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Abstract

Advances in genome sequencing have led to a tremendous increase in the discovery of

novel missense variants, but evidence for determining clinical significance can be limited

or conflicting. Here, we present Learning from Evidence to Assess Pathogenicity (LEAP), a

machine learning model that utilizes a variety of feature categories to classify variants,

and achieves high performance in multiple genes and different health conditions. Feature

categories include functional predictions, splice predictions, population frequencies, con-

servation scores, protein domain data, and clinical observation data such as personal and

family history and covariant information. L2‐regularized logistic regression and random

forest classification models were trained on missense variants detected and classified

during the course of routine clinical testing at Color Genomics (14,226 variants from 24

cancer‐related genes and 5,398 variants from 30 cardiovascular‐related genes). Using 10‐
fold cross‐validated predictions, the logistic regression model achieved an area under the

receiver operating characteristic curve (AUROC) of 97.8% (cancer) and 98.8% (cardio-

vascular), while the random forest model achieved 98.3% (cancer) and 98.6% (cardio-

vascular). We demonstrate generalizability to different genes by validating predictions on

genes withheld from training (96.8% AUROC). High accuracy and broad applicability

make LEAP effective in the clinical setting as a high‐throughput quality control layer.
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1 | INTRODUCTION

The prevalence of genetic testing in clinical care is growing rapidly, with

applications in the diagnosis, management, prevention, and treatment of a

large variety of disorders. The utility of genetic testing depends on the

accurate classification of genetic variants. Variant classification needs to

be rigorous and reproducible between different individual scientists and

institutions. To help facilitate this, the American College of Medical

Genetics and Genomics (ACMG) issued guidelines for variant classifica-

tions (Richards et al., 2015). Early efforts (Nykamp et al., 2017) aimed to

expand on this framework by establishing a rules‐based approach to the

evaluation of evidence that increases the efficiency and consistency of

variant scientists by systematizing the process. Rules such as population

frequency cutoffs are known to be strong criteria for automatic classifi-

cation. However, strong criteria like these only apply to a small minority

of variants. For the majority of variants, classification involves reviewing

many sources of evidence, some of which are structured (functional

predictors and population frequency) and some unstructured (literature

text and health history). As our scientific knowledge advances and

availability of evidence increases, the interpretation process may become
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increasingly complex and new edge cases may arise that are not captured

by existing rules.

The variant classification process shares many characteristics

with other areas in which machine learning is effective. A database of

variant classification labels determined by experts and a large num-

ber of input signals that drive these expert decisions exists and a

mapping between the two is needed. To tackle this with a machine

learning approach, meta‐predictors like REVEL (Ioannidis et al., 2016;

Tavtigian et al., 2018), MetaSVM, and MetaLR (Dong et al., 2015)

were developed, which integrate multiple features primarily from one

evidence category (functional predictors) to predict the pathogeni-

city of missense variants. ClinPred (Alirezaie, Kernohan, Hartley,

Majewski, & Hocking, 2018) was developed to incorporate popula-

tion frequency in addition to functional predictors. However, these

features only encompass a small part of the considerations in a

variant scientist's workflow.

Here, we present Learning from Evidence to Assess Pathogeni-

city (LEAP), a machine‐learned approach that has access to many

more types of underlying data used in manual variant classification,

including functional prediction, splice prediction, evolutionary con-

servation, population frequency, protein domain, co‐occurring pa-

thogenic (P/LP) variants, and individual and family health history.

LEAP effectively predicts the classification that would be applied by

variant scientists and outlines driving evidence weighted in order of

contribution towards that prediction. We evaluate the predictive

performance of LEAP with increasing evidence category inclusion

and different model types across many genes and two disease areas

and discuss its utility as an aid in the clinical interpretation process.

Initial external validation for LEAP's performance resulted from a

blind prediction challenge held by the Critical Assessment of Genome

Interpretation (CAGI5) ENIGMA Consortium (Cline et al., 2019), in

which variations of LEAP came in first, second, third and fourth place

against competing models that were either published or newly

developed.

2 | MATERIALS AND METHODS

2.1 | Training variants

A set of 14,226 missense variants in genes associated with elevated

risk for hereditary cancer and 5,398 missense variants in genes as-

sociated with elevated risk for cardiovascular disorders were used to

train models to predict a variant classification. Missense variants

were identified using the Alamut Batch coding effect (Interactive

Biosoftware, Rouen, France, v1.8). Variants were detected by next‐
generation sequencing (NGS) multigene panel tests for hereditary

cancer and cardiovascular disorders. Models were trained and as-

sessed separately using cancer and cardiovascular variants but

shared the same modeling and validation framework.

Training variants were previously observed and classified in

routine clinical testing of individual samples. The cancer test included

24 genes associated with elevated risk for hereditary breast, ovarian,

uterine/endometrial, colorectal, melanoma, pancreatic, prostate, and

stomach cancer. These genes are APC, ATM, BAP1, BARD1, BMPR1A,

BRCA1, BRCA2, BRIP1, CDH1, CDKN2A, CHEK2, MLH1, MSH2, MSH6,

MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, SMAD4, STK11,

and TP53. The cancer test included six other genes (CDK4, EPCAM,

GREM1, MITF, POLD1, and POLE) that were excluded from this ana-

lysis because only specific variant types and/or preselected variants

were tested. The cardiovascular test included 30 genes associated

with elevated risk for a cardiovascular disorder. These genes are

ACTA2, ACTC1, APOB, COL3A1, DSC2, DSG2, DSP, FBN1, GLA, KCNH2,

KCNQ1, LDLR, LMNA, MYBPC3, MYH11, MYH7, MYL2, MYL3, PCSK9,

PKP2, PRKAG2, RYR2, SCN5A, SMAD3, TGFBR1, TGFBR2, TMEM43,

TNNI3, TNNT2, and TPM1. Laboratory procedures were performed as

previously described (Neben et al., 2019). Our cardiovascular variant

database may be more enriched for pathogenic (P/LP) variants re-

lated to familial hypercholesterolemia (FH) due to the inclusion of

large research cohorts that were specifically enriched for this disease

phenotype.

