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1  | INTRODUC TION

Grassland rodents, including voles, zokors, pikas, marmots, rabbits, 
and ground squirrels, play an important role in affecting ecosystem 
structure and function (Davidson et al., 2010; Jiang, Wang, Li, Shi, 
& Yang, 2017; Olofsson, Tømmervik, & Callaghan, 2012; Zhang, 
Zhong, & Fan, 2003). At moderate densities, rodents aid in maintain-
ing diversity in the grassland, because their extensive excavations 
promote soil nutrient cycling and seed dispersal (Davidson et al., 
2010); besides, they are a food resource to other animals in higher 
trophic levels (Delibesmateos, Smith, Slobodchikoff, & Swenson, 
2011; Zhang, Zhang, & Liu, 2003). Additionally, their abandoned 
burrows provide shelter to native birds and lizards (Delibesmateos 

et al., 2011; Zhang, Zhang, & Liu, 2003). However, if their density ex-
ceeds the capacity of the ecosystem, rodents become a pest (Zhang, 
Zhong, & Fan, 2003). During outbreaks, rodents can destroy the 
grassland by foraging on aboveground parts, by cutting plant roots 
and burying plants under the soil they dig out (Li, Liu, Frelich, & Sun, 
2011; Zhang, Zhong, & Fan, 2003).

Rodent damage to grasslands poses a serious threat to the sus-
tainable development of pasture areas in China. Therefore, previous 
studies in the grasslands of China have focused on the methods to 
control rodent population and damage (Su et al., 2013; Zhang, Zhong, 
& Fan, 2003). Since the end of 20th century, the rodent-infested area 
in the grassland of China showed a continuous annual growth of 10%–
20% (Zhang, Zhong, & Fan, 2003), for an estimated at 40-50 × 106 
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Abstract
Rodent damage is a serious threat to sustainable management of grassland. The ef-
fects of nitrogen (N) deposition and grassland management on rodent damage have 
been scarcely studied. Here, we reported the effects of 2 years of N addition and 
mowing on burrow density and damage area of Citellus dauricus in a semiarid steppe 
in Inner Mongolia. N addition significantly aggravated, while mowing alleviated ro-
dent damage in the grassland under study. Burrow density and damage area increased 
2.8-fold and 4.7-fold, in N addition plots compared to the ambient N addition treat-
ment, respectively. Conversely, mowing decreased burrow density and damage area 
by 75.9% and 14.5%, respectively, compared to no mowing plots. Observed changes 
in rodent damage were mainly due to variations in plant community cover, height, and 
aboveground net primary productivity. Our findings demonstrate that N addition and 
mowing can affect the rodent density and activity in grassland, suggesting that the 
effects of a changing atmospheric composition and land use on rodent damage must 
be considered in order to achieve better grassland management.
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tons of annual biomass loss caused by rodents (Zhang, Zhong, & 
Fan, 2003). According to the National Grassland Monitoring Report 
of China in 2016, the rodent-infested area occupies 28.07 × 106 ha, 
covering 7.1% of the total pasture area (Liu, 2017).

Previous studies have documented that rodent damage can be 
affected by factors influencing food sources and rodent predators. 
Indeed, most previous studies of rodent damage in grasslands have 
focused on the effects of grazing, climate warming, and changes in 
annual precipitation regime. For instance, rodent survival rates are 
reportedly higher under heavy grazed management (Harris, 2010; Li 
et al., 2016; Zhang, Pech, et al., 2003; Zhou, Zhao, Tang, Gu, & Zhou, 
2005). Climate warming has aggravated rodent damage through pro-
moting clonal growth of Potentilla anserina in an alpine meadow (Li et al., 
2011). Abnormal annual precipitation could inhibit rodent outbreaks in 
the grassland (Zhang, Pech, et al., 2003). However, responses of rodent 
damage to changes in other environmental factors or land management 
practices, such as N deposition and mowing, have been rarely studied.

