
1Scientific RepoRts | 5:10175 | DOi: 10.1038/srep10175

www.nature.com/scientificreports

The role of Hurst exponent on 
cold field electron emission from 
conducting materials: from electric 
field distribution to Fowler-
Nordheim plots
T. A. de Assis1,2

This work considers the effects of the Hurst exponent (H) on the local electric field distribution and 
the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission 
properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is 
represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 
0.1 ≤  H <  0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a 
scaling between the macroscopic current density (J M) and the characteristic kernel current density 
(JkC), J J[ ]M kC

H∼ β , with an H-dependent exponent 1Hβ > , has been found. This feature, which is less 
pronounced (but not absent) in the range where more smooth surfaces have been found 
( H0 5 0 9. .⩽ ⩽ ), is a consequence of the dependency between the area efficiency of emission of a 
LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field 
electron emission experiments. Considering the recent developments in orthodox field emission 
theory, we show that the exponent Hβ  must be considered when calculating the slope 
characterization parameter (SCP) and thus provides a relevant method of more precisely extracting 
the characteristic field enhancement factor from the slope of the FN plot.

The theory of cold field electron emission (CFE) is relevant for understanding the important techno-
logical aspects in the development of large-area electron emitter devices with apex radii of no less than 
a dozen nanometers1. This theory can be conveniently formulated using a free-electron model for the 
emitter and a Schottky-Nordheim barrier model for the tunneling barrier2–4. Large-area field emitters 
provide an effective scenario for complying with the requirement that electron field emission in metals 
occurs when a large local electric field (~ a few V/nm) induces electron tunneling through a potential 
barrier out of the corresponding surface into vacuum. Therefore, practical research on CFE involves 
the development of techniques to reduce the barrier through which the electrons must tunnel5,6. For 
example, an interesting phenomenon of electron emission at low macroscopic electric fields has been 
reported for many materials, such as amorphous diamond-like films[7. Diamond cold cathodes formed 
using chemical vapor deposition (CVD) for use in field emission displays have attracted considerable 
attention because of their low work function8,9. Moreover, the local field distributions over emitting sur-
faces have been explored, for example, using carbon-nanofiber (CN) films constructed of highly uniform 
nanofiber arrays; in that case, experimental evidence of Gaussian behavior of the distribution of the 
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spatially resolved field enhancement factor was obtained via scanning anode field emission microscopy 
(SAFEM)10. In addition, experimental results obtained using the same technique (measuring the constant 
macroscopic field emission current map) have revealed exponential decay in thin films of non-oriented 
carbon nanotubes (CNTs), which exhibit an irregular morphology on the corresponding surfaces11. 

Indeed, it is becoming increasingly clear that modified Fowler-Nordheim-type (FN-type) equations 
must be developed to address CFE from rough thin-film emitters (for example, films of CNTs and related 
materials)12. In such a case, upon the application of a voltage to the support tips, a high local electric 
field develops at the apex, inducing a field emission tunneling current13. In fact, no definitive treatment 
has yet emerged for CFE from conducting materials that accounts for roughness at small scales. In these 
circumstances, improving the Fowler-Nordheim-type equation to yield a satisfactory fit to the experi-
mental results is an important requirement for the development of field emitter devices with more precise 
specifications.

Only a relatively small number of studies have considered the role of the irregular morphology of 
the surface of a thin film on the local electric field distribution14,15 and the corresponding field elec-
tron emission properties of Large-Area Conducting Field Emitter Surfaces (LACFESs) in a genuine 
three-dimensional problem16,17. However, considering the morphologies of the conducting surfaces that 
are commonly experimentally investigated, a large number of problems exist in which such a considera-
tion is relevant18,19. Irregular morphological features that remain on the surface after the manufacturing 
process may act as field emitting tips in the presence of an external electric field. Indeed, a more detailed 
investigation of the surface preparation prior to the application of a high electric field leads to a consid-
erable decrease in the breakdown rate20.

Motived by the aforementioned studies, in this work, we present the first consideration of the role of 
the Hurst exponent H of an irregular LACFES in determining the related local electric field distribution 
and field electron emission properties using orthodox field emission theory. A LACFES is represented 
by a self-affine Weierstrass-Mandelbrot (WM) function in a given spatial direction such that all surfaces 
are assumed (i) to exhibit no roughness along any other spatial direction and (ii) to have the same global 
roughness (which is a measure of the fluctuations at large scales). The latter condition allows us to sys-
tematically evaluate the role of H (and the small scale fluctuations in the morphology of the LACFES) 
in determining the non-linearities that may appear in the corresponding Fowler-Nordheim (FN) plots.

The results indicate that for any H, the local electric field distribution over a LACFES exhibits two 
exponential regimes, implying a non-linear (power-law) relation between the macroscopic current den-
sity and the characteristic current density, if orthodox field electron emission is assumed. We show that 
this scaling is a consequence of the dependence between the area efficiency of emission of the LACFES 
and the macroscopic electric field, which is more pronounced for H0 1 0 5. < .⩽ . This result allows for 
the introduction of a new slope correction parameter in an FN-type equation to allow for the more 
precise extraction of the characteristic field enhancement factor (FEF) from the slope of the FN plot.

Morphology of a LACFES
Central to our approach is an expression that represents the height profile of the emitter along a line on 
the emitter surface (defined here as the x coordinate). The other coordinate parallel to the emitter surface 
is denoted by y, and the coordinate normal to the surface is denoted by z. To model this profile, we use 
the Weierstrass-Mandelbrot (WM) function21:
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where c is a constant related to the global roughness amplitude, H0 1< <  is the Hurst exponent param-
eter (also called the “local roughness exponent” ( lα ) in experimental thin-film science), K0 is the funda-
mental wavenumber, and nφ  is an arbitrary phase (in this work, we consider the value of 0 2nφ π< <  
to be randomly chosen). ξ is a parameter ( 1ξ > ) which is a measure of the distance between the fre-
quencies. This function can be used to model the emitter height profile as a superposition of a set of sine 
waves, with the wave amplitude decreasing as ξ increases.