Variants were classified as pathogenic (P), likely pathogenic (LP),

variants of uncertain significance (VUS), likely benign (LB), and be-

nign (B) according to the ACMG 2015 guidelines for sequence variant

interpretation (Richards et al., 2015), and all variant classifications

were reviewed by a trained variant scientist and signed out by a

board‐certified medical geneticist or pathologist. Table S1 provides

missense variant counts by classification. To generate model training

labels, P and LP variants were grouped and will be referred to as “P/

LP” in this paper, and B and LB variants were grouped and will be

referred to as “B/LB.” All variants were classified using our existing

rules‐based protocol and were not auto‐classified or in any way in-

fluenced by LEAP predictions.

2.2 | Features

A set of 245 total features were chosen to encompass a majority of

the inputs that an expert variant scientist may consider for clinical

variant interpretation as recommended by ACMG guidelines. Fea-

tures were grouped in categories derived from the ACMG guidelines

for variant interpretation and are listed in Table 1. These categories

are used for comparison of variant evidence categories and their

contribution to model performance. The computational features of

functional impact at the protein level are GERP++ (Davydov

et al., 2010), likelihood ratio test (Chun & Fay, 2009), phast-

Cons100way (Siepel et al., 2005), Align GVGD (Tavtigian et al., 2006),

MutationTaster2 (Schwarz, Cooper, Schuelke, & Seelow, 2014),

PolyPhen‐2‐HVAR (Adzhubei, Jordan, & Sunyaev, 2013), and SIFT

(Ng & Henikoff, 2003). The features with RNA splicing impact are

Alamut (Interactive Biosoftware, Rouen, France) and Skippy (Woolfe,

Mullikin, & Elnitski, 2010). The features based on the location of the

variant are dbNSFP Interpro (Finn et al., 2017) and the gene anno-

tation. Population minor allele frequency (MAF) was derived from

gnomAD (Lek et al., 2016). The detailed feature list for both cancer

and cardiovascular models are available in Tables S2 and S3.
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Numeric features were standardized by centering at the median

and scaling to the interquartile range. Missing values were filled using

the most frequent value for numeric features, or filled with a

“missing” label for categorical features. Categorical features were

binarized and one categorical level was dropped for each categorical

feature to serve as the reference level in model training. A catego-

rical feature with k levels resulted in k−1 binarized columns: the

“missing” level was dropped as the reference level if it existed, but

otherwise, the first alphabetically sorted level was dropped.

2.2.1 | Feature engineering

Additional features were derived from those listed above to re-

present various classification criteria for modeling. Population fre-

quency numeric features from gnomAD were grouped to create

additional categorical features including: (a) log‐scale MAF groups

(0%, 0.0001–0.001%, 0.001–0.01%, 0.01–0.1%, etc.), (b) linear‐scale
MAF groups (in increments of 0.005%), and (c) custom MAF groups

(<0.1%, <1%, <5%, and ≥5%). To represent a variant's position re-

lative to a clinically relevant transcript, the exon position of the

variant was divided by the exon position at which a given transcript

ends. Finally, to capture potential splicing impact, four RNA splicing

impact algorithms (Human Splicing Finder, MaxEnt, NNSplice, and

SpliceSiteFinder) were assessed for significant difference between

the variant and wild‐type scores. The proportion of these algorithms

indicating a significant difference was calculated, and each algorithm

was given equal weight.

2.2.2 | Individual‐level clinical features

Two groups of features based on data about individuals from the

Color database (Color Genomics, Burlingame, CA) were included: (a)

TABLE 1 Variant evidence features grouped by category, inspired by the ACMG variant interpretation guidelines

Category Source Description

Computational predictions of

functional impact (FUNC)

GERP++ Nucleotide conservation

Likelihood ratio test Evolutionary conservation

phastCons100way Nucleotide conservation

Align GVGD Protein functional impact and evolutionary conservation

MutationTaster2 Protein functional impact and evolutionary conservation

Polyphen2‐HVAR Protein functional impact and evolutionary conservation

SIFT Evolutionary conservation

Splicing impact (SPLICE) Human Splicing Finder Position weight matrices

MaxEnt Maximum entropy principle

NNSplice Neural networks

SpliceSiteFinder‐like Position weight matrices

Skippy Detection of exonic variants that modulate splicing:

Distance from splice site

Regulatory Constraint Score: regulatory potential

Log odds ratio: changes in regulatory elements (predicted exon splicing

enhancers and silencers)

Location Interpro domain Domain or conserved site of variant

Exon position relative to

transcript

Exon position of variant, divided by the exon position at which the given

transcript ends

Gene Gene annotation

Homopolymer length Homopolymer length

Health condition Used in cardiovascular disorders model only. Indicates FH or non‐FH
cardiovascular disorders

Population minor allele

frequency (MAF)

gnomAD MAF for overall population and subpopulations (African, Ashkenazi

Jewish, East Asian, Finnish European, Latino, Non‐finnish European,

and South Asian)

Aggregated individual‐level
information

Covariants Proportion of carriers with a known P/LP variant in the same health

condition (cancer or cardiovascular)

Health history Proportion of carriers diagnosed with a phenotype before age cutoff

Proportion of family members of carriers diagnosed with a phenotype

before age cutoff

If > 100 carriers, only 100 were randomly sampled and considered

Abbreviations: ACMG, American College of Medical Genetics and Genomics; FH, familial hypercholesterolemia; P/LP, pathogenic/likely pathogenic.
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co‐occurrence of P/LP variants (covariants) in genes associated with

the same phenotype in the same individuals and (b) health history of

the carriers and their family members.