Increasing atmospheric N deposition is one of the most distur-
bance factors related to global change. The N deposition rate has 
increased 2–3 times since the industrial revolution, and is predicted 
to continuously increase during this century (Liu, Zhang, et al., 2013; 
Penuelas et al., 2013). Given that N is one of the main factors limiting 
plant growth (Lebauer & Treseder, 2008; Liu et al., 2017), N depo-
sition can stimulate plant growth (Chang et al., 2016; Xia & Wan, 
2008), which in turn affects animal communities (Cebrian, Kielland, 
& Finstad, 2008; Wimp, Murphy, Finke, Huberty, & Denno, 2010). 
Previous studies have reported that N addition can alter life history 
strategies (Parsons, Hellgren, Jorgensen, Leslie, & Benton, 2005) and 
food selection of the rodents (Yi, Li, Zhang, Zhang, & Wang, 2016), 
but the effect of nitrogen addition on rodent density or on the ex-
tent of damage they cause has not been documented.

Mowing has become a typical grassland management strategy in pas-
ture areas (Cao, Li, & Yu, 2009; Han, Zhang, Wang, Jiang, & Xia, 2011; Jia, 
Shao, & Wei, 2012). As an important human activity, mowing can affect 
microclimate (Wan, Luo, & Wallace, 2002); it can alter plant functional 
traits (Liu et al., 2017) and increase species richness (Yang et al., 2012), 
with subsequently affecting the quality and quantity of food resources. 
Additionally, mowing can expose rodents to their predators, thereby 
reducing rodent damage (White, Horskins, & Wilson, 1998). Mowing 
reduced the population density of Microtus, but it increased that of 
Peromyscus maniculatus, in a tallgrass prairie in North America (Lemen & 
Clausen, 1984). It also increased the population size of Sigmodon hispidus 
and Microtus ochrogaster, but did not affect populations of Peromyscus 
leucopus and P. maniculatus, in an old grassland in eastern Kansas (Slade 
& Crain, 2006). Thus, the impacts of mowing on rodent damage remain 
controversial. Furthermore, N addition and mowing have interactive ef-
fects on plant growth (Liu et al., 2017), which may affect rodent damage. 
However, to the best of our knowledge, interactive effects of N addition 
and mowing on rodent damage have not been reported.

Therefore, we conducted an in situ experiment involving N addi-
tion and mowing in a semiarid steppe in Duolun County in the Xilingol 
grassland, and investigated burrow density and percentage of rodent 
damage area, and plant community parameters including cover, height, 

aboveground net primary productivity, Shannon–Wiener diversity 
index, Simpson dominance index, and evenness in the experiment. 
We hypothesized that N addition would aggravate, whereas mowing 
would alleviate rodent damage, since N addition increases, while mow-
ing decreases aboveground biomass, which is the food source used by 
rodents. Furthermore, with the interactive effect between N addition 
and mowing on plant growth in mind (Liu et al., 2017), we hypothe-
sized that N and mowing would interactively affect rodent damage.

2  | MATERIAL S AND METHODS

2.1 | Description of the study site

This study was performed in a temperate steppe in an ecotone of ag-
riculture–animal husbandry in Duolun County (42°02′N, 116°17′E, 
1,324 m a.s.l.), in the Xilingol grassland, Inner Mongolia, China. The 
Xilingol grassland is an important pasture area and ecotone between 
agriculture and animal husbandry in China. It covers 2.0 × 105 km2 
(Han, Owens, Wu, & Huang, 2009) and supports a human population of 
2.1 × 105 (Shiyomi et al., 2011). It is estimated that 64% of the Xilingol 
grassland is degraded; thus, forage quality has drastically decreased 
in the region (Han et al., 2009). Rodent damage is one of the most im-
portant factors underlying degradation in the Xilingol grassland. The 
rodent damage area amounts to 2–3 × 104 km2, causing severe eco-
nomic losses (Zhang, Yang, Wang, Cai, & Qiao, 2014). The N deposi-
tion rate has reached 9.24 kg N ha−1 year−1 and steadily increases at a 
rate of 0.42 kg N ha−1 year−1 in this area (Liu, Zhang, et al., 2013; Lü & 
Tian, 2007). Mowing is the only management approach for the local 
herdsmen to store forage in the nongrowing season (Cao et al., 2009). 
However, the effects of N addition and/or mowing on rodent damage 
in this area have not yet been investigated. The mean annual tempera-
ture in the steppe is approximately 2.1°C, with temperature ranging 
from −17.5°C in January to 18.9°C in July. Mean annual precipitation is 
approximately 383 mm, 90% of which falls in the growing reason from 
May to October. The soil is chestnut-type (Calcic Kastanozems). The 
plant community is dominated by perennial bunchgrasses, including 
Stipa krylovii and Agropyron cristattum, and subshrubs such as Artemisia 
frigida. Perennial rhizome grasses, including Aneurotepidimu chinense 
and Carex duriuscula subsp. rigescens, and perennial forbs, including 
Heteropappus altaicus, Melissitus ruthenica, and Potentilla tanacetifolia, 
are also abundant in the steppe. The steppe was fenced in 2001 to ex-
clude large herbivores including horses, cattle, sheep, and other live-
stocks, while the feeding activity of small herbivores, including rabbits, 
voles, and ground squirrels, continues unchecked.

