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Model‑free detection of unique 
events in time series
Zsigmond Benkő1,2, Tamás Bábel1 & Zoltán Somogyvári1*

Recognition of anomalous events is a challenging but critical task in many scientific and industrial 
fields, especially when the properties of anomalies are unknown. In this paper, we introduce a new 
anomaly concept called “unicorn” or unique event and present a new, model-free, unsupervised 
detection algorithm to detect unicorns. The key component of the new algorithm is the Temporal 
Outlier Factor (TOF) to measure the uniqueness of events in continuous data sets from dynamic 
systems. The concept of unique events differs significantly from traditional outliers in many aspects: 
while repetitive outliers are no longer unique events, a unique event is not necessarily an outlier; it 
does not necessarily fall out from the distribution of normal activity. The performance of our algorithm 
was examined in recognizing unique events on different types of simulated data sets with anomalies 
and it was compared with the Local Outlier Factor (LOF) and discord discovery algorithms. TOF 
had superior performance compared to LOF and discord detection algorithms even in recognizing 
traditional outliers and it also detected unique events that those did not. The benefits of the unicorn 
concept and the new detection method were illustrated by example data sets from very different 
scientific fields. Our algorithm successfully retrieved unique events in those cases where they were 
already known such as the gravitational waves of a binary black hole merger on LIGO detector data 
and the signs of respiratory failure on ECG data series. Furthermore, unique events were found on the 
LIBOR data set of the last 30 years.

Anomalies in time series are rare and non-typical patterns that deviate from normal observations and may 
indicate a transiently activated mechanism different from the generating process of normal data. Accordingly, 
recognition of anomalies is often important or critical, invoking interventions in various industrial and scientific 
applications.

Anomalies can be classified according to various aspects1–3. These non-standard observations can be point 
outliers, whose amplitude is out of range from the standard amplitude or contextual outliers, whose measured 
values do not fit into some context. A combination of values can also form an anomaly named a collective out-
lier. Thus, in the case of point outliers, a single point is enough to distinguish between normal and anomalous 
states, whilst in the case of collective anomalies, a pattern of multiple observations is required. Two characteristic 
examples of extreme events are black swans and dragon kings, distinguishable by their generation process4,5. Black 
swans are generated by a power law process and they are usually unpredictable by nature. In contrast, the dragon 
king, such as stock market crashes, occurs after a phase transition and it is generated by different mechanisms 
from normal samples making it more predictable. Both black swans and dragon kings are extreme events easily 
recognizable post-hoc (retrospectively), but not all the anomalies are so effortless to detect. Even post-hoc detec-
tion can be a troublesome procedure when the amplitude of the event does not fall out of the data distribution.

Although the definition of an anomaly is not straightforward, two of its key features include rarity and dis-
similarity from normal data.

Most, if not all the outlier detection algorithms approach the anomalies from the dissimilarity point of view. 
They search for the most distant and deviant points without much emphasis on their rarity. In contrast, our 
approach is the opposite: we quantify the rarity of a state, largely independent of the dissimilarity.

Here we introduce a new type of anomaly, the unique event, which is not an outlier in the classical sense of 
the word: it does not necessarily lie out from the background distribution, neither point-wise nor collectively. A 
unique event is defined as a unique pattern that appears only once during the investigated history of the system. 
Based on their hidden nature and uniqueness one could call these unique events “unicorns” and add them to the 
strange zoo of anomalies. Note that unicorns can be both traditional outliers appearing only once or patterns 
that do not differ from the normal population in any of their parameters.
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But how do you find something you’ve never seen before, and the only thing you know about is that it only 
appeared once?

The answer would be straightforward for discrete patterns, but for continuous variables, where none of the 
states are exactly the same, it is challenging to distinguish the really unique states from a dynamical point of view.

Related works.  Classical supervised, semi-supervised, and unsupervised strategies have been used to detect 
anomalies1,6,7 and recently deep neural networks8–10 were applied to detect extreme events11–16. Supervised out-
lier detection techniques can be applied to identify anomalies when labeled training data is available for both 
normal and outlier classes. Semi-supervised techniques also utilize labeled training data, but this is limited to 
the normal or the outlier class. Some of the semi-supervised methods do not need perfectly anomaly-free data 
to learn the normal class but allow some outlier-contamination even in the training data17. Model-based pattern 
matching techniques can be applied to detect specific anomalies with best results when the mechanism causing 
the anomaly is well known and simple18. However, when the background is less well known or the system is too 
complex to get analytical results (or to run detailed simulations), it is hard to detect even specific types of anoma-
lies with model-based techniques due to the unknown nature of the waveforms. Model-free unsupervised outlier 
detection techniques can be applied to detect unexpected events from time series in cases when no tractable 
models or training data is available.

The closest concept to our unicorns in the anomaly detection literature is the discord, defined as the unique 
subsequence, which is the farthest from the rest of the (non-overlapping) time series19. Multiple model-free 
unsupervised anomaly detection methods have been built based on the discord concept19,20. Other unsupervised 
anomaly detection techniques, such as the Local Outlier Factor (LOF) algorithm21 are based on k Nearest Neigh-
bor (kNN) distances. The LOF algorithm was also adapted to time series data by Oehmcke et al.22.

In the followings, we present a new model-free unsupervised anomaly detection algorithm to detect unicorns 
(unique events), that builds on nonlinear time series analysis techniques such as time delay embedding23 and 
upgrades time-recurrence based non-stationarity detection methods24 by defining a local measure of unique-
ness for each point.

We validate the new method on simulated data, compare its performance with other model-free unsupervised 
algorithms19–21 and we apply the new method to real-world data series, where the unique event is already known.

Methods
Time delay embedding.  To adapt collective outlier detection to time series data, nonlinear time series 
analysis provides the possibility to generate the multivariate state space from scalar observations. The dynamical 
state of the system can be reconstructed from scalar time series25 by taking the temporal context of each point 
according to Takens’ embedding theorem23. This can be done via time delay embedding:

where X(t) is the reconstructed state at time t, x(t) is the scalar time series. The procedure has two parameters: 
the embedding delay ( τ ) and the embedding dimension (E).

Starting from an initial condition, the state of a dynamical system typically converges to a subset of its state 
space and forms a lower-dimensional manifold, called the attractor, which describes the dynamics of the system 
in the long run. If E is sufficiently big ( E > 2 ∗ d ) compared to the dimension of the attractor (d), then the embed-
ded (reconstructed) space is topologically equivalent to the system’s state space, given some mild conditions on 
the observation function generating the x(t) time series are also met23.