Covariants were encoded as a feature by taking the proportion

of total carriers of a given variant who also have another known P/LP

variant in the same associated phenotype. We utilize the co‐
occurrence of two variants in an individual when those variants are

located either in the same gene or in different genes. Both of these

may be used as supporting evidence for a benign classification, based

on ACMG guideline criteria BP2 and BP5 (Richards et al., 2015). The

consideration of co‐occurrence in different genes is not as commonly

cited as that for the same gene. However, our rationale for including

the former is based on the observation that having two pathogenic

variants contributing to an individual's disease phenotype is a very

rare event, and as such, a co‐occurring pathogenic variant may signal

an alternate genetic explanation for the individual's disease. Our

internal data show that the co‐occurrence of two pathogenic variants

in the same gene (0.02% of Color samples) or different genes (0.43%

of Color samples) is indeed very rare for cancer. During the manual

practice of variant classification, we exercise caution in the applica-

tion of these criteria by considering other mitigating factors, such as

the disease spectrum for each gene, disease frequency in the popu-

lation, penetrance, and the nature and severity of the observed

phenotype of the carrier, and these may be additional features to add

in the future. The current LEAP co‐occurrence features are simpli-

fied, based on the frequency of individuals with co‐occurring patho-

genic variants in genes associated with the same phenotype.

However, this is one of many types of features used in LEAP, and are

taken into consideration with other features like genes that may still

allow the model to learn some of the previously listed concepts such

as penetrance.

Health histories were represented by features based on the

following format for combinations of phenotypes and age cutoffs: (a)

proportion of carriers diagnosed with a phenotype X before age

cutoff Y and (b) weighted proportion of family members of carriers

diagnosed with a phenotype X before age cutoff Y, where first degree

relatives were weighted 1.0 while second‐degree relatives were

weighted 0.5. In addition, the maximum number of carriers con-

sidered for a given variant was capped at 100. If a variant had more

than 100 carriers, only 100 were randomly sampled and considered

and a flag was added as a feature for “greater than 100 carriers.” The

large majority of variants detected were rare (MAF < 0.001%), and

only 2.3% of cancer missense variants have >100 carriers.

For cancer, phenotypes considered included breast cancer,

colorectal cancer, endometrial cancer, fallopian tube cancer,

gastric cancer, hematological malignancy, kidney cancer, melanoma,

ovarian cancer, pancreatic cancer, primary peritoneal cancer, pros-

tate cancer, and thyroid cancer. For cardiovascular disorders,

phenotypes considered included xanthelasma, xanthoma, corneal

arcus, FH, hypertrophic cardiomyopathy, dilated cardiomyopathy,

restrictive cardiomyopathy, arrhythmogenic cardiomyopathy, left

ventricular noncompaction cardiomyopathy, Fabry disease, long

QT syndrome, short QT syndrome, Brugada syndrome,

catecholaminergic polymorphic ventricular tachycardia, Ehlers–Danlos

syndrome, Marfan syndrome, Loeys–Dietz syndrome, familial thoracic

aortic aneurysms and dissections, thoracic aneurysm, and aorta dis-

section. Cancer age cutoffs were 40, 50, 60, and 100 years. Cardio-

vascular disorders age cutoffs were 30, 40, 50, and 100 years.

2.2.3 | Feature comparison

For feature comparison, 245 unique features were considered and

grouped into five feature categories: computational predictions of

functional impact and evolutionary conservation (FUNC), splicing

impact (SPLICE), variant location (LOC), population minor allele fre-

quency (MAF), and aggregated individual‐level information (IND;

Table 1). These categories were included additively in the specified

order to LEAP model variations detailed in Table 2, with the goal of

understanding conceptual patterns in model performance from in-

creasing availability of evidence.

REVEL and LEAP_FEATURE_1 were used as baseline models, and

represent a class of widely utilized computational predictors that

consider only functional and conservation scores as inputs. Next,

variant location (which includes gene features) and population fre-

quency feature categories were added in LEAP_FEATURE_2 and

LEAP_FEATURE_3, respectively. When population frequency cutoffs

are used in manual classification, the cutoffs are typically gene‐
specific, which implies a hierarchy in which the gene precedes po-

pulation frequency. Finally, features derived from individual‐level
data (covariants and health history) were added in LEAP_FEATURE_5

as this information, while helpful in a few distinct cases, is not ex-

pected to be crucial to variant classification and is also not publicly

available.

2.3 | Models

Models were trained using Python's “scikit‐learn” (sklearn) library

(Pedregosa, 2011) on version 0.19.1 to output a predicted probability

of pathogenicity for each variant (hereby referred to as predictions).

Table 2 provides descriptions of the models considered for feature

comparison and model comparison. Default parameters were used

from sklearn's LogisticRegression and RandomForestClassifier im-

plementations unless otherwise specified.