The dominant rodent species in the steppe are Brandt’s vole 
(Lasiopodomys brandtii), the Chinese striped hamster (Cricetulus 
barabensis), and the ground squirrel (Citellus dauricus). To iden-
tify the species composition in the experimental site, rodents in a 
150 m × 150 m area around the study site, although not included 
in it, were trapped with mousetraps at the beginning of the exper-
iment (Figure 1a).They were all identified according to the Chinese 
Zoological Illustration (Zhang & Ye, 1988) and Pest Management 
(Guo et al., 2005), and then released. Only ground squirrel 
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(C. dauricus) was trapped during the experimental period. C. dauri-
cus are the common rodents in the steppe. They are morphologi-
cally and behaviorally similar to rats. Their diets are the green parts 
of most plant species in the steppe, including A. frigida, S. krylovii, 
and M. ruthenica (Liu, Wang, Wang, Han, et al., 2013). Ground squir-
rels live underneath the ground, in burrow systems, and push loos-
ened soil to the surface, thus destroying the grassland by burying 
the plants (Liu, Wang, Wang, Han, et al., 2013). Their population 
density was estimated to have reached 6.5 heads per ha in the Inner 
Mongolian typical grassland (Liu, Wang, Wang, Zhang, et al., 2013).

2.2 | Experimental design

The experiment was laid out in a factorial design with two factors, 
each with two levels: N addition (ambient N deposition and ambi-
ent plus 10 g N m−2 year−1) and mowing (no mowing, mowing). Thus, 
there were four treatments, including (1) control (C, ambient N depo-
sition and no mowing), (2) mowing (M), (3) N addition (N, ambient 
plus 10 g N m−2 year−1), and (4) combined mowing with N addition 
(MN). In the N addition plots, N was added as NH4NO3 at a rate of 
10 g N m−2 year−1, once a year in early June, since 2013. Mowing 
treatment clipped and removed aboveground biomass at the height 
of 5 cm, once a year in early September, since 2012. Each treatment 
was replicated five times, with each plot being 4 × 4 m2.

2.3 | Soil temperature and moisture

Soil temperature at the depth of 10 cm was measured three times 
a month, with a thermocouple probe (Li-8100-201, Li-Cor Inc., 
Lincoln, NE, USA) in 2014. Soil temperature in each plot was meas-
ured at three random points in each measurement. Soil moisture 
at a depth of 10 cm was measured four times a month, with port-
able time domain reflectometer equipment (TDR200; Soil Moisture 
Equipment Corp., Santa Barbara, CA, USA). As in soil temperature 
measurement, soil moisture was probed randomly at three points in 
each plot. Neither soil temperature nor moisture was affected by N 
addition, mowing, or their interaction (Table 1, Figure 2).

2.4 | Ground squirrel burrow density and 
damage area percentage

Burrow density in the steppe remained at about 20 ha−1 from 2010 
to 2013; however, it increased to 375 ± 190 ha−1 in 2014, ranging 
from 60 ha−1 to 1,500 ha−1 (observed by Liu and Ma). Nonetheless, 

no burrow was found before 2014 within the experimental site 
(Observed by Liu and Ma). Burrow density and damage area percent-
age were evaluated in 2014 following the methods used in a previ-
ous study in a Tibetan alpine meadow (Li et al., 2011). The number 
of the burrow entrances (Figure 1b) was counted in late July, when 
burrow number peaks. The loosened soil-buried area in each plot 
was divided into many rectangles and triangles. The total area of all 
the rectangles and triangles was added together and then divided 
by the total plot area (16 m2) to calculate damage area percentage.

