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Significant advances have been made in the understanding of the numerous mechanisms 
involved in Parkinson’s disease (PD) pathogenesis. The identification of PD pathogenic 
mutations and the use of different animal models have contributed to better elucidate 
the processes underlying the disease. Here, we report a brief survey of some relevant 
cellular mechanisms, including autophagic–lysosomal dysfunction, endoplasmic reticu-
lum stress, and mitochondrial impairment, with the main aim to focus on their potential 
convergent roles in determining early alterations at the synaptic level, mainly consisting 
in a decrease in dopamine release at nigrostriatal terminals and loss of synaptic plasticity 
at corticostriatal synapses. In a number of experimental models, this synaptopathy 
has been shown to be an initial, central event in PD pathogenesis, preceding neuronal 
damage, thereby representing a valuable tool for testing potential disease-modifying 
treatments.
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inTRODUCTiOn

Parkinson’s disease (PD) is a common neurodegenerative disorder, currently affecting 1% of the 
population above 60 years (1) and characterized by progressive motor deficits, including akinesia (or 
bradykinesia), rigidity, resting tremor, and postural instability (2). The neuropathological hallmarks 
of PD are the progressive loss of substantia nigra pars compacta (SNpc) dopaminergic neurons 
(DAns) and the presence of intraneuronal α-synuclein cytoplasmic inclusions, termed Lewy bod-
ies (3). In the past two decades, a number of pathogenic mutations associated with PD have been 
identified (4), improving our understanding of pathogenic disease mechanisms. Many PD-related 
genes, such as SNCA, PINK1, GBA1, have a crucial role in different cellular mechanisms that have 
proven to be involved in PD, including autophagy/lysosome pathway, endoplasmic reticulum (ER) 
stress, and mitochondrial impairment (5). In this regard, the purpose of this review is to provide 
a brief overview of the most relevant pathogenic mechanisms, but with a specific focus on clues 
supporting early synaptic dysfunction as a functional and structural event that could represent a 
final convergent phenomenon for multiple distinct processes. Comprehensive review of PD-related 
pathogenic mechanisms is beyond the scope of this survey, and we refer the readers to other recent 
excellent reviews (5, 6).

SYnAPTOPATHY in PD

Despite considerable progress in our understanding of the aberrant mechanisms involved in PD 
pathogenesis, some key questions remain unanswered. Among these, a central issue is to establish 
the precise sequence of events at the cellular level and where the pathogenic process begins. Multiple 
lines of evidence suggest that the primary site of α-synucleinopathy is represented by the synaptic 
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FigURe 1 | Schematic cartoon showing a synaptic terminal in control conditions (left) and in Parkinson’s disease (PD) (right). Several mechanisms contribute to early 
dysfunction at the terminal level, causing an impaired dopamine release. As a consequence, synaptic plasticity at corticostriatal synapses [long-term depression 
(LTD) and long-term potentiation (LTP)] is impaired in PD.
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terminal, with the occurrence of an early synaptic impairment 
that precedes axon degeneration and with subsequent retrograde 
progression through a dying-back mechanism (7) (Figure  1). 
This “synaptopathy” described at the cellular level could cor-
respond to an early, presymptomatic time window in patients, 
when only a 30–50% decrease in striatal dopamine levels can 
be detected, providing evidence for a powerful ability of the 
motor system to compensate (8). The concept of synaptopathy 
is closely related to α-synuclein, the major constituent of Lewy 
body, which, in physiological conditions, is primarily localized 
to the presynaptic terminals, where it affects the fusion and 
clustering of synaptic vesicles, thus influencing neurotransmit-
ter release (9–11). Evidence on how α-synuclein plays a crucial 
role in synaptic function and plasticity comes from several 
studies on animal models. In a transgenic mouse model of 
α-synucleinopathy (αSyn 1-120 mice), α-synuclein aggregates 
were detected at striatal dopaminergic terminals, with an impair-
ment of dopamine release from nigrostriatal synaptic terminals, 
even in the absence of nigral DAn loss (12). In another model, 
a bacterial artificial chromosome (BAC) transgenic mouse with 
overexpression of human wild-type α-synuclein (SNCA-OVX), 
a clear time-dependent progression was observed: in 3-month-
old mice, in spite of the absence of overt neuropathology, early 
deficits in dopamine release in the dorsal striatum and increased 
clustering of vesicles in dopamine terminals were found (13). 
Conversely, at 18  months, mice showed motor deficits, loss of 
dopamine neurons, and a reduced firing rate in the remaining 
SNpc dopamine neurons, further indicating synaptic dysfunc-
tion as an early event. Of relevance, this feature does not apply 
only to α-synuclein models. Many other PD animal models, 
including those based on the administration of the “classical” 