An L2‐regularized logistic regression (linear) model and a random

forest classification (nonlinear) model with “n_estimators” set to

1,000 trees were trained. In addition to comparing linear and non-

linear models, binary and multiclass models were also compared.

Binary classification models excluded VUS and were trained to pre-

dict pathogenic or benign only. Multiclass classification models in-

cluded all variants and were trained to predict P, B, or VUS.

Multiclass logistic regression models included one using a “ovr” (one‐
vs.‐rest) multiclass method and another using a “multinomial” multi-

class method with the “newton‐cg” solver. For multiclass models,

“class_weight” was set to “balanced.”
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2.4 | Model validation

2.4.1 | Train‐test split

For assessment and comparison of models with variations on feature

category inclusion and model selection outlined in Table 2, 10‐fold
cross‐validated predictions were used to assess area under the receiver

operating characteristic curve (AUROC) and precision‐recall curve

(AUPRC). AUPRC was included as a more representative performance

metric for datasets with imbalanced class labels; AUPRC penalizes false

positives (FPs) more than AUROC would, because AUPRC assesses

precision, defined as (FP/[FP+TP]) as opposed to specificity defined as

(FP/FP+TN) in AUROC. Both AUPRC and AUROC assess sensitivity,

also known as recall, which is defined as (TP/[TP+FN]). Our training

labels were relatively imbalanced, with 1.7% pathogenic rate in cancer

and 2.3% in cardiovascular including VUS, and 12.8% and 13.3% ex-

cluding VUS, respectively. VUS were used to train multiclass models

(LEAP_MODEL_3, 4, and 5), but were excluded from all model area

under the curve (AUC) plots (Figures 1, 2, 4, and 5), including for mul-

ticlass model predictions to yield a more commensurable comparison

with binary classification model (LEAP_MODEL_1 and 2) predictions.

As additional validation, model robustness to different genes or

genes unseen by the model was assessed by using LEAP_MODEL_1 to

generate “gene holdout” cross‐validated predictions, which were obtained

for a given variant in each gene that was withheld from model training.

For example, a model would be trained on 23 out of the 24 cancer genes

and predictions would be made using this model for variants in the gene

that was left out of training. This was done systematically for all genes,

and resulting predictions were used for assessment. AUROC and AUPRC

were similarly used to assess gene holdout predictions.

As external holdout validation, LEAP_FEATURE_4 and

LEAP_FEATURE_5+HGMD (Figure S1) predictions were assessed on

an external holdout set of 324 rare BRCA1 and BRCA2 variants newly

classified by the CAGI5 ENIGMA blind prediction challenge and were

referred to as “LEAP 2” and “LEAP 1”, respectively, in the assessment

paper (Cline et al., 2019). LEAP_MODEL_2 and LEAP_MODEL_3

correspond to “LEAP 3” and “LEAP 4,” respectively, but exclude

Human Gene Mutation Database (HGMD) features in this analysis.

HGMD features used in three of the four CAGI5 submissions include

the existence of HGMD entry for the variant, the existence of

PubMed ID associated with the variant, assigned category of disease

association (disease‐causing, disease‐associated, functional, etc.), and
association of the variant with a cancer phenotype (Stenson

et al., 2017). Ultimately, HGMD features were excluded from the

main analysis in this paper for a couple of reasons: (a) they were not

crucial for strong model performance in our assessment (Figure S1)

or in the CAGI5 ENIGMA challenge, and (b) as a curated and pro-

prietary database, presence in HGMD may bias against understudied

genes or rare variants.

3 | RESULTS

Using machine learning, we created a model that can classify

missense variants with high precision, recall (sensitivity), and

specificity. In a 10‐fold cross‐validation of missense variants in

cancer‐associated genes, our best model (LEAP_MODEL_2)

achieved 98.3% AUROC and 91.7% AUPRC. Here, we interrogate

and report the results of the key factors that contributed to model

performance.

TABLE 2 Descriptions of feature category subsets and model types used in the feature comparison and model selection analyses for cancer
and cardiovascular disorders

Model name Features Model Variants

LEAP_FEATURE_1 FUNC Binary logistic regression P/LP and B/LB variants

LEAP_FEATURE_2 FUNC+SPLICE

LEAP_FEATURE_3 FUNC+SPLICE+LOC

LEAP_FEATURE_4 FUNC+SPLICE+LOC+MAF

LEAP_FEATURE_5 FUNC+SPLICE+LOC+MAF+IND

LEAP_MODEL_1 FUNC+SPLICE+LOC+MAF+IND Binary logistic regression P/LP and B/LB variants

LEAP_MODEL_2 Binary random forest

LEAP_MODEL_3 Multiclass logistic regression (one‐vs.‐rest) P/LP, B/LB, and VUS variants

LEAP_MODEL_4 Multiclass logistic regression (multinomial)

LEAP_MODEL_5 Multiclass random forest

Note: See Table 1 for feature category descriptions. Models submitted to the CAGI5 ENIGMA prediction challenge include LEAP_FEATURE_4 (CAGI5

“LEAP 2”), LEAP_FEATURE_5 (CAGI5 “LEAP 1”), LEAP_MODEL_2 (CAGI5 “LEAP 3”), and LEAP_MODEL_3 (CAGI5 “LEAP 4”). The latter three differ in that

the CAGI5 submissions included a set of HGMD features that were excluded in this analysis (see Figure S1 for model performance with HGMD features).