2.5 | Plant community survey

All community parameters were monitored at peak plant biomass in 
early August 2014. One 1 × 1 m2 quadrat was established at each plot 
in 2005, and a 1 × 1 m2 steel frame with 10 × 10 cm2 grid squares was 
installed above the canopy of each quadrat to facilitate cover estima-
tion. Species cover for each species in all the grids was visually esti-
mated, and community cover was calculated by the sum of all species 
covers. The number of individuals of each species in the quadrat was 
counted as the density at the species level, and the densities of all spe-
cies in the quadrat were added together as the community plant den-
sity. Species richness was recorded as the number of plant species in 
the quadrats. Plant height of each species was randomly measured on 

F IGURE  1 Photographs of rodent and 
mousetrap (a); entrance to a burrow (b) in 
the experimental site

TABLE  1 Effects of mowing (M), N addition (N), and their 
interaction on soil temperature, soil moisture, plant community 
cover, density, species richness, community height, ANPP, 
Shannon–Wiener index, dominance, evenness, burrow density, and 
damage area, as analyzed by two-way ANOVA ^, p < 0.1; *, p < 0.05; 
**, p < 0.001

M N M * N

Soil temperature 1.831 1.486 0.427

Soil moisture 0.473 1.065 1.257

Community cover 2.737 5.407* 1.682

Density 4.915* 0.108 2.876

Species richness 0.031 0.031 0.763

Community height 4.102^ 7.053* 1.243

ANPP 4.708* 2.482 0.166

Shannon–Wiener index 0.076 1.906 5.958*

Dominance 0.043 0.043 0.681

Evenness 0.014 2.283 2.283

Burrow density 40.590*** 36.860*** 6.882*

Damage area 19.537*** 21.760*** 6.215*



3922  |     LIU et al.

three stems in the quadrat and averaged. The community height was 
calculated following a previous report (Liu, Mu, Niklas, Li, & Sun, 2012).

After estimations of cover, density, species richness, and height 
were completed, aboveground living biomass of each species within 
the quadrat was clipped and oven-dried to constant weight at 65°C. 
Total dry biomass for each plot was calculated as the aboveground 
net primary productivity (ANPP). Shannon–Wiener diversity index, 
Simpson dominance index and evenness of every plot were calcu-
lated based on biomass data of plant community in each quadrat.

2.6 | Data analysis

Effects of mowing and N addition on soil microclimate (tempera-
ture, moisture), plant community (community cover, plant density, 
species richness, community height, ANPP, Shannon–Wiener diver-
sity index, Simpson dominance index, and evenness), and rodent 
damage (burrow density and damage area percentage) were ana-
lyzed with two-way ANOVAs. Post hoc LSD tests were employed to 
examine differences among the four treatments. Linear regression 
was used to test the relationships between rodent damage param-
eters and plant community and soil microclimate. All analyses were 
conducted with SPSS package 16.0 (SPSS Inc., Chicago, IL, USA).

3  | RESULTS

3.1 | Ground squirrel damage

Nitrogen addition significantly enhanced burrow density by 2.8-
fold (p < .05, Figure 3a), while mowing significantly decreased it by 

75.9% (relative difference, Table 1, Figure 3a). Additionally, we ob-
served significant interactive effects of N addition and mowing on 
burrow density and damage area percentage. N addition increased 
burrow density by 0.73 m−2 in the nonmown plots (post hoc, p < .05, 
Figure 3a) but enhanced it by only 0.29 m−2 in the mown plots 
(post hoc, p < .05, Figure 3a). Mowing decreased burrow density by 
0.31 m−2 in the plots without N addition (post hoc, p < .05, Figure 3a), 
but decreased it by 0.75 m−2 in the nitrogen addition plots (post hoc, 
p < .05, Figure 3a).

Damage area increased 4.7 times by N addition (p < .05, 
Figure 3b), whereas it decreased by only 14.5% due to mowing (ab-
solute difference, Table 1, Figure 3b). Furthermore, significant inter-
actions were found between N addition and mowing on damage area 
percentage (Table 1). N addition enhanced the damage area percent-
age by 23.4% in the nonmown plots (absolute difference, post hoc, 
p < .05, Figure 3b), but only increased it by 7.1% in the mown plots 
(post hoc, p < .05, Figure 3b). On the other hand, mowing reduced 
the damage area percentage by 6.3% in the ambient N deposition 
plots (absolute difference, post hoc, p < .05, Figure 3b) and de-
creased it by 22.6% in the N addition plots (absolute difference, post 
hoc, p < .05, Figure 3b).

