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Abstract: ZW800-1, a representative zwitterionic near-infrared (NIR) fluorophore, can minimize
background tissue uptake owing to its balanced surface charges, and therefore, is widely used for
improved NIR fluorescence imaging. As ZW800-1 has no tumor targetability, tumor imaging is highly
dependent on the ability of the molecules conjugated to the ZW800-1. To enable tumor targeting
using ZW800-1 without additional conjugation, we developed a tumor-targetable and renal-clearable
ZW800-1 analog (ZW800-AM) based on the structural modification of ZW800-1. Specifically, an
amine group on the center linker of the ZW800-1 indocyanine backbone was modified by replacing
phenoxypropionic acid with tyramine linkage on the meso-chlorine atom. This modification improved
the tumor targeting ability, which is known as the structure-inherent targeting strategy. More
importantly, ZW800-AM not only showed sufficient tumor accumulation without nonspecific uptake
but also produced a photothermal effect, killing tumor cells under 808 nm NIR laser irradiation. In
addition, ZW800-AM exhibited rapid renal elimination from the body within 4 h of injection, similar
to ZW800-1. Overall, the discovery of ZW800-AM as a bifunctional phototherapeutic agent may
provide an ideal alternative for tumor-targeted imaging and phototherapy.

Keywords: photothermal therapy; near-infrared fluorescence imaging; tumor targeting; zwitterionic
fluorophores; ZW800-1

1. Introduction

The development of functional near-infrared (NIR) fluorophores with both target-
specific imaging and cancer therapy capabilities has become of paramount importance for
practical applications in NIR light-mediated photothermal cancer treatment [1–3]. Pho-
tothermal therapy (PTT), which is based on the principle of light-to-heat conversion, is a
local and noninvasive cancer treatment approach by hyperthermia after administration of
photosensitizers, leading to cancer cell death [4]. Among cyanine-based photosensitizers,
the most well-known and the only clinically approved NIR fluorophore is indocyanine
green (ICG) [5,6]. However, ICG has limitations in target-specific in vivo imaging owing
to its poor bioavailability (e.g., solubility and stability), high liver uptake, and lack of
functional groups for chemical conjugation with targeting molecules [7–9]. Previously,
Choi et al. developed a zwitterionic NIR fluorophore, ZW800-1, with a balanced net surface
charge and good water solubility, resulting in minimal background tissue uptake and rapid
renal excretion [9–11]. In addition, the carboxylated form of ZW800-1 can further conjugate
with various molecules for target-specific imaging [12–19]. Despite the significant improve-
ments in ZW800-1 properties compared to those of other conjugatable NIR fluorophores
(e.g., IRDye800CW and Cy5.5), the fundamental problem of low targeting efficiency is still
unsolved because the targetability of ligands could be altered after conjugation [19].
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Alternatively, several types of heptamethine cyanine fluorophores, such as IR-780,
IR-783, and IR-808 (also called MHI-148), based on a structure-inherent targeting strat-
egy without additional conjugation with targeting ligands have been extensively used
for tumor-targeted imaging [20–22]. However, because these NIR fluorophores are rela-
tively hydrophobic (logD values of 6.55, 3.63, and 4.48 at pH 7.4, respectively) compared
with ZW800-1 (−3.35), they present cytotoxic effects originating from their nonspecific
tissue/organ uptake and delayed excretion in the body [23]. To overcome these limi-
tations, the development of optimal NIR fluorophores with improved physicochemical
properties—tumor-targeting specificity, high water solubility, excellent optical properties,
good biocompatibility, and rapid renal elimination from the body—is highly required.