As a consequence of Takens’ theorem, small neighborhoods around points in the reconstructed state-space 
also form neighborhoods in the original state space, therefore a small neighborhood around a point represents 
nearly similar states. This topological property has been leveraged to perform nonlinear prediction26, noise 
filtering27,28 and causality analysis29–32. Naturally, time delay embedding can be introduced as a preprocessing 
step before outlier detection (with already existing methods i.e. LOF) to create the contextual space for collective 
outlier detection from time series.

Besides the spatial information preserved in reconstructed state space, temporal relations in small neighbor-
hoods can contain clues about the dynamics. For example, recurrence time statistics were applied to discover 
nonstationary time series24,33, to measure attractor dimensions34–36 and to detect changes in dynamics37,38.

Temporal Outlier Factor.  The key question in unicorn search is how to measure the uniqueness of a state, 
as this is the only attribute of a unique event. The simplest possible definition would be that a unique state 
appears only once in the time series. A problem with this definition arises in the case of continuous-valued 
observations, where almost every state is visited only once. Thus, a different strategy should be applied to find 
the unicorns. Our approach is based on measuring the temporal dispersion of the state-space neighbors. If state-
space neighbors are separated by large time intervals, then the system returns to the same state time-to-time. In 
contrast, if all the state space neighbors are temporal neighbors as well, then the system never returned to that 
state again. This concept is shown on an example ECG data series from a patient with Wolff–Parkinson–White 
(WPW) Syndrome (Fig. 1). The WPW syndrome is due to an aberrant atrio-ventricular connection in the heart. 
Its diagnostic signs are shortened PR-interval and appearance of the delta wave, a slurred upstroke of the QRS 
complex. However, for our representational purpose, we have chosen a data segment, which contained one 
strange T wave with uniquely high amplitude (Fig. 1A).

To quantify the uniqueness on a given time series, the Temporal Outlier Factor (TOF) is calculated in the 
following steps (Fig. 1 and Fig. S1): firstly, we reconstruct the system’s state by time delay embedding (Eq. 1), 
resulting in a manifold, topologically equivalent to the attractor of the system (Fig. 1C-D and Fig. S1B).

(1)X(t) = [x(t), x(t + τ), x(t + 2τ), . . . x(t + (E − 1)τ )]
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Figure 1.   Schema of our unique event detection method and the Temporal Outlier Factor (TOF). (A) An ECG 
time series from a patient with Wolff-Parkinson-White Syndrome, a strange and unique T wave zoomed on 
graph (B). (C) The reconstructed attractor in the 3D state space by time delay embedding ( E = 3, τ = 0.011 s ). 
Two example states (red and blue diamonds) and their 6 nearest neighbors in the state space (orange and 
green diamonds respectively) are shown. The system returned several times back to the close vicinity of the 
blue state, thus the green diamonds are evenly distributed in time, on graph (A). In contrast, the orange state-
space neighbors of the red point (zoomed on graph D) are close to the red point in time as well on graph (A). 
These low temporal distances show that the red point marks a unique event. (E) TOF measures the temporal 
dispersion of the k nearest state-space neighbors ( k = 20 ). The red dashed line is the threshold θ = 0.28 s . Low 
values of TOF below the threshold mark the unique events, denoted by orange dots on the original ECG data on 
graph (F).



4

Vol:.(1234567890)

Scientific Reports |          (2022) 12:227  | https://doi.org/10.1038/s41598-021-03526-y

www.nature.com/scientificreports/

Secondly, we search for the kNN in the state space at each time instance on the attractor. A standard choice 
for the distance metric is the Euclidean distance (Eq. 2).

where d is the distance between the X(t) and X(t ′) points, with Xl as coordinate components in the reconstructed 
state space. We save the time index of the k nearest points around each sample to use it later on. Two examples 
are shown on Fig. 1C: a red and a blue diamond and their 6 nearest neighbors marked by orange and green 
diamonds respectively.

Thirdly, the Temporal Outlier Factor (TOF) is computed from the time indices of the kNN points (Fig. S1C):

where t is the time index of the sample point (X(t)) and ti is the time index of the i-th nearest neighbor in recon-
structed state-space. Where q ∈ R

+ , in our case we use q = 2 (Fig. 1E).
As a final step for identifying unicorns, a proper threshold θ should be defined for TOF (Fig. 1E, dashed red 

line), to mark unique events (orange dots, Fig. 1F).
TOF measures an expected temporal distance of the kNN neighbors in reconstructed state-space (Eq. 3), thus 

it has time dimension. A high or medium value of TOF implies that neighboring points in state-space were not 
close in time, therefore the investigated part of state-space was visited on several different occasions by the system. 
In our example, green diamonds on (Fig. 1C) mark states which were the closest points to the blue diamond in 
the state space, but were evenly distributed in time, on Fig. 1A. Thus the state marked by the blue diamond was 
not a unique state, the system returned there several times.

However a small value of TOF implies that neighboring points in state-space were also close in time, there-
fore this part of the space was visited only once by the system. On Fig. 1C,D orange diamonds mark the closest 
states to the red diamond and they are also close to the red diamond in time, on the (Fig. 1B). This results in 
a low value of TOF in the state marked by the red diamond and means that it was a unique state never visited 
again. Thus, small TOF values feature the uniqueness of sample points in state-space and can be interpreted as 
an outlier factor. Correspondingly, TOF values exhibit a clear breakdown at the time interval of the anomalous 
T wave (Fig. 1F).

The number of neighbors (k) used during the estimation procedure sets the minimal possible TOF value:

where ⌊k/2⌋ is the integer part of k/2, mod is the modulo operator and �t is the sampling period.
The approximate maximal possible TOF value is determined by the length (T) and neighborhood size (k) of 

the embedded time series:

TOF shows a time-dependent mean baseline and variance (Fig. 1E, Fig. S2) which can be computed if station-
ary activity without presence of anomaly is assumed. In this case, the time indices of the nearest points are evenly 
distributed along the whole time series. The approximate mean baseline is a square-root-quadratic expression, it 
has the lowest value in the middle and highest value at the edges (see exact derivation for continuous time limit 
and q = 1 in the Supporting Information, Figs. S2-S3):

Based on the above considerations, imposing a threshold θ on TOFk has a straightforward meaning: it sets a 
maximum detectable event length (M) or vice versa:

where in the continuous limit, the threshold and the event length becomes equivalent:
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Also, the parameter k sets a necessary detection criteria on the minimal length of the detectable events: only 
events with length M ≥ k�t may be detected. This property comes from the requirement that there must be at 
least k neighbors within the unique dynamic regime of the anomaly.

The current implementation of the TOF algorithm contains a time delay embedding, a kNN search, the 
computation of TOF scores from the neighborhoods, and a threshold application for it. The time-limiting step 
is the neighbor-search, which uses the scipy cKDTree implementation of the kDTree algorithm39. The most 
demanding task is to build the data-structure; its complexity is O(kn log n)40, while the nearest neighbor search 
has O(log n) complexity.

