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Mechanical Stimulation of Fibroblasts by
Extracorporeal Shock Waves: Modulation
of Cell Activation and Proliferation Through
a Transient Proinflammatory Milieu

Valentina Basoli1,2, Sidrah Chaudary3,4, Sara Cruciani1,2,
Sara Santaniello1,2, Francesca Balzano1, Carlo Ventura2,
Heniz Redl3,4, Peter Dungel3,4, and Margherita Maioli1,2,5,6

Abstract
Extracorporeal shock waves (ESWTs) are “mechanical” waves, widely used in regenerative medicine, including soft tissue
wound repair. Although already being used in the clinical practice, the mechanism of action underlying their biological activities
is still not fully understood. In the present paper we tried to elucidate whether a proinflammatory effect may contribute to the
regenerative potential of shock waves treatment. For this purpose, we exposed human foreskin fibroblasts (HFF1 cells) to an
ESWT treatment (100 pulses using energy flux densities of 0.19 mJ/mm2 at 3 Hz), followed by cell analyses after 5 min, up to 48
h. We then evaluated cell proliferation, reactive oxygen species generation, ATP release, and cytokine production. Cells
cultured in the presence of lipopolysaccharide (LPS), to induce inflammation, were used as a positive control, indicating that
LPS-mediated induction of a proinflammatory pattern in HFF1 increased their proliferation. Here, we provide evidence that
ESWTs affected fibroblast proliferation through the overexpression of selected cytokines involved in the establishment of a
proinflammatory program, superimposable to what was observed in LPS-treated cells. The possibility that inflammatory
circuits can be modulated by ESWT mechanotransduction may disclose novel hypothesis on their biological underpinning and
expand the fields of their biomedical application.
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Introduction

Extracorporeal shock waves (ESWTs) are “mechanical”

waves, characterized by an initial positive very rapid phase,

of high amplitude, followed by a negative pressure, produc-

ing a “micro-explosion” that can be directed on a target zone

(body, tissue, or cells) in order to influence the cells in their

behavior. ESWT technology is based on the production of

low-pressure acoustic waves that interact directly with cells

by mechanotransduction1. However, the mechanisms of

action of ESWTs on cells are still largely unknown. Previous

studies have shown that ESWTs have a pro-activator effect

on cells2. For instance, ESWT treatment-mediated mem-

brane hyperpolarization and Ras activation for osteogenesis

in human bone marrow stromal cells3 caused macrophage

activation4 and induced upregulation of angiogenesis by the

activation of vascular endothelial growth factor5, endothelial

nitric-oxide synthase, hypoxia-inducible factor 1a, and
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CD31 in diabetic mice6. ESWTs were also implicated in the

expression of cytokines, chemokines, and matrix metallo-

proteinases with proangiogenic outcomes promoting wound

healing7. Within this context, the main hypothesis is that the

physical stimuli delivered through ESWTs can activate the

cellular metabolism, by a mechanotransduction mechanism

at cellular level8, and modulate cellular proliferation, migra-

tion, and senescence9,10. Other authors have shown that

physical treatments modulated a proinflammatory milieu

in cells, which is mediated by mechanotransduction11,12,

similar to the proinflammatory activation mediated by lipo-

polysaccharide (LPS)13. LPS is a component of the outer

membrane of Gram-negative bacteria, implicated in the

induction of a strong immune response in normal animals.

LPS exerts its biological effects on the host by binding to

Toll-like receptor 4 (TLR4), a pattern recognition receptor

that is widely distributed among lung parenchyma cells,

including macrophages, epithelial cells, and fibroblasts14.

In a recent study it was shown that LPS was able to directly

induce secretion of collagen in primary cultured mouse

lung fibroblasts via TLR4-mediated activation of the

phosphoinositide3-kinase-Akt pathway, thus increasing the

proliferation rate15. A class of molecules that is currently

emerging as a major tuner of inflammation and immune

responses are the heat shock proteins (HSPs). HPSs are also

involved in cell-cycle control and signaling, and protection

of cells against stress/apoptosis16. HSPs are often classified

upon their molecular weight: hsp27, hsp60, hsp70, hsp90.