Larger values of the Hurst exponent imply a smoother surface because the ratio of the logarithm of 
the local roughness (Eq. (4) below) to the logarithm of the scale length is larger (here, the scale length 
refers to the scale at which the statistical properties, such as height fluctuations, of an irregular surface 
are analyzed; i.e., the box size “r” as a measure of the local roughness is defined in Eq. (4)). For 

H0 5 1. < < , the behavior is called persistent, whereas for H0 0 5< < . , the behavior is called is anti-
persistent. Antipersistence indicates that the heights of various points on the surface are negatively cor-
related and that the correlations rapidly decay to zero. This scenario corresponds to a small ratio of the 
local roughness with respect to the scale. Finally, at H =  0.5, the heights of the LACFES are statistically 
random. If we use the one-dimensional correlation function xΩ( ), defined as
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where the overbars represent spatial averages, it is trivial to show that xΩ( ) does not depend on x. In 
fact, using Eqs. (1) and (2), 2 1H2 1Ω = ( − )− . Thus, the signal of Ω defines the type of correlations that 
appear in the WM function, in such that 0Ω > , 0Ω <  and 0Ω = , for H 0 5> . , H 0 5< .  and H =  0.5, 
respectively. The WM function is a combination of periodic functions that exhibits two major features: 
(i) it can be anisotropic, and (ii) it is self-affine with complexity at small scales. Thus, the consideration 
of such surfaces is motivated by the fact that real irregular surfaces are generally neither purely random 
nor purely periodic.

Now we use the notation h f xWM≡ ( ) to represents the height of the profile in the z direction with 
respect to the plane h x y 0( , ) = . The global roughness (W) provides a measure of the height variation 
in the emitter profile, taken across the emitter as a whole. This is defined as the root mean square of the 
front-surface height fluctuations and is given by

W h h[ ] 32 1 2
≡ ( − ) , ( )

/

where the averaging is performed over a length Lx that represents the lateral size of the emitter in the 
x direction. To help determine whether the WM function provides a realistic and useful description of 
self-affine one-dimensional profiles acquired from real emitter surfaces, we can analyze how the local 
roughness ω(r) scales with the length r, which is a useful measurement for experimental purposes. This 
is also defined as a root-mean-square height fluctuation, but the spatial average is limited to a scale of 
size r, with r <  Lx. More explicitly, the local roughness is given by

r h h[ ]
4

2 1 2
ω ( ) ≡ ( − ) ,

( )

/

where the angular brackets represent the configurational average obtained as the box (of length r) scans 
the entire irregular surface.

The function fWM(x) has no characteristic length (beyond the size of the system itself), in the sense 
that the level of detail of this function is self-similar under an affine scaling (in which the “x” axis is 
stretched by a factor of ξ and fWM(x) is modified by ξH, i.e., fWM(ξx)= ξHfWM(x)). Therefore, its statistical 
properties are identical at different scale lengths. As indicated by the analysis presented in Fig.  1, for 
small scale lengths, the local roughness scales as r r lω ( ) α~ , which is in contrast with large scale lengths, 
for which the local roughness coincides with the global W. The very good agreement between the slope 
αl (from log10[ω(r)] as a function of log10[r]) and the parameter H can be clearly observed. In the inset 
of Fig. 1, the surface that mimics the LACFES in the case of H =  0.5 is shown; this surface was computed 

Figure 1. Scale of the local roughness for the WM function with H [0 1 0 7]∈ . , . . The very good agreement 
between the slope (αl) of rlog [ ]10 ω ( )  as a function of rlog [ ]10  and the parameter H is remarkable. From top 
to bottom, the dashed lines correspond to slopes of 0 1 0 2 0 3 0 4 0 5lα = . , . , . , . , .  and 0.7. In the inset, a 
Large-Area Conducting Field Emitter Surface (LACFES) represented by a self-affine WM function (see 
Eq.(1)) with the parameter H =  0.5 and 0 5ξ = . e is shown, where “e” is Neper's number. It is evident that the 
conducting surface lies on a two-dimensional substrate with no roughness along the y direction.
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using N =  200 in the sum defined in Eq. (1). We stress that x is considered to be an integer number that 
represents a distance measured in terms of some basic unit distance u, as are y and z.

In fact, the typical Fowler-Nordheim-type theory of CFE was not developed at the atomic scale and 
thus does not apply to emitters that are sharp on that scale. To overcome this difficulty, we developed 
an algorithm to round off the sharpest projections and replace the real WM surface with an equipoten-
tial surface, Φ E (very similar to the previous one), that is calculated from the numerical solution of the 
Laplace equation using a finite-difference scheme (Liebmann method - see Supplementary Information). 
For practical applications, this approximation corresponds, for instance, to the condition in which good 
Spindt arrays22 are produced by slowly increasing the voltage such that the sharpest tips “burn off.” Our 
numerical solution has been shown to yield an FEF for ideal protuberances that is in very good agree-
ment with the results of previous analytical, finite-element and multigrid methods23–25.

In Fig. 2, several equipotential lines are shown that consider electric potentials for the LACFES (for 
the case of H =  0.5) and the far-away conducting anode (located at h ≈  16 μm from the average height 
of the LACFES) of Φ S =  0 V and Φ A =  500 V, respectively, corresponding to Dirichlet conditions. The 
equipotential surface, on which the local electric field distribution will be calculated, is shown in the 
inset of Fig. 2. In this work, we use u =  5 nm, which results in a global roughness of W≈ 75 nm for all 
LACFESs. Moreover, this methodology ensures that for small scales (though larger than the atomic scale, 
e.g., r =  20 nm), the local roughness is negligible, and for large scales (i.e., r >  500 nm, although still con-
siderably smaller than the lateral size of the system Lx), the local roughness scales with the same exponent 
H. The same procedure is adopted for any H that allows for the use of CFE theory.