Recently, we reported a tumor-targetable zwitterionic NIR fluorophore ZW800-Cl,
as an intermediate of the ZW800-1 structure, used for tumor imaging and photothermal
cancer therapy [24]. Although the meso-chlorine atom in the cyclohexenyl ring of ZW800-Cl
played a key role in the formation of covalent albumin adducts, which are trapped in a
tumor, ZW800-Cl showed nonspecific uptake in major organs such as lungs, liver, and
spleen following 4 h of injection. In this study, we developed a tumor-targetable and
renal-clearable zwitterionic NIR fluorophore, ZW800-AM, as an aminated ZW800-1 analog,
in which the original center linker of the ZW800-1 skeleton is substituted with an amine-
appended linker, improving tumor targetability to enable further application in effective
PTT. ZW800-AM not only achieved preferential tumor accumulation without nonspecific
tissue/organ uptake but also produced an excellent photothermal effect under NIR laser
irradiation. To the best of our knowledge, this is the first report on a zwitterionic NIR
fluorophore (ZW800-AM) that can realize both tumor-targeted imaging and effective PTT.

2. Materials and Methods
2.1. Synthesis of Zwitterionic NIR Fluorophores

Solvents and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) as
reagent grade and used without further purification. The ZW800-1 and ZW800-AM hep-
tamethine cyanine fluorophores were prepared as described previously [9,10,25]. ZW800-
AM was synthesized as follows: a mixture of sulfonated indolium salt (0.15 g, 0.28 mmol),
Vilsmeier−Haack reagent (0.05 g, 0.14 mmol), and anhydrous sodium acetate (0.04 g,
0.42 mmol) in anhydrous ethanol (5 mL) was refluxed for 6 h. The reaction mixture was
cooled to ambient temperature and then filtered, washed with ethanol and methanol, and
obtained as a dark green solid (ZW800-Cl; 0.1 g, 90%). Before introducing a tyramine
linkage on the meso-chlorine atom, tert-butyloxycarbonyl (Boc)-protected tyramine was
prepared by adding triethylamine (0.23 g, 2.28 mmol) and Boc anhydride (0.5 g, 2.29 mmol)
into tyramine solution (0.21 g, 1.53 mmol) in dimethylformamide (DMF; 5 mL). The reaction
mixture was stirred at ambient temperature for 2 h. To the above solution, under nitrogen
atmosphere, sodium hydride (0.04 g, 1.6 mmol) was added, and the mixture was stirred
at ambient temperature for 1 h. Subsequently, ZW800-Cl (0.1 g, 0.12 mmol) was added
to the above solution and the mixture was stirred at room temperature for 17 h. For the
Boc deprotection, a solution of trifluoroacetic acid (TFA) and water (5 mL, 50/50 v/v%)
was mixed with the above solution and stirred at room temperature for additional 2 h.
The crude mixture was crystallized with ethyl acetate, collected, and dried in a vacuum
chamber. The final product was purified using a preparative high-performance liquid
chromatography (HPLC) system (Waters, Milford, MA, USA). The molecular weight of
the ZW800-AM was identified using an ultra-performance liquid chromatography (UPLC,
Waters) system combined with micrOTOF-Q II (Bruker, Ettlingen, Germany).

2.2. Optical and Physicochemical Property Analyses

All optical measurements were performed in phosphate-buffered saline (PBS) at
pH 7.4. The absorption spectra of ZW800-1 and ZW800-AM were recorded using a fiber
optic UV-Vis-NIR (200–1025 nm) spectrophotometer (Ocean Optics, Dunedin, FL, USA).
The molar extinction coefficient (ε) was determined based on the Beer−Lambert equation.
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ICG (Φ = 13% in DMSO) was used as a calibration standard to measure the fluorescence
quantum yields of ZW800-1 and ZW800-AM under the conditions of matched absorbance
at 770 nm [9,10,25]. The fluorescence spectra of ZW800-1 and ZW800-AM were measured
by a SPARK® 10M microplate reader (Tecan, Männedorf, Switzerland) at the 700 nm
excitation in the wavelength range of 750–900 nm. In silico predictions of the partition
coefficient (logD at pH 7.4) and the topological polar surface area (TPSA) for ZW800-1
and ZW800-AM were calculated using Marvin and JChem calculator plugins (ChemAxon,
Budapest, Hungary).