In particular, HSP90 is associated with proteins of the

mitogen-activated signal cascade, particularly with the Src

kinase, with tyrosine receptor kinases, Raf and the MAP-

kinase activating kinase (MEK)8. The Hsp90 system is a

complicated machinery that is coactivated by Hsp70 and by

a large number of cofactors17. Nevertheless, other studies

showed that it can also be modulated alone. Fibroblasts are

usually considered for their ability of producing and

reshaping the tissue extracellular matrix18. Besides, fibro-

blasts play a major role in both secreting and “sensing” a

wide-ranging spectrum of cytokines, and “trophic” media-

tors, involved in pro-, as well as anti-inflammatory

responses19. Although the development of anti-

inflammatory strategies has been extensively regarded as

a major tool to afford tissue rescue, it is also essential to

keep in mind that timely execution of proinflammatory

patterning also plays a critical role in tissue repair. Based

upon this central modulatory role of fibroblasts, and their

ability to handle the homeostasis of neighboring cells in

normal and diseased tissues, in the present study we used

human skin fibroblasts as an in vitro model to elucidate the

molecular mechanisms underlying a proinflammatory role

of ESWTs. For this purpose, the action of ESWTs was

dissected at the level of a number of crucial events involved

in tissue regeneration, including cytokine production and

release, ATP release, activation of reactive oxygen species

(ROS), and HSP activation.

Materials and Methods

General Experimental Design

HFF1 Cell Culture. HFF1 are foreskin fibroblast cells type 1,

purchased from ATCC (ATCC, Manassas, VA, USA). Cells

were cultured and expanded in Dulbecco’s modified Eagle’s

medium (Life Technologies, Camarillo, CA, USA), supplemen-

ted with 10% fetal bovine serum (Life Technologies, Camarillo,

CA, USA), 400 mM glutamine (Euroclone, Milano, Italy), 100

U/ml penicillin, and 100 mg/ml streptomycin (Euroclone), at

37�C in a humidified atmosphere containing 5% CO2. In the

present study, cells from passages 2–9 were used. The cell cul-

ture medium was changed every 3 d. An additional cell group of

HFF1 was treated with 1 ng/ml LPS (Sigma-Aldrich, Hamburg,

Germany), as a powerful positive inflammatory inducer, repre-

senting positive control of an inflammation-induced cell beha-

vior (positive control of inflammation).

Shock Wave Setting and Cell Treatment. Shock wave device

used was Ortho-Gold100 (Tissue Regeneration Technolo-

gies, LLC, manufactured by MTS Europe GmbH). Cells

after synchronization were detached and a number of 1 �
106 for each group (control/ ESWT-treated) was resus-

pended in 1 ml medium in a 15-ml polypropylene tube, and

shock wave treatment was performed using a water bath

setup at 37�C in order to preserve aberrant changes in cel-

lular behavior (Fig. 1). The distance between the shock wave

applicator and the 15 ml tube containing the cells was 5 cm,

as it was previously optimized2. The control group was allo-

cated in a separate water bath without ESWT applicator,

with the same temperature condition. ESWT treatment was

applied to cells at 100 pulses using energy flux densities of

0.19 mJ/mm2 at 3 Hz, according to previous experiments and

in vivo studies2,20. Depending on the analysis, cells were

either plated in culture plates for further incubation or ana-

lyzed immediately.

Viability Assay by BRdU Assay

For the BrdU proliferation assay, cells were seeded in 24-

well plates after ESWT treatment and the proliferation assay

Fig. 1. Scheme of shock wave application in a water bath. One
milliliter of cell suspension in a 15 ml polypropylene tube (C) was
placed inside the water bath (B) at 37�C. The shock waves device
(A) conducted the energy by the applicator connected to a water
bath, and placed 5 cm far from tube21.
SW: shock wave.
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(Roche, Merck KGaA, Darmstadt, Germany) was performed

24 h after treatment. According to the manufacturer’s proto-

col, BrdU labeling solution was added to the cell cultures

exposed to ESWTs, as well as controls, at a final concentra-

tion of 10 mM and incubated for 2 h. This was followed by

90-min incubation with diluted peroxidase-conjugated anti-

BrdU antibody. Absorbance was measured with a photo-

meter (Spectra Thermo, TECAN Austria GmbH, Grödig,

Austria) at a wavelength of 450 nm.

ROS Production—Electron Paramagnetic Resonance

HFF1 cultures were treated with or without 0.19 mJ/mm2

100 pulses shock waves. HFF1 treated for 24 h with 1 ng/ml

LPS served as positive controls. After treatment cells were

seeded in 24-well plates, in a final volume of 250 ml. The

cells were observed at 1, 4, 8, 12, 24, and 48 h. Ten minutes

before every measurement, PPH (1-hydroxy-4-phosphono-

oxy-2,2,6,6-tetramethyl-piperidine), a spin probe for

oxygen radicals specific for superoxide radicals, and per-

oxynitrite were added at a final concentration of 500 mM.