Orthodox CFE Theory - Local emission current density of a particular lateral location on a 
LACFES. The recent developments in CFE theory can be viewed as a relevant approach for under-
standing the field emission properties of a rough LACFES. The local emission current density (LECD), 
JL, in the CFE regime can be written as a function of a convenient set of parameters, which includes the 
sum of all traveling states incident on the inside of the emitter surface considering all occupation and 
transmission probabilities. The general result takes the following form4:

J ZD 5L = , ( )

where Z is an effective incident current density and D is a transmission probability. In the case of high 
electric fields and low temperatures, the value of D at a specific forward energy level (often that for a 
Fermi-level electron moving normal to the emitter surface) is chosen, and Z is calculated as JL/D. CFE 
is an LECD regime in which most electrons escape via deep tunneling (i.e., tunneling well below the top 
of the barrier) from states close to the emitter Fermi level, and the Landau and Lifschitz approximation 
can be applied4. Then, using this approximation, Eq. (5) can be written as follows:

J Z P Gexp[ ] 6L F F F= − , ( )

Figure 2. Profile of a LACFES with H =  0.5 (shown in Fig. 1) and equipotential lines calculated numerically 
from the solution of the Laplace equation with appropriate Dirichlet conditions (Φ S =  0 V and Φ A =  500 V - 
see the text for more details). In the inset, a portion of the LACFES and the equipotential line defined by 
Φ E =  1 V, representing the approximation of the field emitter surface, are highlighted. The horizontal dashed 
(red) line indicates the average height of the roughness profile. The far-away conducting anode (not shown) 
is located at h 16μ≈ m from the average height of the LACFES (see the text for more details).
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where “F” is used to indicate parameters related to a barrier of zero-field height (ϕ). GF is the related 
barrier strength (also called the Gamow exponent or the JWKB (Jeffreys-Wentzel-Kramers-Brillouin) 
exponent) and is given by

G M z dz g M z dz2 7F e
1 2 1 2∫ ∫ϕ= ( ) ≡ ( ) . ( )
/ /

In Eq. (7), ϕ2 ≡ 2me/ħ2, where me is the electron mass and ħ is related to Planck's constant; M(z) specifies 
the form of the barrier, which is the difference between the total electron potential energy, U(z), and the 
total energy component, Ez, related to the motion of the electron in the z direction (perpendicular to 
the surface of the emitter in the case of a conducting emitter), M(z) ≡ U(z) −  Ez. Moreover, the integral 
in Eq. (7) is performed over the range of z for which M(z) >  0.

Considering metal emitters with appropriate dimensions, as previously discussed, the LECD JL(φ,F) 
is formally given by the following equations:

J F J F 8L CFE kφ λ φ( , ) = ( , ), ( )

J F a F b Fexp[ ] 9k F
1 2 3 2φ φ ν φ( , ) = − / , ( )− /

where JK(φ,F) is the kernel current density, which can be evaluated exactly for any chosen barrier form, 
vF, and choice of ϕ and F; ( = . × )− −a 1 541434 10 A eV V6 2  and b (= 6.830890 eV−3/2 V nm−1) are the 
first and second Fowler-Nordheim constants, respectively4.

In this work, we consider the Schottky-Nordheim (SN) barrier used in the Murphy-Good theory26 
and, more recently, in the Forbes approximation (orthodox emission theory)2. The SN barrier corre-
sponds to the lowering of the top of the barrier relative to that of an exactly triangular barrier such that 
M z eFz e z162

0φ πε( ) = − − /  (e is the positive elementary charge and ε0 is the electric constant). In 
this way, it is possible to define the scaled barrier parameter, f, which is given by

f F F e F4 10R 0
3 2πε φ= / = ( / ) . ( )

The reference field FR is the field that is required to lower the barrier height by an amount equal to 
the local work function φ. For any φ, it is possible to define a parameter η(φ) as follows:

b F eV9 8362 11R
3 2 1 2η φ φ φ( ) = / ≈ . ( / ) . ( )( / ) ( / )

If we compare Eqs. (6) and (8), the pre-factor PF used in the first equation is included in λCFE. One 
problem with attempting to obtain good predictions of the CFE current density is that exact values of 
λCFE (which depends on the material) are not well known. The current best guess is that λCFE lies in the 
range 0.005 <  λCFE  <  11. We compute the local current density that results in λCFE =  1 in Eq. (8) such 
that JL(φ,F) =  Jk(φ,F). In any case, the correction factor with the largest influence on JL is the barrier shape 
correction factor vF, which will also be considered in this work. Finally, we use an approximation such 
that each point on the LACFES represents a particular lateral location on the emitter surface.

Results and discussion
Local electric field distributions. Before discussing the results for the LECD, we analyze the behav-
ior of the local electric field intensity distribution over the LACFES, ρ(F). In Fig. 3(a), the behavior of 
ρ(F) is shown for a LACFES with H =  0.1 and for several values of the anode electric potential Φ A. The 
vertical black dashed line (gray dashed-dotted line) represents an electric field intensity of 2.5 V/nm (4 V/
nm - see Ref. 27), which corresponds to a typical value for field emission in pure metals with a local 
work function of approximately 3.5 eV (4.5 eV). The inset of this figure shows the behavior of the mean 
electric field F  over the LACFES, which is defined by

∑〈 〉 ≡ ∆ ∆ ,
( ),

,F
A

F x x1

12M i j
i j i j

as a function of Φ A for H [0 1 0 9]∈ . , . . Here, AM is the total “substrate footprint” area, Fi,j is the local 
electric field intensity at a particular location (i,j) on the LACFES, and x x ui j

2∆ ∆ =  corresponds to an 
area of unity, with x x Li j x∆ , ∆ 

. The results clearly suggest a linear dependence whose slope, as a 
non-linear function, depends on the H of the LACFES. It is interesting to observe the approximate col-
lapse of the F  behavior for 0.5   H   0.9. This allows us to more easily identify the primary differences 
between the electrical properties of a rough correlated (and random) LACFES (0.5   H   0.9) and a 
rough anti-correlated LACFES (0.1   H <  0.5).