Box 1: TOF analysis workflow. 

0.	 Preprocessing and applicability check
1.	 Time delay embedding (Eq. 1)
2.	 kNN Neighbor search (Eq. 2)
3.	 TOF score computation (Eq. 3)
4.	 Threshold application on TOF score to detect unicorns (Eq. 8).

Previous methods to compare.  We compare our method to widely used model-free, unsupervised out-
lier detection methods: the Local Outlier Factor (LOF) and two versions of discord detection algorithms19,20 
(see SI). The main purpose of the comparison is not to show that our method is superior to the others in outlier 
detection, but to present the fundamental differences between the previous outlier concepts and the unicorns.

The first steps of all three algorithms are parallel: While TOF and LOF use time-delay embedding as a pre-
processing step to define a state-space, discord detection algorithms reach the same by defining subsequences 
due to a sliding window. As a next step, state-space distances are calculated in all of the three methods, but with 
a slightly different focus. Both LOF and TOF search for the kNNs in the state-space for each time instance. As 
a key difference, the LOF calculates the distance of the actual points in state-space from their nearest neighbors 
and normalizes it with the mean distance of those nearest neighbors from their nearest neighbors, resulting in 
a relative local density measure. LOF values around 1 are considered the signs of normal behavior, while higher 
LOF values mark the outliers. While LOF concentrates on the densities of the nearest neighbors in the state-
space, the discord concept is based on the distances directly. For each time instance, it searches for the closest, 
but temporary non-overlapping subsequence (state). This distance defines the distance of the actual state from 
the whole sequence and is called the matrix profile41. Finally, the top discord is defined as the state, which is the 
most distant from the whole data sequence by this means. Besides this top discord, any predefined number of 
discords can be defined by finding the next most distant subsequence which does not overlap with the already 
found discords.

The only parameter of this brute force discord detection algorithm is the expected length of the anomaly, 
which is given as the length of the subsequences used for the distance calculation. Senin et al.20,42 extended 
Keogh’s method by calculating the matrix profile for different subsequence lengths, then normalizing the dis-
tances by the length of the subsequences, and finally choosing the most distant subsequence according to the 
normalized distances. Through this method, Senin’s algorithm provides an estimation of the anomaly length 
as well. Both Keogh’s and Senin’s algorithm can be implemented in a slower but exact way by calculating all the 
distances, can be called as brute force algorithm or fastening them by using the Symbolic Aggregate approXi-
mation (SAX) method. In our comparisons, Keogh’s brute force method was calculated exactly while SAX was 
used for Senin’s algorithm only.

Simulated data series for validation.  We tested the TOF method on various types of simulated data 
series to demonstrate its wide applicability. These simulations are examples of deterministic discrete-time sys-
tems, continuous dynamics, and a stochastic process.

We simulated two datasets with deterministic chaotic discrete-time dynamics generated by a logistic map43 
( N = 2000 , 100–100 instances each) and inserted variable-length ( l = 20–200 step) outlier-segments into the 
time series at random times (Fig. 2A,B). Two types of outliers were used in these simulations, the first type was 
generated from a tent-map dynamics (Fig. 2A) and the second type was simply a linear segment with low gradient 
(Fig. 2B) for simulation details see the Supporting Information (SI). The tent map demonstrates the case, where 
the underlying dynamics is changed for a short interval, but it generates a very similar periodic or chaotic oscilla-
tory activity (depending on the parameters) to the original dynamics. This type of anomaly is hard to distinguish 
by the naked eye. In contrast, a linear outlier is easy to identify for a human observer but not for many traditional 
outlier detection algorithms. The linear segment is a collective outlier and all of its points represent a state that 
was visited only once during the whole data sequence, therefore they are unique events as well.

As a continuous deterministic dynamics with realistic features, we simulated electrocardiograms with short 
tachycardic periods where beating frequency was higher (Fig. 2C). The simulations were carried out according 
to the model of Rhyzhii and Ryzhii44, where the three heart pacemakers and muscle responses were modeled as 
a system of nonlinear differential equations (see SI). We generated 100 s of ECG and randomly inserted 2–20 s 
long faster heart-rate segments, corresponding to tachycardia ( n = 100 realizations).

Takens’ time delay embedding theorem is valid for time series generated by deterministic dynamical systems, 
but not for stochastic ones. In spite of this, we investigated the applicability of time delay embedded temporal 
and spatial outlier detection on stochastic signals with deterministic dynamics as outliers. We established a 
dataset of multiplicative random walks ( n = 100 instances, T = 2000 steps each) with randomly inserted variable 
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length linear outlier segments ( l = 20–200, see SI). As a preprocessing step, to make the random walk data series 
stationary, we took the log-difference of time series as is usually the case with economic data series (Fig. 2D).

Model evaluation metrics.  TOF and LOF calculate scores on which thresholds should be applied to reach 
final detections. In contrast, the discord detection algorithms do not apply a threshold on the matrix profile 
values but choose the highest peak as a top discord. The effectiveness of TOF and LOF scores to distinguish 
anomalous points from the background can be evaluated by measuring the Area Under Receiver Operator Char-
acteristic Curve45 (ROC AUC). The ROC curve consists of point pairs of True Positive Rate (TPR, recall) and 
False Positive Rate (FPR) parametrized by a threshold ( α , Eq. 10).

where α ∈ [−∞,∞] . The area under the ROC curve can be computed as the Riemann integral of the TPR in 
the function of FPR on the (0, 1) interval.

(10)ROC(α) := (FPR(α), TPR(α))

Figure 2.   Detection examples on simulated time series with anomalies of different kinds. (A) Logistic map 
time series with tent-map anomaly. (B) Logistic map time series with linear anomaly. (C) Simulated ECG time 
series with tachycardia. (D) Random walk time series with linear anomaly, where TOF was measured on the 
discrete-time log derivative ( �logxt ). Each subplot shows an example time series of the simulations (black) in 
arbitrary units and in three forms: Top left the return map, which is the results of the 2D time delay embedding 
and defines the dynamics of the system or its 2D projection. Bottom: Full length of the simulated time series 
(black) and the corresponding TOF values (green). Shaded areas show anomalous sections. Top right: Zoom 
to the onset of the anomaly. In all graphs, the outliers detected by TOF, LOF, and Keogh’s brute force discord 
detection algorithms are marked by orange dots, blue plus, and red x signs respectively. While anomalies form 
clear outliers on A and B, D shows an example where the unique event is clearly not an outlier, but it is located 
in the center of the distribution. All the three algorithms detected the example anomaly well in case A, TOF, 
and discord detected well the anomalies in B and C cases, but only TOF was able to detect all the four anomaly 
examples.