2.3. In Vitro Cell Binding and NIR Fluorescence Microscopy

Human large-cell lung carcinoma cell line NCI-H460 and mouse embryonic fibroblast
cell line NIH/3T3 were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Cells were cultured in Roswell Park Memorial Institute (RPMI)
1640 or Dulbecco’s Modified Eagle Medium (DMEM) media (Gibco BRL, Paisley, UK)
supplemented with 10% fetal bovine serum (Gibco BRL) and an antibiotic–antimycotic
solution (Welgene, Daegu, Korea) and placed in a 5% CO2 incubator at 37 ◦C. When a
cell line reached about 50% confluence, the cells were washed with PBS. Subsequently,
ZW800-AM was added to each well in the range of 2–20 µM concentrations. The cells
were placed in an incubator at 37 ◦C for 24 h and then washed with PBS. NIR fluorescence
imaging was performed using a Nikon Eclipse Ti-U inverted microscope system (Nikon,
Seoul, Korea).

2.4. In Vitro Cytotoxicity Assay

Cell toxicity and proliferation were evaluated using an alamarBlueTM (Thermo Sci-
entific, Waltham, MA, USA) assay. NCI-H460 cells were seeded onto 96-well plates
(1 × 104 cells per well). To determine the cytotoxicity as a function of the concentra-
tion, the cancer cells were treated with ZW800-AM (2, 10, 25, and 50 µM) for 1 h and
cultured for 24 h after treatment. At each assay time point, the incubation cell medium
was replaced with 100 µL of fresh medium, and 10 µL of the alamarBlue solution was
directly added to each 100 µL well. Subsequently, the plates were placed in a 5% CO2
incubator at 37 ◦C for 4 h. Finally, the plates were analyzed using a microplate reader
(SPARK® 10M, Tecan) to determine the intensities of the absorbance at 570 nm and the
fluorescence emission at 590 nm. Cell viability was determined based on the following
formula: cell viability (%) = (Asample − Ablank)/(Acontrol − Ablank) × 100, where A is the
average absorbance.

2.5. NCI-H460 Xenograft Mouse Model

Animal protocols were in accordance with the guidelines of the Chonnam National
University Animal Research Committee (CNU IACUC-H-2020-19). Male NCRNU mice
(6 weeks old, ≈25 g) were purchased from OrientBio (Seongnam, Korea). Cultured NCI-
H460 cells were suspended in PBS before they were subcutaneously injected in the right
flank of each mouse (1 × 106 cells per mouse). When tumor sizes reached approximately
1 cm in diameter, ZW800-AM or ZW800-1 was administered intravenously. The animals
were euthanized and imaged over a certain period.

2.6. In Vivo Biodistribution and Tumor Imaging

Time-dependent NIR fluorescence imaging was conducted using an in vivo NIR
fluorescence imaging system (FOBI, NeoScience, Suwon, Korea). Mice were sacrificed at
4 h post-injection of ZW800-AM, and their organs were collected and imaged to confirm
the biodistribution of ZW800-AM. The fluorescence intensities in the tumors and resected
organs were measured using the open sourced ImageJ software (National Institutes of
Health, Bethesda, MD, USA).
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2.7. In Vivo Photothermal Therapeutic Efficacy

ZW800-AM or PBS were administered intravenously to the NCI-H460 tumor-bearing
mice and the mice were anaesthetized 2 h after injection. The tumors were exposed to
808 nm laser irradiation (1.1 W/cm2) for 5 min. Tumor temperature was monitored through
a thermal imager (FLIR Systems, Wilsonville, OR, USA). Subsequently, tumors were har-
vested from each group 24 h post-irradiation for histological assessment after staining with
hematoxylin and eosin (H&E). The macroscopic tumor growth of each group was observed
to verify the photothermal therapeutic efficacy for 9 days. The tumor volume (V) was
measured using the following formula: V = 0.5 × longest diameter × (shortest diameter)2.