neurotoxins 6-OHDA and MPTP, and the ones with genetic 
mutations not involving α-synuclein, have contributed to identify 
synaptic dysfunctions occurring at early stages of the disease. In 
a 6-OHDA model of early PD with partial denervation and mild 
motor alterations, the decreased level of dopamine observed was 
responsible for a selective impairment of corticostriatal synaptic 
plasticity recorded from spiny projection neurons (SPNs), with a 
specific deficit of long-term potentiation (LTP) and with sparing 
of long-term depression (LTD) (14). Similar corticostriatal syn-
aptic plasticity impairments were also found by Chou et al. (15), 
who performed electrophysiological recordings from SPNs and 
from SNpc dopaminergic cells of 8–9-month-old LRRK2 (G2019S 
mutation) transgenic mice. LRRK2 is a multidomain protein with 
kinase activity, whose mutations are involved in autosomal domi-
nant forms of PD (16). The function of LRRK2 has not been fully 
elucidated, although strong evidence implicates a role in intracel-
lular trafficking, vesicular recycling, and modulation of synaptic 
transmission (17). In line with this, Chou et al. identified an early 
decrease in spontaneous firing frequency of SNpc dopaminergic 
cells, without gross degeneration of nigrostriatal terminals, and 
impaired evoked dopamine release, with subsequent deficit in 
LTD induction in striatal neurons (15). Moreover, a recent study 
on LRRK2 BAC transgenic rats revealed alterations to dopamine 
circuit function, in the form of L-DOPA-responsive motor dys-
function, a reduction in SNpc dopamine neurons burst firing, and 
an impaired striatal dopamine release, occurring in the absence 
of neurodegeneration or abnormal protein accumulation (18). 
Besides the examples reported so far, the concept of synaptopathy 
can be extended to various PD models and appears to be linked 
to different cellular mechanisms, as discussed in the following 
sections.
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DYSFUnCTiOnAL AUTOPHAgY–
LYSOSOMe SYSTeM AnD THe  
ROLe OF GBA1 MUTATiOnS

Autophagy, acting through lysosomal degradation, represents 
the main proteolytic system in neurons (19). An abnormal 
autophagic activity leads to the accumulation of aberrant proteins 
and toxic components (20), contributing to the neurodegen-
eration observed in several diseases, including PD (21). In PD, 
dysfunctional autophagy is responsible for the accumulation 
of α-synuclein: specifically, two types of autophagy (macroau-
tophagy and chaperone-mediated autophagy), both involved in 
α-synuclein degradation, appear to be impaired in PD (22). In 
addition, growing evidence indicates that excessive α-synuclein 
itself blocks these degradation pathways, promoting α-synuclein 
aggregation (23). Experimental findings show that Lewy body-
like aggregates are able to resist to macroautophagy degradation 
by impairing clearance of autophagosomes (24) and that two 
α-synuclein familial mutations, SNCA-A30P and SNCA-A53T, 
can alter the chaperone-mediated autophagy pathway (25). In the 
recent past, a growing body of evidence suggests a prominent role 
for decreased glucocerebrosidase (GCase) activity in autophagic 
failure and subsequent α-synuclein accumulation in PD (26). 
GCase is a lysosomal enzyme encoded by the GBA1 gene, ubiq-
uitously expressed in the brain with some regional variations 
(27), whose homozygous or heterozygous compound mutations 
cause Gaucher disease (GD), with the accumulation of glycolipid 
substrate (28). Of note, heterozygous GBA1 mutations represent 
the most relevant risk factor for PD, since they can be found in 
approximately 5–10% of idiopathic PD patients (29). The major-
ity of GBA1 mutations are associated with reduced GCase levels 
(30), with milder mutations responsible for slightly diminished 
enzyme levels, conferring a much lower risk of PD than muta-
tions causing severe enzymatic dysfunction (31). The molecular 
mechanisms underlying the increased PD risk in GBA1 mutation 
carriers have not been fully clarified. A dual interplay has been 
proposed for GCase and α-synuclein. On the one hand, GCase 
loss-of-function would lead to aberrant lysosomal protein degra-
dation and neurotoxicity, whereas on the other hand α-synuclein 
may inhibit the activity of normal GCase (32). Accordingly, in 
postmortem samples of PD patients without GBA1 mutations, a 
reduced GCase activity has been reported (33). The scenario is 
even more complex, considering that significant loss of GCase 
activity can cause neurodegeneration even in the absence of 
α-synuclein (34). To better elucidate the precise mechanisms 
linking GBA1 with parkinsonism, a number of disease models 
have been developed, including both animal models and cell-
based models. GBA1 knockout mice and transgenic mouse lines 
carrying GBA1 point mutations well recapitulate GD phenotype, 
with accumulation of α-synuclein and ubiquitinated proteins, 
the presence of typical “Gaucher cells” and inflammation (28), 
but they also prove to be appropriate for the study of the effects 
of GCase reduction in PD pathogenesis. In the knockout mice, 
for instance, the lysosomal defect demonstrated in neurons and 
astrocytes lacking GBA1 was correlated with dysfunctional and 
fragmented mitochondria, pointing out a possible relationship 