7

Vol.:(0123456789)

Scientific Reports |          (2022) 12:227  | https://doi.org/10.1038/s41598-021-03526-y

www.nature.com/scientificreports/

This evaluation method considers all the possible thresholds, thus providing a threshold-independent measure 
of the detection potential for a score, where 1 means that a threshold can separate all the anomalous points from 
the background. Thus, we applied ROC AUC to evaluate TOF and LOF scores on the four datasets mentioned 
above with fixed embedding parameters E = 3 and τ = 1 and determined its dependency on the neighborhood 
size ( k = 1–200) that was used for the calculations.

After choosing the optimal neighborhood parameter which maximises the ROC AUC values, precision, 
recall, and F1 score were used to evaluate the detection performance of the methods on the simulated datasets:

The precision metrics measures the ratio of true positive hits among all the detections:

The recall evaluates what fraction of the points to be detected were actually detected:

F1 score is the harmonic mean of precision and recall and it provides a single scalar to rate model performance:

 where the optimal the threshold ( α ) were chosen to correspond to the actual mean number of anomalous points, 
or the expected length of the anomaly.

We implemented these steps in the python programming language (python3), the software is available at 
github.​com/​phren​ico/​uniqed. A detailed description of the data generation process and analysis steps can be 
found in the Supporting Information.

Results
Validation and comparison on simulated data series.  Figure 3A shows the performance of the two 
methods in terms of mean ROC AUC and SD for n = 100 realizations. TOF produced higher maximal ROC 
AUC than LOF in all four experimental setups. The ROC AUC values reached their maxima at small k neigh-
borhood sizes in all of the four cases and decreased with increasing k afterward. In contrast, LOF resulted in 
reasonable ROC AUC values in only three cases (logmap-tent anomaly, logmap-linear anomaly, and ECG tachy-
cardia), and it was not able to distinguish the linear anomaly from the random walk background at all. The ROC 
AUC values reached their maxima at typically higher k neighborhood size in the instances where LOF worked 
(Table 1).

In order to evaluate the final detection performance, as well as the type of errors made and the parameter 
dependency of these algorithms, F1 score, precision and recall were computed for all four algorithms. F1 score 
is especially useful to evaluate detection performance in cases of highly unbalanced datasets as in our case, see 
Methods.

As TOF showed the best performance in terms of ROC AUC with lower k neighborhood sizes, the F1 scores 
were calculated at a fixed k = 4 neighborhood forming a simplex in the 3-dimensional embedding space29. In 
contrast, as LOF showed stronger dependency on neighborhood size, the optimal neighborhood sizes were used 
for F1 score calculations. The brute force discord detection algorithm uses no separate neighborhood parameter, 
as it calculates all-to-all distances between points in the state space.

Three among the four investigated algorithms require an estimation of the expected length of the anomaly, 
however, this estimation becomes effective through different parameters within the different algorithms. In the 
case of LOF, the expected length of the anomaly can be translated into a threshold, which determines the number 
of time instances above the threshold. In the absence of this information, the threshold is hard to determine in 
any principled way. In the case of Keogh’s brute force discord detection algorithm, the length of the anomaly is 
the only parameter and no further threshold is required. Both LOF and Keogh’s algorithm find the predefined 
number of time instances exactly. While the discord finds them in one continuous time interval, LOF detects 
independent points along the whole data. The expected maximal anomaly length is necessary to determine the 
threshold in the case of TOF as well (Eq. 8). As Senin’s discord detection algorithm does not require predefined 
anomaly length, it was omitted from this test, and we calculated the F1 score at the self-determined window 
length.

Figure 3B shows the mean F1 scores for n = 100 realizations, as a function of the expected anomaly length, 
for the three algorithms and for all the four test datasets. Additionally, Fig. S8 shows the precision and the recall, 
which are the two constituents of the F1 score as a function of the expected anomaly length as well. The actual 
length of the anomalies was randomly chosen between 20 and 200 time steps for each realization in three of our 
four test cases and between 200 and 2000 time steps in ECG realizations, thus the effect of the expected length 
parameters was examined up to these lengths as well.

While it is realistic, that we only have a rough estimate on the expected length of the anomaly, it turns out, 
that the randomness in the anomaly length sets an upper bound (Fig. 3B, black dashed lines, Fig. S6), for the 
mean F1 scores for those algorithms, that work with an exact predefined number of detections i.e. the LOF and the 
Keogh’s discord detection. Although the expected length parameter and the randomness in the actual anomaly 
length affect the detection performance of TOF as well, they do not set a strict upper bound, as the number of 
detections is not in a one-to-one correspondence with the expected anomaly length.

(11)precision(α) =
true positives(α)

true positives(α)+ false positives(α)

(12)recall(α) =
true positives(α)

true positives(α)+ false negatives(α)

(13)F1(α) = 2
precision(α)× recall(α)

precision(α)+ recall(α)

https://github.com/phrenico/uniqed
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Figure 3.   Performance evaluation of TOF, LOF, and Keogh’s discord detection algorithms on four simulated 
datasets. (A) Mean Receiver Observer Characteristic Area Under Curve (ROC AUC) score and SD for TOF 
(orange) and LOF (blue) are shown as a function of neighborhood size (k). TOF showed the best results for 
small neighborhoods. In contrast, LOF showed better results for larger neighborhoods in the case of the logistic 
map and ECG datasets but did not reach reasonable performance on random walk with linear outliers. (B) 
Mean F1 score for TOF (orange), LOF (blue), and Keogh’s discord detection (red) algorithms as a function of the 
expected anomaly length (for TOF) given in either data percentage (for LOF) or window length parameter (for 
discord). Black dashed lines show the theoretical maximum of the mean F1 score for algorithms with prefixed 
detection numbers or lengths (LOF and discord), but this upper limit does apply for TOF. The F1 score of TOF 
was very high for the linear anomalies and slightly lower for logistic map—tent map anomaly and ECG datasets, 
but it was higher than the F1 score of the two other methods and their theoretical limits in all cases. Note, that 
the only comparable performance was shown by discord detection on ECG anomaly, while neither algorithms 
based on discord nor LOF were able to detect the linear anomaly on random background.

Table 1.   Detection performance on simulations in terms of ROC AUC scores and the optimal neighborhood 
parameter k. Maximal mean ROC AUC values and the corresponding SDs are shown. LOF was able to 
distinguish tent map and linear outliers from logistic background and tachycardia from the normal rhythm 
with reasonable reliability but TOF outperformed LOF for all data series. Linear outliers can not be detected on 
random walk background by the LOF method at all, while TOF detected them almost perfectly. TOF reached 
its maximal performance mostly for low k values, while LOF required larger k for optimal performance on 
those three data series, on which it worked reasonably. While the ROC AUC was maximal at k = 30 in the case 
of random walk with linear outlier, the performance was not significantly lower for lower k values.