3.2 | Plant community

Nitrogen addition significantly elevated community cover by 10.4% 
(absolute difference, Table 1, Figure 4a). In contrast, mowing did 
not alter community cover (Table 1, Figure 4a), although it signifi-
cantly reduced plant density by 31.5% (Table 1, Figure 4b). On the 
other hand, species richness was not altered by N addition, mowing, 

F IGURE  2 Soil temperature (a, Soil T) and moisture (b, Soil M) under the different treatments. C: control, N: N addition, M: mowing, NM: 
N addition + mowing

F IGURE  3 Burrow density (a) and 
damage area percentage (b) under the 
different treatments. C, control; N, N 
addition; M: mowing, NM: N addition + 
mowing
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or their combination (Table 1, Figure 4c). Community height was 
significantly elevated (4.6 cm, p < .05) by N addition, but margin-
ally reduced (3.6 cm, .05 < p < .1) by mowing (Table 1, Figure 4d). 
Community height was significantly higher under the nitrogen addi-
tion treatment (20.1 cm) than that under the control (13.7 cm), mow-
ing (12.1 cm), or combination (14.7 cm) treatments (post hoc, p < .05, 
Figure 4d). Mowing significantly reduced ANPP by 21.7% (Table 1, 
Figure 4e). No other significant effects of N addition, mowing, or 
their interaction were found on any of the aforementioned commu-
nity parameters (Table 1).

The Shannon–Wiener diversity index, the Simpson dominance 
index, and evenness were not affected by N addition or mowing 
(Table 1, Figure 4f–h). However, a significant interactive effect by ni-
trogen addition and mowing on the Shannon–Wiener diversity index 
was detected (Table 1). N addition significantly reduced the diver-
sity index by 0.35 in the mown plots, but not in the nonmown plots 
(Figure 4f).

3.3 | Relations between ground squirrel damage, 
soil microclimate, and plant community parameters

Burrow density was positively and linearly correlated with community 
cover (R2 = .442, p = .001, Figure 5a), community height (R2 = .756, 
p < .001, Figure 5b), and ANPP (R2 = .208, p = .043, Figure 5c). 
Damage area percentage significantly increased with increasing com-
munity cover (R2 = .440, p = .001, Figure 5d) and community height 
(R2 = .714, p < .001, Figure 5e); additionally, it marginally increased 
with increasing ANPP (R2 = .182, p = .060, Figure 5f).

4  | DISCUSSION

Burrow density reached 0.34 m−2 (i.e., 3,400 ha−1, Figure 3a) in the 
study site in 2014, a substantially higher value than that reported 
in previous studies (Liu, Wang, Wang, Han, et al., 2013; Liu, Wang, 

F IGURE  4 Plant community 
cover (a), density (b), species richness 
(c), community height (d), ANPP (e), 
Shannon–Wiener index (f), dominance 
(g), and evenness (h) under the different 
treatments. C, control; N, N addition, M, 
mowing; NM: nitrogen addition + mowing
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Wang, Zhang, et al., 2013; Zhang, Zhong, & Fan, 2003). Thus, we may 
conclude that the steppe suffered serious rodent damage. There 
may be two reasons for the higher density of C. dauricus observed 
in the study. First, the steppe is dominated by A. frigida, which oc-
cupied 30%–50% of biomass in the community (Yang et al., 2011), 
and happens to be the main diet for C. dauricus (Guo et al., 2005; 
Liu, Wang, Wang, Zhang, et al., 2013). Second, the study site is ad-
jacent to a cropping area cultivated with potatoes, which provides 
abundant food for the rodents. Additionally, previous studies have 
reported that C. dauricus is a common rodent species in the steppe, 
but is less destructive than other rodent species, such as Brandt’s 
vole (Lasiopodomys brandtii), the Chinese striped hamster (Cricetulus 
Barabensis), and the Mongolian gerbils (Meriones unguiculatus) (Liu, 
Wang, Wang, Han, et al., 2013; Liu, Wang, Wang, Zhang, et al., 2013; 
Zhang, Zhong, & Fan, 2003). Thus, C. dauricus is not considered as 
the dominant rodent pest in the Inner Mongolian grassland (Harris, 
2010; Zhang, Zhong, & Fan, 2003). Nevertheless, our results sug-
gested that C. dauricus can cause drastic disturbance in the grass-
land, and therefore, the damage induced by this species should be 
considered in the ecotone of agriculture–animal husbandry.