between decreased GCase activity and impaired mitophagy, 
due to the inhibition of the degradation of mitochondria by the 
autophagy–lysosome pathway (35). However, it is important to 
note that GBA1 mutations do not act only through defective lyso-
some pathway: on the contrary, GCase loss-of-function may be 
associated with multiple other pathogenic cellular mechanisms, 
including ER stress, calcium metabolism dysregulation, and 
neuroinflammation (36), that, altogether, might contribute to the 
aggregation of misfolded α-synuclein. In this context, any disease-
modifying therapy designed to increase GCase levels would act 
at different pathogenic levels, with the final target to slow down 
the progressive aggregation of α-synuclein (37, 38). In view of the  
close linkage between GCase function and α-synuclein deposi-
tion, it could be questioned whether this lysosomal enzyme 
deficiency can also affect synaptic function. A relatively recent 
experimental study gives interesting insights about this issue: in 
a murine model of PD, where a subchronic conduritol-β-epoxide 
exposure induced GCase inhibition, Ginns and colleagues identi-
fied an early synaptic impairment, in the form of a reduction of 
striatal evoked dopamine release and altered synaptic plasticity 
markers, including post-synaptic density size and miRNA expres-
sion levels, together with glial activation within nigrostriatal 
pathway and abnormal α-synuclein accumulation (39). The effects  
of GBA1 insufficiency on dopaminergic neurotransmission and 
synaptic function documented in this animal model fit with 
clinical observations. Indeed, patients carrying GBA1 mutations 
show early striatal presynaptic dopaminergic dysfunction even 
before the onset of motor symptoms (40, 41). Further studies 
of individuals carrying a mutant GBA1 allele, together with the 
development and characterization of different GBA1 models, will 
help to clarify the mechanisms underlying the Parkinson’s–GD 
connection and to provide novel insights into the influence of 
diminished GCase activity on synaptic transmission, which could 
lead to develop novel therapeutic interventions.

eR STReSS

The ER represents a quality control system to check the correct 
protein folding, while misfolded or unfolded proteins are directed 
toward cytosol for the degradation by ER-associated degradation 
system (42). The accumulation of misfolded proteins inside the 
ER lumen, defined ER stress, is a toxic process to which the 
cell reacts by activating the unfolded protein response (UPR) 
(43), with the aim to restore ER homeostasis. Conversely, if the 
adaptive response is insufficient, the cell undergoes apoptosis. 
The involvement of ER stress has been demonstrated in several 
neurodegenerative conditions, including PD (44), and many 
reports prove the role of some PD-related genes in this cellular 
process. For example, differentiated PC12 cells with expres-
sion of A53T mutant α-synuclein show decreased proteasome 
activity and increased ER stress (45). Moreover, a recent study 
performed on iPSC-derived DAns carrying GBA-N370S muta-
tion demonstrates the activation of UPR with upregulation of 
ER-resident chaperones (46). Given the existence of an interplay 
between mitochondrial and ER stress (47), also mitochondrial 
proteins such as Parkin and PTEN-induced putative kinase 1 
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TAbLe 1 | Synaptopathy in different animal models of Parkinson’s disease.