Dataset

TOF LOF

k AUC​ k AUC​

Logmap-tent 2 0.939± 0.050 42 0.913± 0.042

Logmap-linear 6 0.994 ± 0.007 199 0.847± 0.213

Sim ECG-tachy 2 0.931± 0.039 129 0.815± 0.056

Randwalk-linear 30 0.988± 0.014 1 0.572± 0.015
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For all the four test datasets, TOF algorithm reached higher maximal F1 scores than the LOF and Keogh’s 
discord detection method (Fig. 3B, Fig. S8, orange lines). The maximal F1 score was even higher than the theo-
retical limit imposed by the variable anomaly lengths to the other methods. Similar to the results on ROC AUC 
values, the performance of the TOF algorithm was excellent on the linear type anomalies and very good for the 
logmap-tent map and the simulated ECG-tachycardia datasets.

In contrast, the LOF algorithm showed good performance on the logmap-tent map data series and mediocre 
results on logmap-linear anomalies and on the ECG-tachycardia data series. The linear outlier on random walk 
background was completely undetectable for the LOF method (Fig. 3B, Fig. S8, blue lines).

Keogh’s discord detection algorithm displayed good F1 scores on three datasets, but weak results were given 
in case of the linear anomaly on the random walk background (Fig. 3B, Fig. S8, red lines).

The simulated ECG dataset was the only one, where any of the competitor methods showed comparable per-
formance to TOF: Keogh’s brute force discord detection reached its theoretical maximum, thus TOF resulted in an 
only slightly higher maximal F1 score in an optimal range of the length parameter. If the expectation significantly 
overestimated the actual length, the results of discord detection were slightly better.

The F1 scores reached their maxima when the expected anomaly length parameters were close to the mean 
of the actual anomaly lengths for all algorithms and for all detectable cases when the F1 score showed significant 
peaks (Table 2).

As we have seen, the variable and unknown length of the anomalies had a significant effect on the detection 
performance of all methods, but especially LOF and brute force discord detection. Senin et al.20,46 extended the 
discord detection method to overcome the problem of predefined anomaly length and to allow the algorithm to 
find the length of the anomalies. Thus, we have tested Senin’s algorithm on our test data series and included the 
anomaly lengths found by this algorithm as well as the performance measures into the comparison in Table 2. 
While the mean estimated anomaly lengths were not far from the mean of the actual lengths, the performance 
of this algorithm lags well behind all three previously tested ones on all four types of test data series.

We have identified several factors, which could explain the different detection patterns of different algorithms. 
Table S1 shows that the tent map and the tachycardia produce lower density, thus more dispersed points in the 
state space, presumably making them more detectable by the LOF. In contrast, linear segments resulted in a 
similar density of points to the normal logistic activity or a higher density of points compared to the random 

Table 2.   Performance evaluation by F1 , precision and recall scores on simulations. The optimal expected 
anomaly length parameter (M) in time steps, mean scores, and their standard deviations are shown for all 
methods and datasets; the highest scores are highlighted in bold. In case of TOF, k = 4 neighbour number is 
used, while for LOF, the k resulted the best ROC AUC were used from Table 1: k = 42 for logmap-tent map, 
k = 199 for logmap-linear, k = 129 for ECG tachycardia and k = 1 for random walk-linear datasets. TOF 
resulted in the highest F1 scores and highest precision for all datasets and the highest recall in three of the 
four cases but the simulated ECG tachycardia, where Keogh’s brute force discord detection algorithm reached 
a slightly higher recall score. The only comparable performance was reached by Keogh’s discord detection 
algorithm on ECG tachycardia in terms of F1 score while LOF produced reasonable results on logmap-tent map 
anomaly series. Although Senin’s discord detection algorithm resulted in reasonable mean estimations for the 
lengths of the anomalies, its detection performance was worse than the other three algorithms.

Method TOF LOF Keogh Senin

Dataset Logistic map—tent map

Length (M) 121 91 91 137.06± 93.68

F1 0.810± 0.175 0.635± 0.141 0.624± 0.329 0.002± 0.016

Precision 0.920± 0.139 0.702± 0.231 0.720± 0.387 0.002± 0.014

Recall 0.734 ± 0.185 0.659± 0.149 0.586± 0.337 0.003± 0.019

Dataset Logistic map—linear

Length (M) 81 91 101 146.56± 91.17

F1 0.978± 0.038 0.387± 0.353 0.717± 0.273 0.267± 0.358

Precision 0.978± 0.053 0.382± 0.366 0.766± 0.332 0.220± 0.308

Recall 0.981± 0.038 0.459± 0.428 0.752± 0.289 0.370± 0.473

Dataset SimECG—tachycardia

Length (M) 910 1110 1210 1128.04± 1024.98

F1 0.834 ± 0.094 0.428± 0.092 0.765± 0.177 0.368± 0.381

Precision 0.861± 0.115 0.425± 0.119 0.751± 0.267 0.305± 0.344

Recall 0.815± 0.091 0.498± 0.144 0.894 ± 0.141 0.548± 0.498

Dataset Random walk—linear

Length (M) 51 11 141 161.01± 80.38

F1 0.977 ± 0.018 0.024± 0.024 0.269± 0.393 0.007± 0.034

Precision 0.999± 0.004 0.127± 0.092 0.284± 0.425 0.006± 0.030

Recall 0.956± 0.033 0.014± 0.015 0.266± 0.387 0.015± 0.104
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walk background. Detrending via differentiation of the logarithm was applied as a preprocessing step in the 
latter case, making the data series stationary and drastically increasing the state space density of the anomaly.

LOF relies solely on the local density, thus it only counts the low-density sets as outliers. In contrast, as dis-
cord detection method identifies anomalies based on the distances in the state space, it was able to detect linear 
anomaly on chaotic background, tent-map anomaly on log-map data series, and tachycardia on the simulated 
ECG data, but failed on the detection of the linear anomaly on random walk background. The state-space points 
belonging to the well-detected anomalies are truly farther from the points in the manifolds of the background 
dynamics (Fig. 1A-C). In contrast, after discrete-time derivation of logarithms, the points belonging to a linear 
anomaly are placed near the center of the background distribution (Fig. 1D), making them undetectable either 
for LOF and discord algorithms.

The detection performance of TOF was less affected by the relation between the expected and the actual 
length of the anomalies in the linear cases. The reason behind this is that each point of the linear segment is a 
unique state in itself, thus it always falls below the expected maximal anomaly length. In contrast, the tent map 
and tachycardic anomalies produce short, but stationary segments, which can be less effectively detected if they 
are longer than the preset expected length.