As a measure of emitter sharpness, we compute the distribution of the macroscopic field enhancement 
factors (FEFs), F Fi j Mγ ≡ /, , that are typically applied in measurements using scanning anode field emis-
sion microscopy. A high FEF factor leads to a low turn-on voltage and a high emission current, which 
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are desirable for emitter applications. In these calculations, the field at the position of the average height 
of the LACFES (≈ 0.37 μm for a LACFES with any H - see Fig. 2 for H =  0.5), in the absence of protru-
sions, was considered to be the macroscopic electric field FM. Thus, the flat anode, which is placed at a 
height of hA (measured with respect to the substrate on which the film was grown, i.e., the plane 
h(x,y) =  0), is located at a distance of d h hA≡ −  from the cathode. The macroscopic electric field, FM, 
is given by

F
d 13M

A
=
Φ
.

( )

If Φ A is taken to be 500 V and d 16 mμ≈  (see Fig.  2), then the macroscopic electric field is FM ≈  
31 V/μm. In Fig. 3(b), the results for the distribution of γ, ρ(γ), are shown for H [0 1 0 9]∈ . , . . This meas-
urement can be regarded as a probability distribution because the number of field emitter locations per 
unit area on the LACFES can be written as dN =  ρ(γ )d γ , where dN is the number of locations with FEF  
γ  ∈ [ γ,  γ +  d γ ] per unit area. For a given value of H, the corresponding distributions ρ(γ ) were found 
to be the same for any Φ A, indicating that these results are not dependent on Φ A. This is the result that 
is physically expected because in classical electrostatics (in the case of a diode), the value of the field 
enhancement factor depends only on the electrode geometry and not on the applied electrostatic poten-
tial difference. However, it is a useful test to confirm that this expected physical result is reproduced in 
our numerical simulations. An interesting alternative to this behavior is to observe a collapse of the local 
electric field intensity distributions ρ(F), which is expected to occur if the variable F is replaced by a 
scaled variable F Fχ ≡ / . This phenomenon can be clearly observed in Fig.  3(c), which presents the 

Figure 3. (a) Local electric field intensity distribution, Fρ ( ), for a LACFES with H =  0.1. The vertical  
(black) dashed and (gray) dashed-dotted lines represent electric field intensities of 2.5 V/nm and 4 V/nm (see 
Ref. 27), which correspond to typical values for field emission in pure metals with local work functions of 
approximately 3.5 eV and 4.5 eV, respectively. The inset shows the behavior of the mean electric field F  (see 
Eq. (12)) as a function of the anode electric potential AΦ  for H =  0.1 (red circles), H =  0.2 (blue triangles), 
H =  0.3 (green squares), H =  0.4 (orange stars), H =  0.5 (black asterisks), H =  0.6 (magenta diamonds), 
H =  0.7 (gray pentagons) and H =  0.9 (dark yellow right triangles). (b) Local FEF distribution, ρ γ( ), for 
H [0 1 0 9]∈ . , . . For a LACFES with H0 1 0 5. < .⩽  (top panel), two pronounced exponentially decaying 
regimes, (I) and (II), can be clearly observed, and the dashed-dotted lines illustrate this behavior for H =  0.1. 
For a LACFES with H0 5 0 9. .⩽ ⩽  (bottom panel), it is evident that (I) and (II) correspond to slow and fast 
exponential decays, respectively, with the latter reflecting the low probability of finding high peaks on the 
corresponding LACFES. (c) Distributions of F Fχ ≡ /  for H =  0.1 for all AΦ  values considered in (a). The 
collapse of the curves is evident, indicating that the results for the ρ γ( ) distributions (for all H) do not 
depend on the anode electric potential AΦ .
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results for H =  0.1 and for all Φ A values shown in Fig. 3(a). This collapse was also verified for all H val-
ues considered in this work.

Interestingly, for all H, two exponential decaying regimes are apparent, labeled as (I) and (II), which 
correspond to expI

H
Iρ γ δ γ( ) (− )~  and expII

H
IIρ γ δ γ( ) (− )~ , respectively, where H

II
H
Iδ δ> , in gen-

eral. In particular, for H =  0.1, elog 0 343 0 001I
0 1 10δ × ( ) = ( . ± . ).  is identified for interval (I) and 

δ × ( ) = ( . ± . ). elog 0 543 0 001II
0 1 10  is found for interval (II) (the slopes of the dashed-dotted lines in 

Fig. 3(b), where “e” is Neper's number). In fact, H
II

H
Iδ δ δ∆ ≡ −  assumes the lowest value for H =  0.1 (see 

Table 1), suggesting that the area in which electron emission occurs is larger in the limit of large values 
of Φ A. This result, which is a consequence of the first (and second) slower decay of ρ(γ), suggests a 
greater probability of finding emitting sites on LACFESs (primarily for H =  0.1) with larger FEFs. We 
also compute the characteristic FEF, F FC C Mγ ≡ / , where { }F max FC i j≡ , . For H =  0.1, it is found that 
γ C ≈  11.86. The same behavior of the two exponential regimes is observed for all H.