Of note, LEAP_FEATURE_4 (CAGI5 “LEAP 2”) excluded HGMD features in both the CAGI5 submission and in this analysis. See the Materials and Methods

section for more details.

Abbreviations: B/LB, benign/likely benign; FUNC, functional impact and evolutionary conservation; HGMD, Human Gene Mutation Database; IND,

individual‐level information; LOC, variant location; MAF, minor allele frequency; P/LP, pathogenic/likely pathogenic; SPLICE, splicing impact; VUS,

variants of uncertain significance.
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3.1 | Feature comparison

Our initial analysis aimed to assess which feature category compo-

nents contributed the most to pathogenicity prediction in LEAP. We

trained a binary logistic regression model on the cancer variant

training set and evaluated model performance using both AUROC

and AUPRC. Similar to those used in other published meta‐
predictors, functional prediction features (Table 1, FUNC) were used

in a baseline model (Table 2, LEAP_FEATURE_1). REVEL was also

included as a baseline model because it is a best‐in‐class machine

(b)(a)

F IGURE 1 Ten‐fold cross‐validated predictions were assessed from a binary L2‐regularized logistic regression model for feature comparison.

Predictions for P/LP and B/LB hereditary cancer variants were assessed using (a) AUROC and (b) AUPRC. Feature comparison models are
described in Table 2. REVEL and LEAP_FEATURE_1 were used as baseline models, and represent a class of widely utilized computational
predictors that consider only functional and conservation scores as inputs. AUROC, area under the receiver operating characteristic curve;

AUPRC, area under the precision‐recall curve; B/LB, benign/likely benign; P/LP, pathogenic/likely pathogenic

(a) (b)

F IGURE 2 Ten‐fold cross‐validated predictions were assessed using all feature categories (FUNC+SPLICE+LOC+MAF+IND) for model
comparison on hereditary cancer variants. Predictions for P/LP and B/LB variants were assessed for both binary and multiclass models using (a)
AUROC and (b) AUPRC. Model comparison models are described in Table 2. AUROC, area under the receiver operating characteristic curve;

AUPRC, area under the precision‐recall curve; B/LB, benign/likely benign; FUNC, functional impact and evolutionary conservation; IND,
individual‐level information; LOC, variant location; MAF, minor allele frequency; P/LP, pathogenic/likely pathogenic; SPLICE, splicing impact
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learning‐based pathogenicity meta‐predictor (Ghosh, Oak, &

Plon, 2017) trained on functional predictors similar but not identical

to those in LEAP_FEATURE_1. It is important to note that the REVEL

training set (HGMD variants) and model choice (random forest) were

different and distinct from LEAP. Thus, a head‐to‐head model com-

parison would not have been equitable and was not the intent of this

analysis. The inclusion of REVEL is to compare differences in per-

formance at varying levels of feature inclusion, as opposed to abso-

lute model performance. The baseline model attained a reasonably

high performance of 94.6% AUROC and 70.0% AUPRC (Figure 1,

LEAP_FEATURE_1), and REVEL attained 92.9% AUROC and 75.0%

AUPRC.

We next sought to improve the model by incorporating addi-

tional sets of evidence as features. We found that including addi-

tional evidence categories as features improved model performance

at varying degrees depending on the category (Figure 1). Individual

feature category contribution to cancer model performance is shown

in Figure S2A. Initial performance improvement was already evident

by simply adding splicing impact features in addition to functional

predictors (Figure 1, LEAP_FEATURE_2 vs. LEAP_FEATURE_1).

Overall, functional prediction, splicing prediction, and variant loca-

tion features contributed to the most improvement in predictive

performance (LEAP_FEATURE_3). Interestingly, population fre-

quency contributed only slightly (LEAP_FEATURE_4) and aggregated

individual‐level information (LEAP_FEATURE_5) actually decreased

model performance slightly. The best model in the feature compar-

ison (LEAP_FEATURE_4) achieved 97.9% AUROC and 89.9% AUPRC.

Performance improvement was particularly pronounced in AUPRC

between feature comparison models, with a 1.3× increase in

LEAP_FEATURE_4 compared with the baseline LEAP_FEATURE_1

(Figure 1b). In addition, inclusion of additional feature categories not

only improved AUROC and AURPC but also resulted in more con-

fident predictions (Figure S3).

3.2 | Model comparison

We next investigated whether model selection made a difference in

performance. Using all feature categories (as in LEAP_FEATURE_5),

the performance of five different models were compared: binary

logistic regression, binary random forest, multiclass logistic re-

gression (one‐vs.‐rest and multinomial methods), and multiclass

random forest (Table 2). Nonlinear models like random forest were

of interest as they may more adequately capture complex classifi-

cation behavior and more closely reflect the hierarchical classifi-

cation criteria that are employed in manual variant classification.

Figure S4 is an example of nonlinearity or more complex interaction

between features (in this case, population frequency and Polyphen2

functional prediction) that is automatically captured by a decision

tree. To illustrate this example, two decision tree models were

trained to predict pathogenicity probability in cancer variants using

population frequency as the only feature in Figure S4A, and popu-

lation frequency along with Polyphen2 as a feature in Figure S4B.