We can conclude that 1) TOF has reached better performance to detect anomalies in all the investigated 
cases, 2) there are special types of anomalies that can be detected only by TOF and can be considered unicorns 
but not outliers or discords.

TOF detects unicorns only.  To show that TOF enables detection of only unique events, additional simu-
lations were carried out, where two, instead of one, tent-map outlier segments were inserted into the logistic 
map simulations. We detected outliers by TOF and LOF and subsequently, ROC AUC values were analyzed as 
a function of the Inter-Event Interval (IEI, Fig. 4) of the outlier segments. LOF performed independent of IEI, 
but TOF’s performance showed strong IEI-dependence. The highest TOF ROC AUC values were found at small 
IEI-s and AUC was decreasing with higher IEI. Also, the variance of ROC AUC values was increasing with IEI. 
This result showed that the TOF algorithm can detect only unique events: if two outlier events are close enough 
to each other, they can be considered as one unique event together. In this case, TOF can detect it with higher 
precision, compared to LOF. However, if they are farther away than the time limit determined by the detection 
threshold, then the detection performance decreases rapidly.

The results also showed that anomalies can be found by TOF only if they are alone, a second appearance 
decreases the detection rate significantly.

Application examples on real‑world data series.  Detecting apnea event on ECG time series.  To dem-
onstrate that the TOF method can reveal unicorns in real-world data, we have chosen data series where the 
existence and the position of the unique event are already known.

We applied TOF to ECG measurements from the MIT-BIH Polysomnographic Database’s47,48 to detect an 
apnea event. Multichannel recordings were taken on 250 Hz sampling frequency, and the ECG and respiratory 
signal of the first recording was selected for further analysis ( n = 40,000 data points 1600 s.

While the respiratory signal clearly showed the apnea, there were no observable changes on the parallel ECG 
signal.

We applied time delay embedding with ETOF = 3 , ELOF = 7 and τ = 0.02 s according to the first zero crossing 
of the autocorrelation function (Fig. S9). TOF successfully detected apnea events in ECG time series; interestingly, 

Figure 4.   TOF detects unique events only. Detection performance measured by ROC AUC as a function of 
the minimum Inter-Event Interval (IEI) between two inserted tent-map outlier segments. TOF was able to 
distinguish outliers from the background very well when IEIs were below 300 steps, and the two events can be 
considered one. However, the detection performance of TOF decreased for higher IEIs. In contrast, LOF’s peak 
performance was lower, but independent of the IEI.
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Figure 5.   Detecting apnea with arousal on ECG. (A) ECG time series with unique events detected 
by TOF (orange dots, E = 3, τ = 0.02 s, k = 11,M = 5 s ), outliers detected by LOF (blue + signs, 
E = 7, τ = 0.02 s, k = 100 , threshold = 0.5% ) and the top discord (red x signs, M=5 s). The inset shows the 
more detailed pattern of detections: unique behavior mainly appears on the T waves. (B–D) Breathing air-flow 
time series parallel to the above ECG recording, colored according to the scores of the three anomaly methods. 
The anomaly starts with a period of irregular breathing at 340 s, followed by the apnea when breathing almost 
stops (350–370 s). After this anomalous period, arousal restores the normal breathing. (B) Airflow is colored 
according to the TOF score at each sample. Low values (darker colors) mark the anomaly corresponding to the 
period of apnea. (C) Air-flow time series with coloring corresponds to the LOF score at each sample. Higher 
LOF values mark the outliers. LOF finds irregular breathing preceding the apnea. (D) Airflow time series 
colored according to the matrix profile values by the discord. Discord detection algorithm finds the point of 
transition from irregular breathing to the apnea.



12

Vol:.(1234567890)

Scientific Reports |          (2022) 12:227  | https://doi.org/10.1038/s41598-021-03526-y

www.nature.com/scientificreports/

the unique behaviour was found mostly during T waves when the breathing activity was almost shut down (Fig. 5, 
k = 11 , M = 5 s ). In contrast, LOF was sensitive to the increased and irregular breathing before apnea ( k = 200 , 
threshold= 0.5% ), while the top discord ( M = 5 s ) were found at the transient between the irregular breathing 
and the apnea. This example shows that our new method could be useful for biomedical signal processing and 
sensor data analysis.

Detecting gravitational waves.  As a second example of real-world datasets with known unique events, we ana-
lyzed gravitational wave detector time series around the GW150914 merger event18 (Fig. 6). The LIGO Hanford 
detector’s signal (4096 Hz) was downloaded from the GWOSC database49. A 12 s long segment of strain data 
around the GW150914 merger event was selected for further analysis. As a preprocessing step, the signal was 
bandpass-filtered (50–300 Hz). Time delay embedding was carried out with embedding delay of 8 time-steps 
(1.953 ms) and embedding dimension of E = 6 and E = 11 for TOF and LOF respectively. The neighbor param-
eter was set to k = 12 , for TOF and k = 100 for LOF. The length of the event was set to M = 146.484ms for TOF 
and discord detection and correspondingly, the threshold to 0.5% for LOF (Fig. S10).

All three algorithms detected the merger event, albeit with some differences. LOF found the whole period, 
while TOF selectively detected the period when the chirp of the spiraling black holes was the loudest. Interest-
ingly, the top discord found the end of the event (Fig. 6B-D).

To investigate the performance of TOF on detecting noise bursts called blip in LIGO detector data series, we 
applied the algorithm on the Gravity Spy50 blip data series downloaded from the GWOSC database49 (Fig. S7). We 
determined the value of the optimal threshold on the training set ( N = 128 ), then measured precision, F 1 score, 
recall, and block-recall metrics on the test set ( N = 29 ). We set the threshold value by the maximum precision 
( M = 36 , Fig. S7A). TOF reached high precision (1), low F1 score, low recall and high block-recall (0.9) values 

Figure 6.   Detection of the GW150914 event on LIGO open data with TOF and LOF and discord. (A) Strain 
time series (black) from Hanford detector around GW150914 event (grey vertical line) with TOF (orange dots), 
LOF (blue plus) and discord (red x) detections. TOF score values (B), LOF scores (C) and matrix profile scores 
(D) are mapped to the time series (orange, blue and red colors respectively), the strongest colors show the 
detected event around 0 s. (E) The Q-transform of the event shows a rapidly increasing frequency bump in the 
power spectra right before the merger event (grey). The grey horizontal dashed lines show the lower (50 Hz) and 
upper (300 Hz) cutoff frequencies of the bandpass filter, which was applied on the time series as a preprocessing 
step before anomaly detection. (F) Filtered strain data at 0.1 s neighborhood around the event. TOF, LOF, and 
discord detection algorithms detected the merger event with different sensitivity. LOF detected more points 
of the event, while TOF found the period which has the highest power in the power spectra, and a discord 
was detected at the end of the event. ( ETOF = 6 , τTOF = 1.953 ms, kTOF = 12 , MTOF = 146.484 ms, w = 7 ; 
ELOF = 11 , τLOF = 1.953 ms, kLOF = 100 , threshold= 0.5 %, Mdiscord = 146.484ms).