Table  1 summarizes the values of the parameters extracted from the ρ(γ) distributions presented 
in Fig.  3(b) and the γ C values for all values of H explored in this work. Interestingly, these features 
capture important experimental results for thin-film emitters with irregular surfaces, in which ρ(γ) has 
been shown to exhibit an exponential dependence on the FEF28. However, we note that the FEF values 
reported in that work were typically between 100 and 300 (i.e., approximately one order of magnitude 
larger than those found in this work). This effect can be understood based on the following consider-
ations: (i) the differences between the global roughness of the experimental surfaces used in the previ-
ous experiment and ours and (ii) the one-dimensional field variation across the emitter surface in our 
approach (see Supplementary Information). In the cited work28, the global roughness on a length scale 
of 20 μm was found to be approximately W ≈  4μm, whereas in our work, the considered LACFESs have 
a roughness of W ≈  4nm (i.e.,~ 50 times smaller) on the same length scale for all H (see Fig. 1).

In Supplementary Information, we present strong evidence to corroborate speculation (ii) by simu-
lating a genuine three-dimensional surface using a possible experimental setup modeled as an irregular 
emitting surface iteratively generated by a fractional Brownian motion (FBM) algorithm with H =  0.1. 
In this case, again, an exponentially decaying regime in ρ(γ) is observed. This finding indicates that our 
LACFES model captures the main features of the experimental results, namely, the local electric field 
distribution and the field emission properties (in the orthodox theory) of irregular conducting surfaces. 
This discussion suggests the importance of correctly measuring the H exponents and the global rough-
nesses of the rough surfaces used to experimentally represent LACFESs (such as randomly oriented 
carbon thin-film emitters) in terms of, for instance, the local roughness scale (see Eq. (4)) extracted using 
a probe microscopy technique such as electrostatic force microscopy (EFM). In such a case, a careful 
 analysis must be performed to account for the distortions in the image that may occur due to the finite 
size of the EFM tip29, which may result in overestimation of the Hurst exponent (or the local roughness).

Area efficiency of emission and Fowler-Nordheim plots. Previously, the occurrence of a rela-
tively slow decay (interval (I)) was observed in the ρ(γ) distribution for arbitrary H, as shown in Table 1. 
Remarkably, this tendency appears to be characterized by approximately the same parameter H

Iδ  for any 
H in this interval. This interesting result suggests that the area in which electron emission occurs in a 
LACFES may be higher compared with the ideal metal surface morphologies that are often modeled to 
explain experimental results. If a metal has no appreciable irregularities on the nanometer scale, this 
quantity corresponds to the Area Efficiency of Emission (AEE), αM, which is typically less than 10−5 (see 
Ref. 4). This indicates that for a LACFES with a regular array of single emitters, it is expected that the 
effective emission area (the emitting area at the tips) will be considerably less than the apparent “macro-
scopic” geometrical area (or “substrate footprint” area AM) of the physical emitter that is observed 

H H
Iδ  elog10× ( ) H

IIδ  elog10× ( ) Cγ

0.1 0.343 ±  0.001 0.543 ±  0.001 ≈ 11.86

0.2 0.311 ±  0.001 0.685 ±  0.006 ≈ 10.35

0.3 0.315 ±  0.002 0.744 ±  0.006 ≈ 9.34

0.4 0.333 ±  0.004 0.93 ±  0.02 ≈ 8.95

0.5 0.321 ±  0.005 1.09 ±  0.01 ≈ 8.51

0.6 0.317 ±  0.004 1.15 ±  0.01 ≈ 8.44

0.7 0.319 ±  0.002 1.24 ±  0.02 ≈ 8.12

0.9 0.311 ±  0.005 1.3 ±  0.1 ≈ 7.72

Table 1.  Results of the extraction of parameters from the ρ γ( ) distribution shown in Fig. 3(b) for 
H0 1 0 9. .⩽ ⩽ . For H0 5 0 9. .⩽ ⩽ , a dominant exponential decay can be observed in the ρ γ( ) distribution, 

characterized by H
Iδ  (see the text for more details).
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visually. Based on these arguments, if the emission area is, in fact, constant, it is convenient to define αM 
as follows (here, αM  =  λM, using Forbes' notation (see Ref. 4), because we set λCFE =  1; λM is the macro-
scopic “pre-exponential correction factor” or, alternatively, “formal emission efficiency”):

J
J 14M

M

kC
α ≡ ,

( )

where the characteristic kernel current density, J kC (which is equal to the characteristic local current 
density, JC, using Forbes' notation, by the same arguments presented above), and the macroscopic current 
density, J M, for a LACFES are given by

J max J F{ } 15kC k φ≡ ( , ) , ( )

where J Fk φ( , ) is given by Eq. (9) and, because CFEλ  is approximated as equal to 1,

J i A
J z A

A 16M M
p k p p

M
= / =

∑ ( )∆
.

( )

Here, “i” is the total emission current, and the sum is taken over the “substrate footprint” area of the 
emitter, AM. Furthermore, the values of J zk p( ) are given by Eq. (9). These assumptions are equivalent to 
assuming that the empirical CFE (i, AΦ ) characteristics should obey30

i C Nexp 17A A= (Φ ) (− /Φ ), ( )κ

where C, N and κ are constants. If the electron field emission is orthodox, considering the SN barrier, 
and the emission area is constant, then κ is expected to be 2 6κ η φ= − ( )/ , where η φ( ) is given by  
Eq. (11) (see Ref. 30). In Eq. (17), we assume that the emission quantities and the measured quantities 
i A( , Φ ) are identical.

Note that the linear dependence between JM and JkC for a rough LACFES is not clear in our case 
because the LACFES exhibits irregularities on small scales (with the apex radii of the emitters greater 
than dozens of nanometers). This question, for the geometries used in this work, has not been previously 
addressed; therefore, we must address it. Studies that consider smooth surfaces generally follow the 
implicit assumption that αM is only weakly field dependent, meaning that for practical purposes, one can 
take it to be nearly constant. However, we show that this assumption does not hold, particularly for 
LACFESs with high local roughness ( H0 1 0 5. < .⩽ ). As we will discuss, the consequences of the scale 
relation between JM and JkC can provide relevant information concerning the effects of the morphologies 
of rough experimental LACFESs on the FN plot slopes if the electron field emission is orthodox.