Animal model Model generation Motor behavior nigral dopaminergic 
neuron loss

Synaptic alterations Reference

α-syn (1-120) transgenic 
mice

Expression of truncated 
human α-syn (1-120)

Reduced locomotion NO Age-dependent reduction in dopamine 
release

(12)

BAC transgenic mice 
(SNCA-OVX)

Overexpression of human 
wild-type α-syn

Normal (3 mo of age)
Motor deficits (18 mo 
of age)

No (3 mo of age)
Yes (18 mo of age)

Reduced firing rate of SNpc dopamine 
neurons (18 mo of age)
Increased clustering of vesicles in dopamine 
terminals
Deficit in dopamine release

(13)

Unilateral 6-OHDA rat 
model

Partial dopamine 
denervation

Mild motor alterations Partial Selective impairment of corticostriatal LTP 
with sparing of LTD

(14)

8- to 9-month-old LRRK2 
transgenic mice

Expression of G2019S 
mutant LRRK2

Hypoactivity NO Reduced firing rate of SNpc dopamine 
neurons
Impaired evoked dopamine release
Impairment of corticostriatal LTD

(15)

LRRK2 BAC transgenic 
rats

Expression of G2019S or 
R1441C mutant LRRK2

L-DOPA-responsive 
motor dysfunction

NO Reduced burst firing of SNpc dopamine 
neurons (R1441C rats)
Impaired dopamine release

(18)

CBE mouse model Subchronic CBE exposure 
to inhibit GCase

Motor impairments Glial activation in 
nigrostriatal pathway

Reduced evoked striatal dopamine release
Altered synaptic plasticity markers

(39)

Unilateral 6-OHDA mouse 
model

Dopamine denervation
Evidence of activation of 
PERK signaling

Motor impairments
Attenuation of motor 
deficits after PERK 
inhibition

YES
Reduced neuron loss 
after PERK inhibition

Lower levels of striatal dopamine, with 
complete recovery after PERK inhibition
Reduced expression of synaptic proteins 
(VAMP2 and SNAP25), partially reverted 
after PERK inhibition

(50)

PINK1+/− mice Heterozygous PINK1 
knockout mice

Normal NO Lower striatal dopamine release
Selective impairment of corticostriatal LTP 
with sparing of LTD

(58)

The table summarizes early synaptic impairments reported in different PD models.
α-syn, α-synuclein; BAC, bacterial artificial chromosome; SNpc, substantia nigra pars compacta;  
LTD, long-term depression; LTP, long-term potentiation; CBE, conduritol-β-epoxide; GCase, glucocerebrosidase; mo, months.
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(PINK1) have a crucial role in this mechanism. Activation of ER 
stress, mediated by mitofusin bridges occurring between defec-
tive mitochondria and the ER, has been reported in Drosophila 
PINK1 and Parkin mutants (48). Despite the growing interest 
in this field, the contribution of ER stress to neuronal death still 
needs further investigation, in view of a potential application in 
PD therapeutics (49). In this regard, interesting inputs come from 
a very recent study performed on three different rodent models 
of PD, in which the authors described an activation of RNA-like 
ER kinase (PERK) signaling, as well as in postmortem brain tissue 
derived from parkinsonian patients (50). PERK is a crucial ER 
stress sensor, whose chronic signaling blocks the translation of 
essential synaptic proteins, impacting neuronal survival and syn-
aptic function. In these experimental settings, PERK inhibition 
exerted a neuroprotective effect, as evidenced by an increase in 
dopamine levels and in the expression of synaptic proteins. This 
once again highlights the relevance of synaptopathy in multiple 
aberrant mechanisms in PD.

MiTOCHOnDRiAL iMPAiRMenT

Most neurodegenerative diseases share a mitochondrial impair-
ment as a major pathophysiological hallmark. Mitochondria 
are the main source of chemical energy for the cell and, as a 