13

Vol.:(0123456789)

Scientific Reports |          (2022) 12:227  | https://doi.org/10.1038/s41598-021-03526-y

www.nature.com/scientificreports/

(Fig. S7B) on the test set. The high precision shows that the detected anomaly is likely to be a real blip and the 
high block recall (hit rate) implies that TOF found blips in the majority of the sample time series.

London InterBank Offer Rate dataset.  Our final real-world example is the application of TOF, LOF, and discord 
detection algorithms on the London InterBank Offer Rate (LIBOR) dataset. In this case, we have no exact a 
priori knowledge about the appearance of unique events, but we assumed that unique states found by the TOF 
algorithm may have unique economic characteristics.

As a preprocessing step, discrete time derivative was calculated to eliminate global trends, then we applied 
TOF ( E = 3, τ = 1, k = 5,M = 30 month) and LOF ( E = 3, τ = 1, k = 30 , threshold = 18.86% ) on the deriva-
tive (Figs. S11-S12). TOF found the uprising period prior to the 2008 crisis and the slowly rising period from 
2012 onwards as outlier segments. LOF detected several points, but no informative pattern emerged from the 
detections (Fig. 7). Also, Discord detected a period between 1993 and 1999, with no obvious characteristic.

While in this case the ground-truth was not known, the two periods highlighted by TOF show specific pat-
terns of monotonous growth. Moreover, the fact that both of the two periods were detected by TOF shows that 
both dynamics are unique, therefore different from each other.

Discussion
In this paper we introduced a new concept of anomalous event called unicorn; unicorns are the unique states 
of the system, which were visited only once. A new anomaly concept can be valid only if a proper detection 
algorithm is provided: we have defined the Temporal Outlier Factor to quantify the uniqueness of a state. We 
demonstrated that TOF is a model-free, non-parametric, domain-independent anomaly detection tool, which 
can detect unicorns.

TOF measures the temporal dispersion of state-space neighbors for each point. If state-space neighbors are 
temporal neighbors as well, then the system has never returned to that state, therefore it is a unique event. ie. a 
unicorn.

The unicorns are not just outliers in the usual sense, they are conceptually different. As an example of their 
inherently different behavior, one can consider a simple linear data series: All of the points of this series are 
unique events; they are only visited once and the system never returned to either one of them. Whilst this 

Figure 7.   Analysis of LIBOR dataset. The detections were run on the temporal derivative of the LIBOR time 
series. (A) time-series with detections. (B) TOF score values. (C) LOF score values. (D) Matrix profile scores by 
the discord detection algorithm. TOF detected two rising periods: the first between 2005 and 2007 and a second, 
started in 2012 and lasts until now. While both periods exhibit unique dynamics, they differ from each other as 
well.
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property may seem counter-intuitive, it ensures that our algorithm finds unique events regardless of their other 
properties, such as amplitude or frequency. This example also shows that the occurrences of unique events are 
not necessarily rare: actually, all the points of a time series can be unique. This property clearly differs from other 
anomaly concepts: most of them assume that there is a normal background behavior that generates the majority 
of the measurements and outliers form only a small minority.

Keogh’s discord detection algorithm19 differs from our method in an important aspect: Keogh’s algorithm 
finds one, or other predefined number of anomalies on any dataset. Thus Keogh’s algorithm can not be used to 
distinguish, whether there are any anomalies on the data or not, it will always find at least one. This property 
makes it inappropriate in many real-world applications since usually, we do not know if there are any anomalies 
on the actual dataset or not. In contrast, our algorithm can return any number of anomalies, including zero.

Detection performance comparison of TOF, LOF, and two discord detection algorithms on different simu-
lated datasets highlighted the conceptual difference between the traditional outliers and the unique events as 
well. As our simulations showed, TOF with the same parameter settings was able to find both higher and lower 
density anomalies, based on the sole property that they were unique events. The algorithm has a very low false 
detection rate, but not all the outlier points were found or not all the points of the event were unique. As an 
example, QRS waves of ECG simulations do not appear to be different from normal waves, hence the algorithms 
did not find them.

Of course, our aim was not to compete with those specific algorithms that have been developed to detect 
sleep apnea events from ECG signal51. Most of the methods extract and classify specific features of the R-R inter-
val series called heart rate variability (HRV). It was shown, that sympathetic activation during apnea episodes 
leaves its mark on HRV52, its spectral components, sample entropy53 or correlation dimension54. Song et al.55 
used discriminative Markov-chain models to classify HRV signals and reached 97% precision for per-recording 
classification.

While ECG analysis mostly concentrates on the temporal relations of the identified wave components, here 
we apply the detection methods to the continuous ECG data. Previously, it was shown that apnea is associated 
with morphological changes of the P waves and the QRS complex in the ECG signal51,56,57.

Interestingly, TOF marked mainly the T waves of the heart cycle as anomalous points. T waves are signs 
of ventricular repolarization and are known to be largely variable, thus they are often omitted from the ECG 
analysis. This example showed that they can carry relevant information as well.

The already identified gravitational wave GW150914 event was used to demonstrate the ability of our method 
to find another type of anomaly without prior knowledge about it.

Clearly, specific model-based algorithms (such as matched filter methods58) or unmodelled algorithms that 
were originally used to recognize gravitational waves, such as coherent Wave Bursts, omicron-LALInference-
Bursts, and BayesWave are much more sensitive to the actual waveforms generated by the merger of black holes or 
neutron stars than our TOF method59. The unmodelled methods have only two basic assumptions: first, that the 
gravitational wave background (unlike ECG signal) is basically silent, thus detectors measure only Gaussian noise 
in the absence of an event. Thus, any increase in the observed wave-power needs to be detected and classified. 
Second, an increase in the coherent power between the far located detectors is the hallmark of candidate events of 
astrophysical origin. The detectors should observe similar waveforms with phase difference corresponding to the 
waves traveling with light-speed between them. In contrast, increased power in only one of the detectors should 
have a terrestrial origin and these are called glitches. After the unmodelled detection of candidate waveforms, 
more specific knowledge about the possible waveforms can be incorporated into the analysis pipeline, such as 
analyzing time evolution of the central frequency of the signal, or comparison of the waveform to the model 
database, containing simulated waveforms generated by merger events. Model-free methods can detect events 
with unpredicted waveforms and may help to find glitches. The presence of different types of glitches significantly 
increases the noise level and decreases the useful data length of detectors, thus limiting its sensitivity.