High population frequency is commonly used as a strong standalone

criterion for classifying a variant as benign. However, because most

variants are rare (MAF < 0.001%, Figure S5), population frequency

alone is not able to strongly differentiate many pathogenic and

benign variants, so the model predicts all variants to be benign,

albeit at differing low levels of probability that are directionally

correct. By coupling population frequency with Polyphen2 HVAR, a

decision tree is able to more confidently differentiate between

pathogenic and benign variants. For example, the model auto-

matically learned that a Polyphen2 HVAR label of “probably da-

maging” and a very low population frequency can be classified as

pathogenic at higher probability (0.826, Figure S4B) than that based

on population frequency alone (0.354, Figure S4A) or Polyphen2

HVAR alone (0.550, Figure S4B).

Separately, multiclass models were of interest because in some

cases VUS may be the best classification for a given variant based on

the current available evidence, and a model may learn to distinguish

VUS as a distinct class from pathogenic and benign. In addition, be-

cause the majority of missense variants in our training sets are VUS,

including VUS would increase the number of training instances and

may, in turn, help a model discern different levels of pathogenicity

more effectively. However, the inclusion of VUS in multiclass models

also increases imbalance in the data (1.7% P/LP variants including

VUS and 12.8% excluding VUS), which may make pathogenicity

prediction more challenging.

Model comparisons using 10‐fold cross‐validated probability

predictions in cancer are shown in Figure 2. When assessing both the

AUROC and the AUPRC, random forest models performed better

than logistic regression models, and the binary class models per-

formed better than the multiclass models. Binary random forest

performed slightly better than logistic regression in terms of AUPRC

(Figure 2b, LEAP_MODEL_2 [91.7%] vs. LEAP_MODEL_1 [89.7%]).

However, we did not observe a similar trend in multiclass models.

This may be due to greater class imbalance in the multiclass model

training set, which the random forest methodology is more sensitive

to. Although multiclass models did not perform as well as binary

models overall, there were optimizations that improved performance

within multiclass models. For instance, using a multinomial method

(LEAP_MODEL_4) was superior to a one‐versus‐rest method

(LEAP_MODEL_3), perhaps because the former is better able to

capture the ordinal structure that exists in the labels (B/

LB<VUS<P/LP).

3.3 | Model performance by gene

The LEAP models were trained on variants from 24 cancer genes.

However, given the heterogeneous molecular functions of these

genes, it is possible that the models were more adept at classifying

variants in some genes but not others or less equipped to predict new

genes unseen by the model. To explore this question, we assessed

model performance on different genes using a “gene holdout”method

(Figure 3).
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Overall, the model was robust to the gene holdout procedure.

Gene‐holdout predictions achieved 96.8% AUROC and 84.9%

AUPRC, which is only slightly lower than that from 10‐fold cross‐
validated predictions (Figure 1, LEAP_FEATURE_5). The frequency‐
weighted average of these scores across genes was 93.0% and 76.7%,

respectively. AUROC was high across most genes (Figure 3a), al-

though AUPRC was slightly lower in a few genes due to more false

positives (Figure 3b). Of note, performance was consistently high

across genes when assessing per‐gene performance of 10‐fold cross‐
validated predictions (data not shown).

3.4 | Model performance on a holdout set

Finally, LEAP performance was assessed externally on a holdout set. We

submitted four versions of LEAP to the CAGI5 ENIGMA challenge to

classify variants in BRCA1 and BRCA2, all of which were in the top four

when assessed by AUROC and AUPRC. The model that placed first

included the HGMD literature category as a feature (Figure S1,

LEAP_FEATURE_5+HGMD) achieved 98.8% AUROC and 82.0% AUPRC

on the ENIGMA assessed variants, while another version of LEAP that

only included publicly available information (LEAP_FEATURE_4) still

placed ahead of all other competitors with 96.6% AUROC and 70.6%

AUPRC on the ENIGMA assessed variants (Cline et al., 2019).

3.5 | Application to other health conditions

Although LEAP was initially developed on genes associated with

cancer risk, the model framework should theoretically be extensible

to additional disease areas outside of cancer. To test this, we applied

the same LEAP model framework developed for classifying cancer

variants and trained on variants in genes associated with an entirely

different phenotypic disease type: inherited cardiovascular disorders.

Directly mirroring the feature comparison framework used for

cancer, a binary logistic regression model was used to test how dif-

ferent feature categories listed in Table 2 impacted performance in

cardiovascular disorders (Figure 4). The best models in the feature

comparison for cardiovascular disorders (tie between LEAP_FEA-

TURE_4 and LEAP_FEATURE_5) achieved 98.8% AUROC and 96.7%

AUPRC, which is higher than the corresponding models in cancer. In

terms of relative feature contribution, functional predictors con-

tributed the most (LEAP_FEATURE_1), followed by variant location

(mainly gene; LEAP_FEATURE_3). For example, a given variant's lo-

cation in LDLR is a strong predictor of pathogenicity, likely because

this gene in our training data set was more enriched with P/LP

variants as compared with other genes. Unlike in cancer, splice

impact features do not contribute as much to model performance.

The contributions of individual feature categories are shown in

Figure S2B.

Next, we compared the model selection variations listed in Table 2

using 10‐fold cross‐validation in cardiovascular disorders (Figure 5).

Unlike in the cancer models, the logistic regression models for cardio-

vascular disorders performed better than the random forest models

(LEAP_MODEL_1, 3, and 4 vs. LEAP_MODEL_2 and 5). In addition, we

saw no appreciable difference in performance between binary logistic

regression and binary random forest models (LEAP_MODEL_1 vs.

LEAP_MODEL_2). However, within the multiclass models, the linear

models showed superior performance (LEAP_MODEL_3 and 4 vs.

LEAP_MODEL_5) in cardiovascular disorder variants.