We emphasize that we use an approximation in which each point on the cathode surface represents 
a particular lateral location on the emitter surface, as previously discussed. Moreover, in our calculations, 
space is filled with a discretized simple cubic lattice with a unit volume of x y z∆ × ∆ × ∆ . Thus, Eq. 
(16) can be written as

J
J z x y

N x N y1 1 18
M

p L p p p

x y( )
≈

∑ ( )∆ ∆

( − )∆ × − ∆
,

( )

where Nx and Ny represent the numbers of points defining the LACFESs in the x and y directions, respec-
tively. In Eq.(18), x y x y x yN N1 1 x y

∆ ∆ = ... = ∆ ∆ = ∆ ∆ .
For LACFESs (for all H), we follow the definition of Eq. (15) by identifying “C” with the apexes of 

the more prominent emission sites. In Eq. (16), if we use the SN barrier of unreduced height φ and the 
Forbes approximation2, then f f f f1 1 6 lnFν ν= ( ) ≈ − + ( / ) ( ), with f given by Eq. (10). We assume 
that for the LACFESs considered in this work, the local work function is approximately constant over 
the surface, and we adopt ϕ =  3.5 eV. Therefore, the parameter given by Eq. (11) is considered to be 

5 26η ≈ . .
Thus, by introducing the Forbes approximation for the SN barrier correction function fν ( ), the expo-

nential factor in Eq. (9) can be expanded as follows:

f b F e F
F

b Fexp[ ] exp[ ]
19R

3 2
6

3 2ν φ φ− ( ) / ≈











− / .
( )

η
η

/
− /

/

Figure. 4 shows the behavior of Jlog M10( ) as a function of Jlog kC10( ) for H0 1 0 9. .⩽ ⩽  and an anode 
potential in the range kV kV3 5 10A. < Φ < . These results suggest a scaling relation between J M and J kC 
as follows:
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J J[ ] 1 20M kC H
H β∼ ( > ), ( )β

where the exponent Hβ  depends on the H of the LACFES. According to Eq. 14, this result can be under-
stood as the result of a power-law dependence between Mα  (equal to Mλ  in our case) and J kC, i.e., 

c JM kC
c

1
2α = ( ) , where, c 01 >  and c 02 >  (c M1 α=  and c2 =  0 if the emission area is constant) are 

constants in an appropriate range of the macroscopic electric fields. Indeed, if the surface of a LACFES 
exhibits fluctuations on small scales, then for a low electric potential of the anode (or, alternatively, a 
macroscopic electric field, F M), only some points on the surface (those with larger FEF values) are emit-
ters. If F M increases (decreases) by a factor 1∆ >  (0 1< ∆ < ), J kC also increases (decreases) by a 
factor b F[exp ]C M

2 6 3 2 1 1
φ γ∆ (− /( ))

η− / / ( /∆− )
. Moreover, some new locations on the surface will become 

emitters in addition to those that were previously emitters. Thus, Mα  increases (decreases) by a factor 
c b F[exp ]c

C M
2 6

2
3 2 1 1

2 φ γ∆ (− /( ))
η( − / ) / ( /∆− )

. This is a very reasonable physical explanation because of the 
relatively slow decay which may be observed in the first and second regions of the local electric field 
distributions (for instance, corresponding to H =  0.1), which indicates that there are large regions on a 
LACFES where the differences in FEF values are relatively small. Thus, a small variation in the macro-
scopic electric field can result in the appearance of a non-linear relation between Mα  and J kC. If the 
fluctuations of the FEFs on the LACFES are sufficiently large, then the emission locations with smaller 
FEF values may not be able to become field emitter, even at high experimental electric fields. The role of 
the exponent Hβ  ( c1 2≡ + ) is reflected in this behavior.

It is evident that the linear dependence between J M and J kC (as a consequence of the lack of depend-
ence between Mα  and J kC) is more approximate for H0 5 0 9. .⩽ ⩽ , where the height fluctuations of the 
emitting surface are correlated (whereas they are random for H =  0.5). Outside this range, the presence 
of anticorrelations and, consequently, more small-scale irregularities of the LACFES contribute more 
strongly to the increase in the CFE area. The numerical calculations corroborate this assumption, and 
the corresponding values of Hβ  can be determined from the slopes of the curves shown in Fig. 4. The 
results indicate that for H0 1 0 5. < .⩽  in particular, Hβ  is significantly different from unity. The slopes 
for H0 1 0 9. .⩽ ⩽  are presented in Table  2. This observation indicates that for rough LACFESs, small 
Hurst exponents play an important role in causing the rapid increase (relative to that observed in the 
case of smoother LACFESs) in the “effective area” across the surface of the field emitter as the macro-
scopic electric field F M (or, alternatively, AΦ ) increases. This may be a signature of an interesting 

Figure 4. Macroscopic current density, JM (see Eq. (16)), as a function of the characteristic kernel current 
density, JkC (see Eq. (15)), for H0 1 0 9. .⩽ ⩽  and for an anode potential in the range kV kV3 5 10A. < Φ < . 
The slopes (values of Hβ  - see Eq. (20)) for H =  0.1 and H =  0.9 were found to be 1.27 (dashed line) and 1.11 
(solid line), respectively, with an error of 10−3 in the linear regression fit (see Table 2 for other values of Hβ ). 
The inset shows a snapshot of a portion of a LACFES with H =  0.1, in which the non-emitting locations 
(black) are distinguished from the emitting locations (white). The substantial increase in the effective area 
(see the text for more details) as the anode electric potential changes from kV6AΦ =  to kV10AΦ =  can be 
clearly observed.
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scale-invariant relation between J M and J kC (as the result of a power-law dependence between Mα  and 
J kC), which can motivate experimental tests with real morphologies that follow orthodox field emission.