consequence, their dysfunction leads to decreased levels of ATP 
and production of reactive oxygen species, which negatively 
impact neuronal physiology and, ultimately, cell survival (49). 
An impaired mitochondrial complex I activity has been dem-
onstrated in the SNpc of PD patients (51). It is well established 
that many environmental toxins act as potent mitochondrial 
complex I inhibitors, and accordingly, different toxin-based 
experimental models of PD have been developed in order to 
reproduce mitochondrial dysfunction. MPTP, acting through 
its metabolite MPP+, causes loss of dopaminergic SNpc neu-
rons, inducing parkinsonian features in mice and non-human 
primates (52). The same toxin has been used to develop MPTP-
treated models with only partial dopaminergic deafferentation, 
in which an early reduction in spine density in both the caudate 
nucleus and putamen could be detected, as an early pathological 
hallmark of the disease (53). Rotenone, a largely used pesticide, 
is another mitochondrial complex I toxin, and its administra-
tion reproduces many histochemical and behavioral features 
of human PD in rodents and non-human primates, including 
selective nigrostriatal dopaminergic lesions and α-synuclein-
positive cytoplasmic aggregates in nigral neurons (54). Such 
experimental evidence has been further confirmed by a number 
of epidemiological studies (55). Mitochondrial dysfunction 
and oxidative stress are tightly connected to PINK1, a serine/
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threonine kinase located in the intermembrane mitochondrial 
space and involved in the mitophagic pathway (56). PINK1 
loss-of-function mutations are linked to inherited early-onset 
forms of PD (57). In a mouse model carrying heterozygous 
PINK1 mutations, we identified early rearrangement within 
corticostriatal circuitry, expressed by selective impairment of 
LTP with a physiologically expressed LTD, in the absence of 
motor phenotype and dopaminergic neuronal loss (58). These 
observations were in line with the results of neuroimaging and 
physiological studies performed on PINK1 heterozygous muta-
tion carriers manifesting initial alterations in the nigrostriatal 
circuit (59, 60). Accordingly, the heterozygous condition related 
to familial parkinsonism represents an ideal preclinical model, 
which allows us to study early alterations occurring before the 
onset of motor signs, in a time window suitable to test potential 
novel disease modifying therapy (61). A number of attempts 
have been made to recreate the gene–environment interaction 
that might underlie disease pathogenesis. Recently, we exposed 
PINK1 heterozygous knockout mice to rotenone, which was 
chronically administered at very low doses. Of interest, com-
bination of gene mutation with minimal rotenone exposure 
was able to cause severe alterations of corticostriatal synaptic 
plasticity, to an extent similar to that observed in the PINK1 
homozygous knockout model (62, 63). The experimental use of 
toxins inducing mitochondrial impairment has contributed over 
the past decades to improve our knowledge on the pathogenic 
mechanisms of neurodegenerative diseases, in an attempt to 
develop neuroprotective agents and etiologic treatments.

COnCLUSiOn AnD FUTURe DiReCTiOnS

Over the past decades, major advances have been made in the 
understanding of the mechanisms involved in PD pathogenesis 
and the mechanisms that, furthermore, share common elements 
and contribute synergistically to neuronal dysfunction. Growing 
evidence attributes an undisputed central role to α-synuclein 
aggregation, also in view of its interaction with multiple processes, 
including intracellular trafficking, mitochondrial dysfunction, ER 

stress, and lysosomal dysfunction. However, there remain many 
unclear issues. The captivating prion-like hypothesis, according 
to which aggregated α-synuclein is trans-synaptically spread 
through the brain connectome, is still debated, as it does not fully 
recapitulate PD pathogenesis (64). Indeed, the pattern of spread-
ing of Lewy-body pathology does not precisely match Braak’s 
theory, according to a number of studies examining postmortem 
PD samples (65). Yet, at cellular level, the pattern of distribution 
of α-synuclein aggregates appears to spare brainstem GABAergic 
neurons (66). Such evidence highlights some limitations to the 
“prion-like” theory and supports the need for a more comprehen-
sive hypothesis that could take into consideration the selective 
neuronal susceptibility (64). In this complex scenario, many 
experimental models point toward the synapse as the primary 
site of PD pathology and considering synapse failure as a putative 
common denominator. Indeed, synaptopathy is an early event in 
PD pathogenesis in most phenotypic and genetic models reported 
so far (Table  1). Impairment of synaptic activity and plasticity 
at corticostriatal synapses represents a peculiar endophenotype, 
in distinct models of human movement disorders (67–69). In 
addition, these alterations have been shown to parallel time-
dependent progression of cellular demise, thereby mimicking a 
very important disease stage, where potential disease-modifying 
treatments could be tested. Understanding the molecular events 
leading to synaptic dysfunction, achieved by the use of suitable 
PD animal models, will encourage the development of potential 
synapse-target therapies, in the hope of actively intervene on one 
of the mechanisms leading to PD pathogenesis.
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