(a) (b)

F IGURE 3 Gene‐holdout predictions from a binary L2‐regularized logistic regression model using all feature categories (LEAP_MODEL_1 or

LEAP_FEATURE_5) were assessed for robustness across different hereditary cancer genes. Performance was assessed with (a) AUROC and (b)
AUPRC on predictions for variants in each gene withheld from model training. The number of actual P/LP and B/LB variants detected in each
gene are listed below the gene name. Genes in which at least five P/LP variants were detected were included in this figure. AUROC, area under

the receiver operating characteristic curve; AUPRC, area under the precision‐recall curve; B/LB, benign/likely benign; P/LP, pathogenic/likely
pathogenic
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We performed a “gene holdout” validation using LEAP_MO-

DEL_1 trained on cardiovascular disorder variants, and obtained

consistently strong results across genes (Figure S6). Overall, gene

holdout predictions across 29 cardiovascular genes achieved 98.3%

AUROC and 94.1% AUPRC. The gene‐weighted average of these

scores across genes was 88.8% and 62.4%, respectively.

4 | DISCUSSION

Many published computational meta‐predictors have attempted to

determine whether a variant is disease‐causing at the molecular or

biological level. Here, we described the development of LEAP, a

machine learning model developed to predict an expected variant

(a) (b)

F IGURE 4 Ten‐fold cross‐validated predictions were assessed from a binary L2‐regularized logistic regression model for feature comparison
on cardiovascular disorder P/LP and B/LB variants using (a) AUROC and (b) AUPRC. Feature comparison models are described in Table 2.
REVEL and LEAP_FEATURE_1 were used as baseline models, and represent a class of widely utilized computational predictors that consider

only functional and conservation scores as inputs. AUROC, area under the receiver operating characteristic curve; AUPRC, area under the
precision‐recall curve; B/LB, benign/likely benign; P/LP, pathogenic/likely pathogenic

(a) (b)

F IGURE 5 Ten‐fold cross‐validated predictions were assessed using all feature categories (FUNC+SPLICE+LOC+MAF+IND) for model
comparison on cardiovascular disorder variants. Predictions for P/LP and B/LB variants were assessed for both binary and multiclass models
using (a) AUROC and (b) AUPRC. Model comparison models are described in Table 2. AUROC, area under the receiver operating characteristic

curve; AUPRC, area under the precision‐recall curve; B/LB, benign/likely benign; FUNC, functional impact and evolutionary conservation; IND,
individual‐level information; LOC, variant location; MAF, minor allele frequency; P/LP, pathogenic/likely pathogenic; SPLICE, splicing impact
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classification utilizing the same evidence a variant scientist would in a

clinical setting. Thus, this model does not try to determine the mo-

lecular pathogenesis of the disease, but simply aims to emulate the

classifications and assertions that would be made by an expert var-

iant scientist. We demonstrated that the model is highly accurate for

the classification of missense variants using various forms of vali-

dation, including 10‐fold cross‐validation, gene holdout cross‐
validation, and external holdout validation from the ENIGMA

challenge.

A few novel approaches contributed to the strength and utility of

the model. First, LEAP combines many different forms of evidence

that would be used in expert manual variant classification based on

ACMG guidelines. This differs from previous variant prediction

models, which have used narrower categories of evidence such as

functional predictors (Ioannidis et al., 2016), or functional predictors

combined with population frequency (Alirezaie et al., 2018). These

other meta‐predictors are ultimately solving different components of

the variant classification problem, but are different from and not

directly comparable with LEAP. Additional feature categories that

represented different types of variant classification evidence were

shown to improve the performance of LEAP. These feature cate-

gories included publicly available information such as functional im-

pact predictors, splicing impact predictors, variant location and

domain, and population frequency. Individual‐level information such

as co‐occurring P/LP variants in individuals and individual phenotypic

information was also assessed. However, the highest performing

version of LEAP did not include individual‐level features

(LEAP_FEATURE_4) and utilized publicly available features only. This

suggests that LEAP's high performance is not due to any special

individual‐level data that is in Color's database but is mostly driven

by evidence that can be found in publicly available databases.

One potential pitfall of including many features in a model is

multicollinearity, which may increase the risk of overfitting. We

chose to incorporate correlated features as long as they were not

100% collinear, as they may still encode distinct inputs that are

considered in variant classification. To manage multicollinearity

without discarding valuable information, we selected models that are

known to be more robust against strong correlation and auto-

matically adjust. In the logistic regression case, L2 regularization was

chosen because it penalizes large “double counted” coefficients re-

sulting from highly correlated features by reducing coefficients and

evenly distributing weight across correlated features, as opposed to

reducing them completely to zero as in L1 regularization. In the

random forest model, decision tree splits that minimize Gini impurity

automatically prioritize features that are most informative for pa-

thogenicity prediction. This optimization prevents redundancy and

ensures that the most predictive feature within a group of correlated

features has the most influence at the top of a given decision tree.