2.8. Statistical Analysis

Statistical analysis was conducted by one-way analysis of variance for multiple com-
parison test. The results were expressed as mean ± standard deviation (S.D.). A value of
p < 0.05 was used as the statistically significant.

2.9. Histological Analysis

Tumors excised from each group were stored for H&E staining and microscopic analy-
sis. The tumor sections were fixed in 4% paraformaldehyde and placed in a deep freezer.
Frozen tumors were cryosectioned (10 µm thick) and stained with H&E. Histological
analysis was conducted on a Nikon Eclipse Ti-U inverted microscope system (Nikon).

3. Results and Discussion
3.1. Synthesis and Characterization of ZW800-AM

The balanced surface charge of the ZW800-1 structure is the most important charac-
teristic for its excellent in vivo performance, including minimal background tissue uptake
and rapid renal clearance because of the low plasma protein binding [9–11]. Owing to the
lack of its tumor specificity, the carboxylated form of ZW800-1 has been widely used for
in vivo NIR fluorescence imaging of cancer after conjugation with tumor-targeting ligands
such as cyclic RGD peptide and sorbitol [12,14]. Herein, we report for the first time the
tumor-targeting ability of ZW800-AM, which is an aminated form of ZW800-1, without
additional conjugation with tumor-targeting ligands. As depicted in Figure 1a, ZW800-1
and ZW800-AM have similar chemical structures except for the functional groups on the
center linker that maintains the balanced surface charge, which plays a critical role in
tumor targetability. Moreover, in silico calculations of the physicochemical properties—
hydrophobicity (logD), net surface charge, and polarity (TPSA)—provided comparative
information about ZW800-AM (Figure 1b). Importantly, the lower hydrophilicity and
polarity of ZW800-AM compared to those of ZW800-1 as well as its net positive charge
may contribute to a significant difference in terms of tumor targetability.

As shown in Figure 2a, ZW800-AM is synthesized by the conjugation of the chloro-
substituted ZW800-Cl with tyramine. The chloro-substituted heptamethine cyanine fluo-
rophore, ZW800-Cl, was prepared via a condensation reaction between the Vilsmeier−Haack
reagent and zwitterionic indolium salts, using the procedure developed by Choi et al. [9,10,25].
Subsequently, the phenoxide ion of Boc-protected tyramine was conjugated with the meso-
chlorine atom in the cyclohexenyl ring of ZW800-Cl via a nucleophilic displacement
reaction. To increase the nucleophilicity of Boc-protected tyramine, sodium hydride was
used to generate phenoxide ions in situ. In the final step, the Boc protection was removed
by carbamate hydrolysis in acidic conditions to form the primary amine group of ZW800-
AM. The final product was separated using a preparative HPLC system and analyzed via
liquid chromatography–mass spectrometry (LC-MS) to determine the molecular weight
of ZW800-AM (Figure 2b). As ZW800-AM is basically derived from the ZW800-1 struc-
ture, its optical properties were similar to those of ZW800-1. The peak absorption and
fluorescence emission spectra of ZW800-AM in the NIR region were obtained at 771 and
787 nm, respectively (Figure 2c). This suggests that ZW800-AM is suitable for use in NIR
laser-induced PTT.
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3.2. In Vitro Cancer Cell Binding and Cytotoxicity

