, further studies are needed to ascertain whether this increase in neurogenesis is not aberrant
and can contradict the disease symptoms. Nonetheless, these results show promise by suggesting that
NSC modulation by cannabinoids can be a potential target in this disorder.

As aforementioned, epilepsy treatment is an evolving and emerging topic with the search for
new drugs and therapeutic targets ever increasing [471]. One key aspect that can be targeted is the
seizure-induced neurogenesis, which can also help ameliorate the disease comorbidities [472]. Indeed,
targeting aberrant AHN may reduce recurrent seizures and restore cognitive deficits, namely memory
impairment [473–475]. Since it is known that the ECS can, on one hand, regulate adult neurogenesis
and, on the other hand, have an impact in epileptic treatment, further studies are required to investigate
the putative mechanisms by which cannabinoids have an impact in the treatment of epilepsy. Moreover,
understanding how cannabinoid-induced modulation of NSCs may have neuroplastic effects and
whether this can be used as an anti-epileptic treatment is highly relevant.

5.2.5. Anxiety/Depression

Anxiety and depression are neuropsychiatric conditions with high prevalence worldwide, its
symptoms range from irritability, anhedonia, difficulties in concentrating as well as disturbances in
appetite, sleep, decreased productivity and increased suicide risk [476].

Alterations at the level of NSCs, especially in the hippocampus, are well known correlates of both
anxiety and depressive disorders [477]. The ECS is a known modulatory key player in NSC regulation,
drugs targeting this system induce mood alterations [478,479]. On the other hand, AHN has been shown to
be required for the effects of antidepressants, suggesting that facilitation of neurogenesis can be beneficial
for chronic antidepressant treatment [480]. In line with this, several findings suggest the involvement
of cannabinoids in these neurogenesis-promoted long-lasting antidepressant effects [481]. Similar to the
actions of conventional antidepressants, cannabinoid modulation was shown to promote antidepressant
and anxiolytic effects [479,482]. Therefore, in recent years there has been a marked increase in the interest
of using the ECS as a potential therapeutic target in these disorders [213,481,483,484].

Interestingly, changes in eCB levels have also been reported in affective disorders. The circulating
levels of these molecules have been found to be diminished in individuals diagnosed with depressive
and anxiety disorders [485,486]. Likewise, in animal models of depressive-like behavior there is a
significant overall decrease in brain AEA levels, suggesting an impairment of eCB tone [487–489].
In line with this, polymorphisms in the gene encoding for FAAH (FAAH), have been linked to
an increased risk of depressive and anxiety disorders [490,491]. Moreover, in animal models of
depressive-like behavior, restraint stress induces a significant increase of FAAH expression in
numerous brain regions associated with affective functioning [492–494]. Data regarding 2-AG is
less clear: while it was found to be diminished in the some regions, as a consequence of chronic
mild stress (CMS), it has been observed to be increased in several key regions of the limbic system
such as the amygdala, in response to the same stress exposure [492–494]. In accordance with this
last finding, MAGL expression has been found to decrease over time, in response to persistent
stress [494]. These results have led some researchers to propose that 2-AG production may be
stimulated in situations of persistent stress, as a buffer mechanism against possible stress-induced
neuronal dysregulation [494,495].
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Acute and intermittent administration of CB1R agonists is known to biphasically modulate
anxiety, in both humans and rodents. Low doses are known to be anxiolytic, and higher doses
anxiogenic [496,497]. At the behavior level, acute administration of CB1R agonists such as ∆9-THC,
CBC, ACEA, HU-210, CP 55,940 and WIN 55,212-2, have been mostly related to improvements in the
performance of animals in several behavioral tasks, as well as the overall phenotype of animal models of
depressive-like behavior [498–504]. In contrast, chronic exposure to CB1R agonists have been shown to
induce marked alterations that are age- and gender-dependent [505,506]. Specifically, epidemiological
data suggests that while adult chronic use may be a risk factor for anxiety and depressive disorders,
this deleterious effect is not as pronounced as in adolescents [507–510]. Indeed, chronic adolescent
users have been consistently found to have a higher risk of being diagnosed with anxiety and/or
depressive disorders, and that this risk is bigger in females [511–513]. Curiously, in animal models,
the opposite is suggested, since in adolescent animals no persisting alterations at the level of anxiety
have been found but depressive-like behavior has been found to be markedly increased [505,506,514].
Importantly, this lasting impairment in depressive-like behavior seems to be largely restricted to
female animals, and is accompanied by impairments in hippocampal neurogenesis, which is reversed
by treatment with the FAAH inhibitor URB597 [506,515–517]. In contrast, adult animals chronically
exposed to potent full agonists of cannabinoid receptors show persisting anxiolytic and antidepressant
effects, along with enhanced AHN, underscoring the importance of age in the long-term effects of
cannabinoids [518–521].