Multiple previous studies suggested that the abundance of her-
bivores increased with N addition (Bowdish & Stiling, 1998; Wimp 
et al., 2010); however, those results mainly concerned the effects 
of N addition on the abundance of insects. Our study showed that 
N addition increased both, burrow density and damage area. These 
observations support our hypothesis and confirmed that outbreaks 
of small mammals may result from N addition, suggesting that N 
deposition-induced rodent damage must be considered in the fu-
ture. There may be at least three potential causes for the outbreak 
of C. dauricus in the present study. First, N addition stimulated 
plant growth, thereby increasing the food resources for herbivores 
(Nijssen, Wallisdevries, & Siepel, 2017; Ritchie, 2000). In this aspect, 
although N addition did not significantly increase ANPP in the pres-
ent study, ANPP showed an increasing trend (Figure 4e). Second, a 

taller plant community and a higher provided increased opportunity 
for the rodents to hide and escape from predators, mainly night owls 
and hawks (Andrey, Humbert, Pernollet, & Arlettaz, 2014; Woodcock 
& Pywell, 2009). Third, as we did not record data on feeding behav-
ior by C. dauricus, we cannot exclude effects of N addition on food 
quality and intake selectivity by the rodents, as has been reported in 
a previous study (Yi et al., 2016).

Our study showed that mowing reduced both burrow density 
and damage percentage of C. dauricus, which further supports our 
hypothesis. These results are consistent with previous studies by 
Lemen and Clausen (1984), and by Edge, Wolff, and Carey (1995); 
however, the phenomenon disagrees with results observed by Jacob 
(2003), and by Slade and Crain (2006). In contrast to the positive 
effects of N addition, mowing reduced the ANPP (Figure 4e), con-
sequently reducing the food supply, which in turn resulted in the 
reduction in rodent population density. Moreover, mowing may 
also decrease the standing litter height and alter the microclimate, 
which in turn would alter the plant growth strategy and decrease 
plant height (Klimesova, Latzel, de Bello, & van Groenendael, 2008; 
Liu et al., 2017). Actually, plant community height in the mown plots 
was marginally lower than that in the nonmown plots (Figure 4d), 
which we attributed to changes in growth strategy, considering 
the unchanged microclimate in our study. A shorter plant com-
munity height increases the risk of exposure to predators (Andrey 
et al., 2014; Ritchie, 2000; Woodcock & Pywell, 2009); therefore, 
rodents may choose taller plant communities to dig their burrows. 
The results indicate that mowing may be an effective method for 
controlling rodent damage in grasslands.

In addition, our observation that N addition-induced outbreak of 
rodent damage was alleviated by mowing in the steppe supports our 
hypothesis about the interaction between N addition and mowing 
on rodent damage. The reason for this may be attributed the interac-
tive effect between N addition and mowing on plant growth, which 
has been reported in a previous study (Liu et al., 2017). Actually, the 

F IGURE  5 Correlation between 
burrow density and community cover 
(a), community height (b), and ANPP 
(c); correlation between damage area 
percentage and community cover (d), 
community height (e), and ANPP (f). Data 
points in each scatter diagram represent 
the values in experimental plot. Data of 
burrow density was lg-transformed in the 
figure
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plant community was much shorter in the nitrogen addition plots 
than in plots where no N was added (Figure 4d). Given that the ef-
fect of N addition on rodent damage was largely attributed to the in-
crease in plant community height, mowing should partially suppress 
the effect of N addition on rodent damage, as, in fact, was recorded.

5  | CONCLUSION

Our results showed that both N addition and mowing significantly 
altered rodent damage caused by the variation caused in plant com-
munity parameters. As rodents are the dominant pest in the north-
ern grasslands of China, variation in rodent damage (e.g., burrow 
density and damage area) may result in changes in plant community 
structure and soil texture and structure, thereby affecting grassland 
productivity. Our study suggests that mowing can alleviate rodent 
damage and indicates that the impact of the changing atmospheric 
composition on rodent damage can be controlled by proper land-use 
management in the semiarid grassland.
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