The cytotoxicity and cellular binding of ZW800-AM were investigated using the NCI-
H460 cancer cell line. To determine the cell viability, the alamarBlue assay was conducted
in NCI-H460 cells after incubation with ZW800-AM at various concentrations (2–50 µM).
Interestingly, ZW800-AM showed no significant cytotoxicity to the NCI-H460 cancer cells
even at high concentrations of 25–50 µM, demonstrating good biocompatibility (Figure 3a).
Moreover, we observed the intracellular distribution of ZW800-AM via NIR fluorescence
microscopy after 24 h of incubation in NCI-H460 and NIH/3T3 cells. As expected, ZW800-
AM presented significant intracellular localization with high fluorescence signals in the
cytoplasm due to its net positive charge (Figure 3b). In contrast with ZW800-1, which
shows no cellular uptake under any conditions owing to its balanced surface charge [12],
the positive surface charge of ZW800-AM may play an important role in binding it to
the negatively charged outer surfaces of cell membranes. This suggests that ZW800-
AM can bind to cancer cells, thereby having the potential to deliver thermal energy to
cell membranes, leading to cancer cell death. Interestingly, the ZW800-AM exhibited
relatively weak fluorescence intensity in normal cells compared with NCI-H460 cancer cells
(Figure 3c). Although differences in the binding affinities of ZW800-AM between normal
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and cancer cells are still under investigation, there are more important factors not only its
positive charges but also receptor-mediated binding more favorable to cancer cells.
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(n = 3). * p < 0.05; n.s. = not significant.

3.3. Time-Dependent In Vivo Tumor Imaging and Biodistribution

To investigate the in vivo tumor targetability of ZW800-AM, NCI-H460 tumor-bearing
mice were intravenously injected with 10 nmol ZW800-AM or ZW800-1 (as the con-
trol group) and monitored for 24 h using a real-time NIR fluorescence imaging system
(Figure 4a). Time-dependent NIR fluorescence imaging showed rapid tumor accumulation
in the mice injected with ZW800-AM until 4 h after the injection; in contrast, no tumor
specificity was observed in the control group treated with ZW800-1, which is consistent
with the well-known characteristics of ZW800-1 reported previously [19,24]. A high flu-
orescence intensity observed at the tumor treated with ZW800-AM was maintained for
approximately 2 h after the injection, whereas the fluorescence signal at the tumor treated
with ZW800-1 continuously decreased without tumor-specific accumulation (Figure 4b).
To the best of our knowledge, this is the first report on a zwitterionic NIR fluorophore,
ZW800-AM, enabling tumor-targeted imaging for further application in photothermal
cancer therapy. Considering the optimal time point for the subsequent PTT and based on
the tumor-to-background signal ratio, the photothermal treatment can be performed 2 h,
instead of 1 h, after the ZW800-AM injection to prevent unnecessary damage to neigh-
boring normal tissues. Moreover, the biodistribution and clearance of ZW800-AM were
investigated by comparing the fluorescence signals in major organs after 4 h of injection
(Figure 4c). Importantly, ZW800-AM did not show any nonspecific tissue/organ uptake
4 h after injection owing to its rapid renal excretion, which is highly similar to the excellent
in vivo performance of ZW800-1, as reported previously [9–11,25]. Although ZW800-AM
possesses a net positive surface charge unlike the balanced net charge of ZW800-1, the
former underwent rapid and complete urinary elimination within 4 h of injection. This
result demonstrates that the amine group of the ZW800-AM structure only played a key
role in the tumor targeting and may not affect the biodistribution during the circulation in
blood. Therefore, ZW800-AM has significant potential to be used as a PTT agent capable of
rapid tumor targeting and high renal clearance.
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Figure 4. (a) Real-time NIR fluorescence imaging for 24 h post-injection of ZW800-AM and ZW800-
1 (n = 3). Tumor sites are indicated by arrowheads. (b) Fluorescence intensities in tumors as a
function of post-injection time of ZW800-AM and ZW800-1. Data are expressed as mean ± S.D.
(n = 3). ** p < 0.01. (c) Quantitative fluorescence intensities of resected organs at 4 h post-injection of
ZW800-AM and ZW800-1. Inset shows excised organs imaged at 4 h post-injection of ZW800-AM.
Abbreviations: Du, duodenum; He, heart; In, intestines; Ki, kidneys; Li, liver; Lu, lungs; Mu, muscle;
Pa, pancreas; Sp, spleen; Tu, tumor; PI, post-injection. Scale bars = 1 cm. All NIR fluorescence images
have identical exposure times and normalization.