The effects of CB1R antagonism/inverse agonism are much more consistent. Despite some animal
behavioral evidence of anxiolytic- and antidepressant-like effects, rimonabant (SR141716) and AM251
have been well described as promoters of anxiety and depressive-like symptoms in both rodents and
humans when chronically administered [494,522–527]. Indeed, rimonabant, initially commercialized
for the treatment of obesity, was recalled after being related to increases in depressive/anxious
symptoms [528]. Additionally, in rodents, this compound has been demonstrated not only to promote
depressive-like behavior, but also to reduce cell proliferation and survival in the hippocampus [526].

There is evidence suggesting that single nucleotide polymorphisms in the CB1R coding gene
(CNR1) are related to an increased risk of stress-precipitated depressive episodes, as well as resistance
to antidepressant drugs [529,530]. In accordance, these polymorphisms are more prevalent among
individuals diagnosed with mood disorders [491]. In line with this, CMS induces a decrease in CB1R
expression in the hippocampus, hypothalamus and striatum [489,531]. Furthermore, CB1R KO rodents
present a characteristic anxious/depressive-like behavioral profile, accompanied by a 50% decrease in
hippocampal NSC proliferation [213,525,532].

Little research has been published so far on the effects of CB2R agonists on anxiety- and
depressive-like behaviors, with a few contradictory reports. Some authors report CB2R agonists
to have anxiolytic effects (JWH-015 and BCP), others report anxiogenic effects (JWH-133), contrasting
with others that report no effects (GW405833) [533–538]. Moreover, CB2R agonists like BCP, JWH-133
and oleamide, may have antidepressant-like effects, despite some reports finding no changes with
the treatment (JWH-015) [533,534,539]. Curiously, given the effects of CB2R activation described
above, there are reports showing CB2R antagonist AM630 as having anxiolytic and antidepressant-like
effects [538–540].

Likewise, not much is known about the involvement of CB2Rs in the pathophysiology of
depressive and anxiety disorders. In humans, a study found an association between a polymorphism
in the CB2R coding gene (CNR2) and a number of psychiatric and immune disorders, which are
often comorbidities [541]. Moreover, animals carrying this polymorphism are less sensitive to the
CB2R-mediated effects of WIN 55,212-2 and 2-AG, suggesting a possible link between impaired CB2R
functioning and altered behavioral phenotypes [542]. In fact, CB2R KO animals present increased
anxiety- and depressive-like behaviors [543,544]. Similarly, animals overexpressing CB2Rs not only
show reduced anxious- and depressive-like behavioral phenotypes, but also are actually resistant to
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the deleterious effects of CMS exposure [540]. Furthermore, CMS has been shown to lead to decreased
CB2R mRNA levels in whole brain samples, as well as in hippocampal homogenates [537,540,541].

Given the psychoactive side-effects of CB1R agonists, one increasingly popular approach has
been the modulation of the enzymes responsible for the degradation of eCBs, such as FAAH and
MAGL [545]. This approach has, indeed, shown some significant promise, with inhibition of FAAH
and to a lesser extent MAGL, leading to anxiolytic- and antidepressant-like effects in rodents [546–553].
Importantly, in the CMS model of depression, the MAGL inhibitor JZL184 was shown to rescue
AHN [551].

CBD has also been extensively shown to have potent anxiolytic and antidepressant effects in
both humans and rodents, being currently investigated as a possible new avenue for the treatment of
these disorders (reviewed in [554–556]). As such, acute and chronic CBD administration have been
shown to induce anxiolytic- and antidepressant-like changes in animal behavioral tests, with low
doses resulting in anxiolytic effects, while higher doses produce no effect on anxiety [499,557–563].
In addition, CBD-induced anxiolytic effects were shown to be dependent on AHN [220].

In summary, there is significant evidence supporting the assertion that the ECS positively
modulates AHN, possibly having a critical role on the regulation of affective states. Moreover,
the importance of this system in these processes is further underlined by the effects that
pharmacological modulation has on the ECS on indexes of mood, in both animals and humans.

6. Perspectives and Concluding Remarks

In recent years there has been a growing increase in the number of reports highlighting the effects
of cannabinoids on NSC regulation [180,210,231]. With the existence of several plant-derived and
synthetic cannabinoids with little or no psychoactive properties, there is an enormous uncovered
potential for cannabinoids as treatment for several neurological disorders, especially when combined
with stem cell therapy [444,564].