Although we found that increasing breadth of features improved

model performance, clinical information such as the personal and

family health history of carriers or covariant data did not mean-

ingfully improve the performance of the models overall. This may

have been due to the sparsity of data, especially in association with

the many rare variants tested here. Separately, upon a case‐level
investigation of variants that were discordant between LEAP pre-

diction and manual classification, the latter was often based on

functional study data extracted from published literature figures,

tables, and text, which were not considered in LEAP's feature com-

parisons. This could be an avenue for future improvement. One ap-

proach would be to summarize primary evidence metadata such as

“number of papers that reference a variant.” This may be a helpful

start to building a more comprehensive model that mirrors the

(a) (b)

F IGURE 6 Distributions of 10‐fold cross‐validated predictions from a binary L2‐regularized logistic regression model using all feature

categories (LEAP_MODEL_1 or LEAP_FEATURE_5) are shown for P/LP variants, B/LB variants, and VUS. (a) Predictions on all hereditary cancer
variants with 0.978 AUROC and 0.897 AUPRC. (b) Predictions on all cardiovascular disorder variants with 0.988 AUROC and 0.967 AUPRC.
AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision‐recall curve; B/LB, benign/likely benign; P/LP,

pathogenic/likely pathogenic
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variant classification process and could continue to improve perfor-

mance as functional study evidence becomes available across more

genes. However, due to the sparsity of studies and open‐ended
nature of free‐text interpretation, this would be a complex problem

that requires more dedicated time that may not produce a propor-

tional increase in model performance.

Another performance differentiator for LEAP included the

availability of high‐quality variant classifications (ground truth labels)

determined by trained variant scientists and approved by board‐
certified medical geneticists at Color. One commonly cited pitfall for

pathogenicity predictors is the lack of standardized and consistent

classifications; many published models are trained on noisy public

databases or inconsistently defined “consensus” classifications, which

may be unreliable. Higher quality data will contain higher quality

signals that result in higher quality predictions. Although the Color

database is not comparable in volume with some public databases, it

does reflect deep clinical testing experience in the set of genes

evaluated here and the application of a consistent and critical variant

classification protocol. A potential pitfall is that dependence on the

classifications of one lab may run the risk of reinforcing inherent

structural biases if they exist; any machine learning model, however,

well‐developed, will only recapitulate those biases and not auto-

matically correct for them. However, the variant classifications in

Color's database are highly concordant with consensus ClinVar

classifications, with a recent analysis within the All of Us consortium

demonstrating a >98.5% concordance with participating genome

centers (personal communication to S. T. from the All of Us Clinical

Interpretation and Reporting Working Group, September 12, 2019).

This suggests that the training set derived from the Color database

represents current best practices.

Separately, a more extensive investigation into the overlap be-

tween the training sets of LEAP and its constituent variant predictors

would help to assess the risk of overfitting. This is a known challenge

for other meta‐predictors as well (Ghosh et al., 2017). Completely

removing all overlap is challenging as many of the variant predictors

do not publish their sets of variants used for training. With LEAP, we

sought to represent the considerations of a variant scientist as clo-

sely as possible, which includes consideration of multiple variant

predictors. To mitigate the risk of overfitting, other efforts include

gene‐holdout validation to demonstrate model robustness to entirely

new genes, as well as external validation on ENIGMA's hand‐picked
and newly‐interpreted variants as a holdout set that was entirely

separate from LEAP's training set.

Positive results from gene holdout validation indicate the gen-

eralizability of one model to different genes within one health con-

dition. Initial results from extending the existing cancer framework to

cardiovascular disorders suggest that machine learning can be useful

in disease areas with less research understanding in genetics. In this

paper, some differences between health conditions were found: po-

pulation frequency was more predictive in cardiovascular than in

cancer (Figure S2), and splicing impact seemed to be a stronger

contributing feature in cancer than in cardiovascular (Figure S7).

However, these differences may not represent true differences in the

underlying biology, and may instead be due to limitations in genetics

research and availability of evidence in cardiovascular relative to

cancer. In the future, with greater research understanding, a more

mature database, and further model tuning, one disease‐agnostic
model could be trained to take into account disease‐specific com-

plexities and may benefit from increased training size and

generalizability.

In a clinical laboratory setting, the outputs of LEAP can be in-

tegrated into a clinical variant interpretation workflow to increase

variant scientist efficiency and act as a quality control mechanism for

variant classification. For example, LEAP can be used to prioritize

variants, which are more likely to be pathogenic for human review to

optimize clinical reporting efficiency. Similarly, LEAP can also be used

for the prioritization of VUSs for reclassification (Figure 6). Indeed,

our early exploratory analysis shows LEAP is able to discern VUS‐P
(variants internally tagged as one additional piece of evidence away

from an LP classification based on ACMG guidelines) from VUS with

86.3% AUROC in cancer (Figure S7). In addition, LEAP could serve as

a quality control layer on top of existing variant interpretation pro-

cesses, by flagging cases that are discordant between LEAP and an

expert variant scientist for further review. These types of cases, over

time, would also help to train and improve the model's accuracy.

Finally, LEAP predictions could be used to automatically assert the

“computational prediction” criterion in the ACMG classification

guidelines (Richards et al., 2015).

Variant classification is a complex and evolving field. The im-

plementation of the ACMG Guidelines in 2015 helped drive con-

sistency and transparency by establishing a common language and

standard process. It is this standard process, and its reliance on

structured data, that has ultimately paved the way for computational

models such as LEAP to be developed. Variant classification represents

a conclusion that the available evidence is sufficient to prove the

variant's role in the development of the disease. To that end, one of

the major advantages of LEAP is its usability and interpretability. By

making the contributions of each specific evidence type for each

variant clear to the human eye, LEAP aims to unmask the “black box”

nature of many machine learning models. This allows the expert sci-

entist to more deeply understand and evaluate the underlying logic for

LEAP's predictions. As we and others continue to make novel com-

putational tools for these applications, we believe that tool usability

will be as important as prediction accuracy towards the utility and

adoption of these tools in the practice of clinical genetics.
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