3.4. In Vitro and In Vivo Photothermal Effects

To confirm the photothermal properties of ZW800-AM, ZW800-AM (100 µM in PBS)
and PBS solutions were individually exposed to 808 nm laser irradiation (1.1 W/cm2)
for 1 min. Previously, the power density of an 808 nm laser was determined optimal,
capable of avoiding the unnecessary photothermal effect of only laser power, without any
PTT agent [26,27]. Temperature changes during the laser irradiation were automatically
recorded using an FLIR® thermal imager as a function of the irradiation time. Interestingly,
the temperature of the ZW800-AM solution rapidly increased from 25.6 to 80.2 ◦C under
the laser irradiation for 1 min, whereas the PBS solution alone showed no change in temper-
ature under the same condition (Figure 5a). The photothermal temperature of ZW800-AM
was remarkably raised to ~70 ◦C during the first 30 s of laser irradiation and maintained
up to ~80 ◦C during the next 30 s of irradiation (Figure 5b). This suggests that ZW800-AM
can be used as an efficient PTT agent for photothermal cancer treatment. Based on the
light-to-heat conversion capability of ZW800-AM in vitro, its photothermal conversion
efficiency (η) was calculated as 30.5% using a previous method [28], which is comparable
to that of ZW800-1 conjugates (32.6–34.1%) reported previously [15,19]. Additionally, the
absorbance changes of ZW800-AM were repeatedly measured at 770 nm during 5 min
of laser irradiation to test its photostability against continuous photoexcitation. The ab-
sorbance of the ZW800-AM solution steadily decreased after 3 min of laser irradiation,
indicating that its cyanine structure was finally destroyed by photobleaching on exposure
to localized NIR light (Figure 5c).
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Figure 5. (a) In vitro thermal images of ZW800-AM solution (100 µM dissolved in PBS) and only PBS
(100 µL) before and after 808 nm laser irradiation (1.1 W/cm2) for 60 s. The maximum temperature is
automatically recorded with an infrared thermal camera. (b) Temperature changes in each solution
are observed for 60 s of laser irradiation. (c) Photostability of ZW800-AM during 5 min of laser
irradiation. Absorbance changes are measured at 770 nm using 5 µM ZW800-AM solutions under
laser irradiation. (d) In vivo thermal images of tumor-bearing mice at 2 h post-injection of PBS or
ZW800-AM after 808 nm laser irradiation (1.1 W/cm2) for 5 min. (e) Temperature changes of tumors
in each group are observed for 5 min of laser irradiation. Data are expressed as mean ± S.D. (n = 3).

The in vivo photothermal conversion capability of ZW800-AM was further investi-
gated using NCI-H460 tumor-bearing mice. ZW800-AM and PBS solutions were intra-
venously injected into the mice 2 h before laser irradiation, and the tumor sites were
subsequently exposed to 808 nm laser irradiation at 1.1 W/cm2 for 5 min. The tumor
temperatures in the ZW800-AM-injected mice remarkably increased up to ~55 ◦C, whereas
the PBS-treated mice exhibited little change in the tumor temperature (~40◦C) after 5 min
of laser irradiation (Figure 5d). Additionally, the higher tumor temperature was recovered
to the body temperature (~34 ◦C) after 2 min of laser off. Particularly, the peak temperature
in the tumors plateaued after 3 min of laser irradiation and were maintained up to ~55 ◦C
until the next 2 min of irradiation, which is notably sufficient to induce complete necrosis
in tumor tissues (Figure 5e). This result demonstrates that ZW800-AM can be used for
targeted photothermal cancer therapy with excellent light-to-heat conversion efficiency.