The inset of Fig. 4 shows a representation of a portion of a LACFES with H =  0.1, which illustrates 
the contrast between the non-emitting and emitting locations. To define these features, we apply a crite-
rion such that a given location on the LACFES is an emitter if J F J 10k M

3φ( , )/ > − . The substantial 
increase in the effective area that occurs as the electric potential of the anode changes from kV6AΦ =  
to kV10AΦ =  is evident. This result is also a consequence of the two exponential regimes with small 
values of δ∆  (see Table  1) in the distribution ρ γ( ), which is more pronounced for H0 1 0 5. < .⩽ , 
thereby increasing the probability of finding emitter locations with high FEF values.

Now we address our primary purpose, namely, elucidating the effect of the Hurst exponent of an 
LACFES on the slope of the FN plot, which is typically used to extract relevant features of field emitter 
surfaces. Experimentally, the data obtained from field emission measurements can be described as ortho-
dox when the characteristic field enhancement factor, Cγ , is independent of voltage. Indeed, in our 
model, this requirement is satisfied. Moreover, we assume that the emission is controlled solely by the 
tunneling barrier at the emitter/vacuum interface. Thus, our results can be tested experimentally under 
these conditions. Figure 5 shows the behavior of J Fln { }M M

2( /( ) )  vs. F1 M/  (or a J M-F M-type FN plot) 
for a LACFES with H0 1 0 9. .⩽ ⩽ . The FN plot appears to exhibit approximately linear behavior in the 

H S H V nmFM ( )( / ) C
Tγ Hβ C

Hγ β σ,

0.1 − 4.60 ±  0.05 9.72 ±  0.05 1.271 ±  0.001 11.79 ±  0.05

0.2 − 4.88 ±  0.03 9.16 ±  0.03 1.185 ±  0.001 10.32 ±  0.03

0.3 − 5.32 ±  0.02 8.40 ±  0.01 1.174 ±  0.001 9.39 ±  0.01

0.4 − 5.45 ±  0.02 8.20 ±  0.01 1.132 ±  0.001 8.87 ±  0.01

0.5 − 5.60 ±  0.01 7.98 ±  0.01 1.127 ±  0.001 8.59 ±  0.01

0.6 − 5.87 ±  0.02 7.61 ±  0.02 1.145 ±  0.001 8.33 ±  0.02

0.7 − 5.92 ±  0.02 7.55 ±  0.02 1.124 ±  0.001 8.10 ±  0.02

0.9 − 6.06 ±  0.01 7.37 ±  0.01 1.113 ±  0.001 7.82 ±  0.01

Table 2.  Results for H0 1 0 9. .⩽ ⩽ . The slopes of the J M-FM-type FN plots shown in Fig. 5, the 
characteristic FEF values C

Tγ , the Hβ  values extracted from the results presented in Fig. 4 and C
Hγβ σ, . C

Tγ  and 
C

Hγβ σ,  were calculated using Eqs. (21) and (23) while considering the elementary FN equation and relevant 
corrections, including the SN barrier and the morphology of the LACFES, respectively.

Figure 5. J M-FM-type FN plot for LACFESs with . .⩽ ⩽H0 1 0 9. The corresponding slopes for H =  0.1 and 
H 0 9= .  (dashed lines) are shown (see Table 2 for other values of S HF M

( ) corresponding to . .⩽ ⩽H0 1 0 9). 
The work function of the LACFES is considered to be approximately constant and equal to φ = 3.5 eV. The 
inset shows the derivatives of the J M-FM-type FN plots for LACFESs with Hurst exponents of H =  0.1 and 
H =  0.9.
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considered range of AΦ , although in reality, the derivative is not constant, as observed in the inset of 
Fig. 5 for H =  0.1 and H =  0.9. An approximately constant value of the derivative is observed in the limit 
of low macroscopic electric fields, in which only the main peaks are emitters, followed by an increase in 
the corresponding absolute value in the limit of high values of F M.

The slope of the J M-F M-type FN plot (extracted from a linear least-squares fit to the numerical (or 
experimental) data), which depends on H, is denoted by S HF M

( ). In fact, the higher is the characteristic 
FEF value, the lower in magnitude the slope of the FN plot will be. This trend is evident in Fig. 5 and 
reflects the effect of the different Hurst exponents of the LACFESs (for the same global roughness 
(W≈ 75 nm) − ( . ) > ( . ) > ( . ) > ( . ))S S S S0 5 0 3 0 2 0 1F F F FM M M M

, thereby corroborating the inequality in 
the corresponding Cγ  values shown in Table 1. The values of S HF M

( ) are presented in Table 2.
First, we use the elementary slope characterization parameter (SCP), which is denoted by C

Tγ  (see Ref. 
4), to simulate the common practice of experimentalists in using the triangular-barrier (or elementary) 
FN equation (Eqs. (8) and (9)) for 1CFE Fλ ν= = ). In this case, the SCP is given by

b S H 21C
T

F
3 2

M
γ φ≡ − / ( ). ( )

/

From the slopes presented in Fig. 5 (see Table 2) and using Eq. (21), we calculate 7 37C
Tγ = .  (error 

of 5% compared with the Cγ  value reported in Table 1) for H =  0.9 and 9 72C
Tγ = .  (error of ≈ 20% com-

pared with the Cγ  value reported in Table 1) for H =  0.1. This latter error, which is related to the fact that 
there is a greater probability of finding field emitter locations on the LACFES with larger FEF values than 
is naively expected (as is also the case for H values in the interval H0 1 0 4. < < . ), represents an under-
estimation of the real characteristic FEF value that is of practical significance. Table 2 summarizes the 
values of C

Tγ  calculated for H0 1 0 9. .⩽ ⩽ . To further explain this result, let us return to the form of the 
scaling between J M and J kC. From Eqs. (9) and (20), it follows that

J F
J H F

F
F

b

F
ln{ }

ln[ ]
1

1

22
M M

M M

M
M

H F

C M

2
2

2 1
3 2

H C

H

β ν φ

γ
( /( ) ) = Γ
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( − )
/

,

from which it is possible to define the corrected FEF:

b
S H 23

C
H

F

3 2
H

M

γ
β σ φ

≡ −



 ( )






.