In contrast to apnea and gravitational wave detection, the nature of anomalies is much less known in the 
economical context. Most of these anomaly detection methods concentrate on fraud detection of transaction 
or network traffic records and utilize clustering techniques to distinguish normal and fraudulent behaviors60.

Whilst LOF showed no specific detection pattern, TOF detected two rising periods on the temporal derivative 
of the USD LIBOR dataset: one preceding the 2008 crisis and another one from 2012 onwards. Both detected 
periods showed unique dynamics: the large fluctuations are replaced by constant rising during these periods, 
the dynamics are ’frozen’. Note, that the rising speeds differ in the two periods. The period between 2005-2007 
can be considered unique in many ways; not only was there an upswing of the global market, but investigations 
revealed that several banks colluded in manipulation and rigging of LIBOR rates in what came to be known as 
the infamous LIBOR scandal61. Note, that this was not the only case when LIBOR was manipulated: During the 
economic breakdown in 2008 the Barclys Bank submitted artificially low rates to show healthier appearance62–64. 
As a consequence of these scandals, significant reorganization took place in controlling LIBOR calculation, 
starting from 2012.

To sum it up, gravitational waves of the merger black-holes on the filtered dataset formed a traditional outlier 
which was well detectable by all the TOF, the LOF, and the discord detection algorithms, while LIBOR exhibited 
longer periods of unique events only detectable by TOF. Apnea generated a mixed event on ECG; the period of 
irregular breathing formed outliers detectable by LOF, while the period of failed respiration generated a unique 
event detectable only by the TOF. Meanwhile, the top discord was found at the transitory period between the 
two states.

Comparing TOF, LOF, and discord detection algorithms proved that temporal scoring has advantageous 
properties and adds a new aspect to anomaly detection. One advantage of TOF can be experienced when it 
comes to threshold selection. Since the TOF score has time dimension, an actual threshold value means the 
maximal expected length of the event to be found. Also, on the flipside the neighborhood size k parameter sets 
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the minimal event length. Because of these properties, domain knowledge about possible event lengths renders 
threshold selection a simple task.

While TOF and LOF have similar computational complexity ( O(kn log(n)) ), the smaller embedding dimen-
sions and neighborhood sizes make TOF computations faster and less memory hungry. While the brute force 
discord detection algorithm has O(kn2 log n) complexity19, the running time of discord detection has been sig-
nificantly accelerated by the SAX approximation19 and latter the DRAG algorithm, which is essentially linear 
in the length of the time series65. However, our results may indicate that the SAX approximation has seriously 
limited the precision of Senin’s algorithm.

To measure the running time empirically, we applied TOF algorithm on random noise from 102 − 106 sam-
ple size, 15 instances each ( d = 3 , τ = 1 , k = 4 ). The runtime on the longest tested 106 points long dataset was 
15, 144± 0.351 secs (Fig. S4) on a laptop powered by Intel® CoreTM i5-8265U. The fitted exponent of the scaling 
was 1.3. Based on these results, we have estimated that if memory issues could be solved, running a unicorn 
search on the whole 3 months length of the LIGO O1 data downsampled to 4096Hz would take 124 days on a 
single CPU (8 threads). A search through one week of ECG data would take 3 hours. As calculations on the ECG 
data are much shorter than the recording length; online processing is feasible as well.

Time indices of k nearest neighbors have been previously utilized differently in nonlinear time series analysis 
to diagnose nonstationary time series24,33,66, measure intrinsic dimensionality of system’s attractors34–36, moni-
tor changes in dynamics37 and even for fault detection38. Rieke et al. 33,66 utilized very resembling statistics to 
TOF: the average absolute temporal distances of k nearest neighbors from the points. However, they analyzed 
the distribution of temporal distances to determine nonstationarity and did not interpret the resulting distance 
scores locally. Gao & Hu and Martinez-Rego et al.38 used recurrence times to monitor dynamical changes in 
time series locally, but these statistics are not specialized for detecting extremely rare unique events. TOF utilizes 
the temporal distance of k nearest neighbors at each point, thus providing a locally interpretable outlier score, 
which takes small values when the system visits an undiscovered territory of state-space for a short time period.

The minimal detectable event length might be the strongest limitation of the TOF method. We have shown 
that the TOF method has a lower bound on the detectable event length ( �min ), which depends on the number 
of neighbors (k) used in the TOF calculations. This means that TOF is not well suited to detect point-outliers, 
which are easily detectable by many traditional outlier detection methods.

Furthermore, the shorter the analyzed time series and the smaller k is used, the higher the chance that the 
background random or chaotic dynamics spontaneously produce a unique event. Smaller k results in higher 
fluctuations of the baseline TOF values, which makes the algorithm prone to produce false-positive detections.

A further limitation arises from the difficulty of finding optimal parameters for the time delay embedding: 
the time delay τ and the embedding dimension E. Figure S5 shows the sensitivity of the F1 score to the time 
delay embedding parameters and the relation between the used and the optimal parameter pairs. This post hoc 
evaluation, which can be done for simulations but not in a real-life data showed, that our general parameter 
setting ( E = 3 , τ = 1 ) used during the tests was suboptimal for the simulated ECG-tachycardia dataset. The 
optimal parameter settings ( E = 7 , τ = 6 ) would have resulted in 0.94 as the maximal F1 score instead of 0.83, 
shown in Table 2).

The model-free nature of these algorithms can be an advantage and a limitation at the same time. The specific 
detection algorithms, which are designed on purpose and use specifically a priori knowledge about the target 
pattern to be detected, can be much more effective than a model-free algorithm. Model-free methods are pre-
ferred when the nature of the anomaly is unknown. Consequently, detecting a unicorn tells us that the detected 
state of the system is unique and differs from all other observed states, but it is not often obvious in what sense; 
posthoc analysis or domain experts are needed to interpret the results.

Preprocessing can eliminate information from the data series, thus can filter out aspects considered uninter-
esting. For example, we have seen that a strong global trend on data can make all the points unique. By detrending 
the data, as done on random walk and LIBOR datasets, we defined that these points should not be considered 
unique solely based on this feature. Similarly, band-pass filtering of gravitational wave data defines that states 
should not be considered unique based on the out-of-frequency-range waveforms.

Future directions to develop TOF would be to form a model which is able to represent uncertainty over detec-
tions by creating temporal outlier probabilities just like Local Outlier Probabilities67 created from LOF. Moreover, 
an interesting possibility would be to make TOF applicable also on different classes of data, such as multi-channel 
data or point processes, like spike-trains, network traffic time-stamps or earthquake dates.
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