In the present review, we put forth a detailed view of how the ECS acts as a potent regulator
of NSC biology by presenting a large body of evidence supporting the effects of cannabinoids on
NSCs and their potential to modulate several neurogenic features in the context of pathophysiology
(Figure 4 and Supplementary Table S1). In fact, endogenously-produced, plant-derived or synthetic
cannabinoids regulatory actions upon NSC pool maintenance and neuronal/glial proliferation and
differentiation constitute a potential mechanism for the treatment of brain disorders since (1) neuronal
damage and neuroinflammation are often associated with alterations in the ECS and (2) hypofunction
or dysregulation of the ECS seems to be correlated with some symptoms and neurobiological hallmarks
of several brain disorders [56,214,565,566]. In particular, stimulation of NSC proliferation and survival
in both the embryonic and adult brain has been shown to be beneficial, for example, in AD, PD, MS,
epilepsy and anxiety/depression [331,361,420,435,481,567].

Cannabinoid-based treatment is a very promising avenue of therapy due to the wide distribution
of the ECS throughout the CNS and its complex interactions with other neuromodulatory systems,
although these represent challenging factors per se when it comes to designing neural repair approaches.
Moreover, the multiplicity of cannabinoid actions on NSCs, particularly in disease context, opens
avenues of research to uncover the exact mechanisms behind cannabinoid effects, therefore, providing
knowledge that should be invested in developing refined targeting strategies to alleviate/arrest
disease burden. Based on the evidence presented in this review regarding neurogenesis and the
relevance of the ECS in maintaining CNS homeostasis, cannabinoid-based medicines may represent
promising therapeutic tools to tackle several brain disorders. There is still, however, a huge lack of
pre-clinical, clinical reports and case studies attesting the efficacy of cannabinoids in pathological
contexts. Pre-clinical data still fails to deliver the precise mechanisms by which cannabinoids and
ECS modulation impact disease neurobiology and phenotypic progression. On the other hand, the
few existing clinical evidence comes either from patients without a cannabis-consuming background
or from those who started using cannabis as a last resort when all other conventional therapies had
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failed [568]. Additionally, at the conceptual level, several questions remain to be addressed, including
the relevance of cannabinoid-mediated actions through “non-canonical” or orphan receptors (that is,
non-CB1 and non-CB2 receptors like GPR55, GPR18, PPARγ receptors or TRPV channels) as well as
the precise signaling mechanisms by which cannabinoids control neurogenesis and mediate disease
states. Given the existence of a plethora of pre-clinically tested, synthetic, botanical and multi-target
cannabinoid-based drugs, the identification of a cannabinoid gold standard to be used as a clean
and reliable clinical therapeutic option is still missing [259,569]. Concomitantly, the wide array of
cannabinoid actions makes the process of choosing the best cannabinoid-based compound with safer
clinical effects difficult. Moreover, it is important to weigh in to which extent cannabinoids can be used
as therapeutic weapons by taking into consideration the benefit-to-risk ratio in a clinical setting and
the narrow therapeutic window exhibited in some disease phenotypes.

With more and more countries legalizing the use of cannabinoids for medicinal purposes,
surely there will be a push from drug developers and pharma industry to do more pre-clinical
and clinical studies in the future. Overall, the abovementioned unexplored questions reveal that
we are still scraping the tip of the iceberg when it comes to the use of cannabinoids as medicinal
agents and further research on the precise roles of cannabinoid signaling in NSC biology is needed.
Combining both cannabinoid and NSC therapy may yield translational power with potential to be
impactful in clinics and society. Certainly, new knowledge in this field over the upcoming years will
bring forth innovative ideas that could place cannabinoids as one of the leading pharmacotherapeutic
options to treat brain pathology.

Figure 4. Cannabinoid actions. Cannabinoids exert a pivotal role in controlling neural stem cell
dynamics by acting on vital intrinsic/extrinsic signaling pathways, therefore regulating distinct steps of
neural stem cells proliferation, differentiation and maturation, namely by maintaining the pool of neural
stem cells, promoting neuronal and glial differentiation or by interacting with other neuromodulatory
systems. The anti-excitotoxic, anti-inflammatory and antioxidant effects of cannabinoids modulate
neuroplasticity, homeostasis, remyelination, survival, maturation and proliferation of both glial and
neuronal cells. When taking in account all of these factors, cannabinoids are shown to be extremely
versatile molecules with neuroprotective and repair capabilities within the central nervous system.
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Phospholipase A1 PLA1
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