( )

β σ,
/

In Eq. (23), σ is a generalized slope correction factor related to the SN barrier and Hβ  includes the 
effect of the geometry of the LACFES on the estimation of the characteristic FEF. Formally, the first term 
in Eq. (22) does not define the intercept in the FN plot. This occurs only if a triangular barrier, which 
corresponds to an unrealistic physical situation, is considered and if the area of emission of the rough 
LACFES is independent of voltage. This is not the case in our system, where the effects that can produce 
non-linear features in the J M-F M-type FN plot are the dependence between the area of emission of the 
rough LACFES and the anode voltage as well as the effect of the SN barrier. According to this argument, 
the macroscopic current density is a function of H such that J J HM M= ( ). The process of deriving 
emission-area estimates from FN plots has previously been investigated by Forbes et al.31 using 
free-electron theory and considering three different tunneling-barrier models. However, the current 
work can motivate the investigation of an additional effect, namely, that of the irregular morphology of 
the LACFES. In this way, it is possible to define, based on the function Γ in Eq. (22), an effective Area 
Efficiency of Emission, effα , that clearly depends on both the macroscopic electric field, F M, and the 
derivative J H F

F
ln[ ]

1
M M

M

2∂( ( ) / )
∂( / )

. This quantity, effα , can be extracted from the term FJ H F
F M

ln[ ]
1

2 1M M

M

H
2( )Γ , β∂( ( ) / )

∂( / )
( − )  

in a given range of values of the variable F1 M/ , again because most emitters melt for values of F1 M/  less 
than some reference value32 (and this effect may be more pronounced in the case of a rough LACFES).

Obviously, because Hβ  is close to unity (F 1M
2 1H →β( − ) ), eff Mα α≈ . Interestingly, this feature also 

appears, more approximately, in the case of H0 5 0 9. .⩽ ⩽ , in which the height fluctuations on the 
LACFES are statistically correlated (or random). σ typically takes a mid-operating-range value of 0 955. 4,32. 
If we apply this assumption (which is certainly a good approximation for our system), consider the val-
ues of the FN plot slopes obtained from Fig. 5 (see Table 2) and use Eq. (23) to estimate the corrected 
characteristic FEF value, C

Hγ β σ, , then we obtain the values presented in Table 2. Impressive agreement is 
clearly evident between C

Hγ β σ,  and the values presented in Table 1 that were extracted from the distribu-
tion ρ γ( ), which is not accessible to field emission experimentalists. Thus, the correction Hβ  must be 
applied (primarily for LACFESs with large amounts of individual field emitter tips) to more precisely 
extract the characteristic FEF of LACFESs from FN plots. The effect discussed above can, of course, 
alternatively be described as being caused by the variation in the effective emission area with voltage (or, 
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equivalently, with the macroscopic field), and our conclusion is that this variation must be taken into 
account.

Alternatively, when empirical CFE (i-V) characteristics are used (where “V” is the measured volt-
age)30, our results suggest replacing 2 6κ η φ= − ( )/  (the result from Eq. (17), considering the assump-
tions that lead to Eqs. (14) and (15) as well as the expansion (19)) with H 2 6 Hκ η φ β( ) = ( − ( )/ )  for a 
rough LACFES (for constant Hβ ), if the range of the macroscopic electric field yields an “adequately 
linear” FN plot. This suggests that an investigation of the real irregular morphology of the LACFES, 
through the precise measurement of the Hurst exponent (and the global roughness), is an important 
method of gaining a more complete understanding of the relevant measurements to be extracted from 
the FN plot to evaluate the electron emission capability of a material with an irregular morphology. 
Moreover, a systematic and careful investigation of the scaling between J M and J kC, which are both 
experimentally accessible measurements, is of fundamental importance for evaluating the effects of the 
rough geometry of the LACFES on the corresponding CFE properties. Situations in which Mα  scales as 
a more complicated function of J kC cannot be disregarded, and an investigation of these features in 
potential CFE materials is certainly desirable. Finally, our model can also be applied to investigate the 
inclusion of work function distributions over rough LACFESs, which has not been considered here. The 
investigation of this effect will be a subject of future work.

In summary, we investigated the role of the Hurst exponents of rough LACFESs on the corresponding 
electric field distributions and the field emission quantities of technological interest, particularly the 
characteristic FEF value, Cγ . Our results, which were obtained by considering the orthodox CFE and 
LACFESs with a global roughness on the order of a few tens of nanometers, demonstrated that correlated 
(or random) LACFES morphologies ( H0 5 0 9. .⩽ ⩽ ) exhibit a more weak dependence between the area 
of emission and the macroscopic electric field, whereas for H0 1 0 5. < .⩽ , a stronger dependence is 
evident that contributes to the formation of non-linear features in the FN plot. This is a consequence of 
small-scale fluctuations in the morphology of the field emitters, even when all LACFESs have the same 
global roughness. For any H, the local electric field distribution over the LACFES exhibits two exponen-
tial regimes and a power-law scaling between the macroscopic current density (J M) and the characteris-
tic kernel current density (J kC) for the typical experimental range of macroscopic electric fields. Our 
results indicate a scaling of the form ∼ βJ J[ ]M kC

H, where the exponent 1Hβ >  depends on H. Moreover, 
for orthodox field emission from a LACFES, this scale must be considered when calculating the slope 
characterization parameter (in addition to the generalized slope correction from the SN barrier) that is 
used by experimentalists to extract the characteristic FEF. Failing to include this parameter in the SCP 
(using FN plot data) may result, particularly for LACFESs with H0 1 0 5. < .⩽ , in a significant underes-
timation of the characteristic FEF, which is a very useful measure of the emitter sharpness.
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