3.5. In Vivo Photothermal Therapeutic Efficacy

The in vivo phototherapeutic efficacy of ZW800-AM was confirmed by monitoring
tumor sizes for 9 days after the photothermal treatment (Figure 6a). Laser irradiation with
only PBS treatment did not induce skin damage (burn scarring) and tumor suppression.
Concurrently, laser irradiation of tumor-bearing mice injected with ZW800-AM showed a
remarkable PTT effect with complete tumor ablation and no remarkable recurrence during
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the course of the treatment (Figure 6b,c). This result demonstrates that tumor growth is
successfully inhibited by combining of ZW800-AM injection and NIR laser irradiation.
More importantly, the therapeutic efficacy of PTT highly depends on the tumor location
in the body, because of the low penetration depth of an NIR laser light. In terms of the
orthotopic tumor models for PTT, the skin or liver cancers compared to other types of cancer
could be applicable for photothermal cancer treatment in consideration of the limited light
penetration depth.

In addition, the body weight of each group was monitored for 9 days, and the treat-
ment groups exhibited normal variation during the therapeutic process, indicating that no
significant side effects occurred (Figure 6d). Furthermore, the phototherapeutic effect was
confirmed by the H&E staining of the tumor tissues harvested from each group 24 h after
the different treatments (Figure 6e). The H&E staining of the tumor sections belonging
to the PBS and laser-treated group showed no cell damage, with typical morphological
features of cell proliferation. However, the tumor sections treated with ZW800-AM and
laser irradiation revealed notable features of necrotic cell death with a reduced cell number
and shrunken nuclei. This indicates that ZW800-AM can be used as an efficient PTT agent
for generating thermal energy and consequently inducing cell apoptosis and necrosis.
Moreover, histological assessment of the major organs (heart, lung, liver, spleen, and kid-
ney) resected from each group showed no pathological changes or lesions (Figure 6f). This
result confirms the biosafety of ZW800-AM without causing systemic toxicity owing to its
rapid distribution and elimination characteristics.
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Figure 6. In vivo NIR phototherapeutic efficacy. (a) Representative photos of tumor size changes in
NCI-H460 tumor-bearing mice over 9 days after different treatments. Laser groups are treated with
2 h post-injection of PBS and ZW800-AM, followed by 808 nm laser irradiation (1.1 W/cm2) for 5 min.
Tumor sites are indicated by arrowheads. Scale bars = 1 cm. (b) Tumor growth rates, (c) gross tumor
photos, and (d) body weights of each treatment group were monitored for 9 days. Data are expressed
as mean ± S.D. (n = 3). ** p < 0.01. (e) Tumor sections stained with H&E from each group after 24 h
of different treatments. (f) H&E stained images of major organs including heart, lung, liver, spleen,
and kidney tissues after PBS and PTT treatments. Images are representative of three independent
experiments. Scale bars = 100 µm.
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4. Conclusions

In this study, we identified a zwitterionic NIR fluorophore, ZW800-AM as a ZW800-1
analog, which could be used for tumor-targeted imaging and PTT simultaneously without
further conjugation with tumor-specific ligands and photosensitizers. Although several
types of cyanine-based NIR fluorophores have been developed for tumor-targeted imag-
ing with structure-inherent targeting capacity, the biosafety issues associated with their
nonspecific tissue/organ uptake still remain unsolved. Most importantly, ZW800-AM
showed rapid renal excretion within 4 h of injection without nonspecific uptake in the
body, which could overcome the issues related to the longstanding biosafety problems
for the clinical use of contrast agents. Currently, ZW800-1 is one of the most well-known
fluorophores used for in vivo NIR fluorescence imaging because of its excellent in vivo
performance; however, this is achieved after conjugation with various small molecules,
proteins, or nanoparticles. In this regard, ZW800-AM may be an alternative candidate
for cancer theranostics with tumor targetability as well as excellent optical properties
and biocompatibility. Overall, the tumor-targetable, renal-clearable, and PTT-applicable
ZW800-AM has a strong potential in future clinical applications.
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