Fifty microliters of medium was put into oxygen-permeable

capillary tubes (Noxygen Science transfer and Diagnostics,

Elzach, Germany) and measured at room temperature with

e-scan EPR spectrometer (Bruker, Germany) with the fol-

lowing settings: microwave frequency: 9.762741 GHz,

modulation frequency: 86.00 GHz, modulation amplitude:

1.4 GHz, center field: 3487.920 G, sweep width: 200 G,

microwave power: 54.10 mW, number of scans: 1, receiver

gain: 2.24 � 10.

ATP Release

Immediately after shock wave pulses or after 0, 5, 10, 15,

30, 60, and 120 min, cells were lysed to measure ATP

production. Lysates were pipetted into a 96-well micro-

plate and 100 ml ATP Assay reagent (Promega Cell Titer-

Glo Luminescent Cell Viability Assay, Klaus, Austria)

was added and shaken for 2 min. Lysates were incubated

for further 10 min, after which sample luminescence was

measured by a luminometer (SPECTRA star Omega, Ger-

many). Sample data were compared to an ATP standard

calibration curve.

Enzyme-Linked Immunosorbent assay (ELISA)
on HFF1

HFF1 were cultured for 24 h in the absence or presence of

1 ng/ml LPS, inducing an inflammatory response to be

used as a comparative positive control for shock wave–

treated cells22. After ESWT treatment, cells were seeded

in 24-well plates in a final volume of 250 ml. The culture

medium was collected at different time points (1, 4, 8, 12,

24, and 48 h) for the ELISA analysis. The levels of inter-

leukin 6 (IL-6) and IL-8, monocyte chemoattractant pro-

tein 1 (MCP-1), and TGF-alpha released into the culture

supernatant were measured using the human Ready-SET-

Go kit (eBioscience, Life Technologies, Camarillo, CA,

USA), according to the manufacturer’s protocol.

RNA Extraction, cDNA Synthesis, and Gene Expression
Analysis by Real-Time Polymerase Chain Reaction
(PCR)

Total RNA was isolated using Trizol reagent according to

the manufacturer’s instructions (Sigma-Aldrich, Hamburg,

Germany), as previously described23,24. Total RNA was dis-

solved in RNAase-free water and quantified using a Nano-

drop spectrophotometer. A 20-ml reaction volume containing

1 mg total RNA was reverse transcribed using HiCapacity

cDNA reverse transcription kit (Applied Biosystem, Foster

City, CA, USA) with oligo (dT) primers. Quantitative PCR

reaction was performed using i5 Biorad with kapa green

(Biorad, Hercules, CA, USA).

After an initial denaturation step at 95�C for 15 min,

temperature cycling was initiated. Each cycle consisted of

95�C for 15 s, 53�C –59�C for 30 s, and 72�C for 15 s, the

fluorescence being read at the end of this step. All primers

used in this work were from Invitrogen and are listed in

Table 1. PCR products were confirmed by melting curve

analysis and electrophoresis. All measurements were done

as technical quadruplicate of biological replicates. Biologi-

cal replicates were obtained from independent cell culture

samples at different passages. Relative expression was deter-

mined using 2-DDCt method with glyceraldehyde 3-phosphate

dehydrogenase as housekeeping gene.

Table 1. Primers List.

Primer name Reverse Forward

HSP27 AAGCTAGCCACGCAGTCCAA CGACTCGAAGGTGACTGGGA
HSP70 ATGTCGGTGGTGGGCATAGA CACAGCGACGTAGCAGCTCT
HSP60 TAAAAGGAAAAGGTGACAAGG GGGCATCTGTAACTCTGTCTT
HSP90-beta AGTTGGAATTCAGGGCATTG TTTCTCGGGAGATGTTCAGG
IL-8 GAACTGAGAGTGATTGAGAGT CTTCTCCACAACCCTCTG
MCP-1 TCTGACTCTAAGTGGCATTC ATTGTAGCAATGATCTCAACAC
GAPDH GACAAGCTTCCCGTTCTCAG GAGTCAACGGATTTGGTCGT

HSP: heat shock protein; IL: interleukin; MCP-1: monocyte chemoattractant protein 1; GAPDH: glyceraldehyde 3-phosphate dehydrogenase.
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Statistics

Statistical differences were evaluated by using two-way

analysis-of-variance tests with Tukey’s correction. All data

sets are presented as mean + standard deviation. P-values

less than 0.05 were considered as significant. All statistical

analyses were performed with GraphPad Prism 6.0 software

(GraphPad, San Diego, CA, USA). All experiments were

performed seven times with HFF1 with three technical repli-

cates. We considered *P < 0.05, **P < 0.01, ***P < 0.001,

and ****P < 0.0001.

Results

Cell Proliferation

The BrdU assay showed that cell proliferation was signifi-

cantly increased in HFF1 during the first 24 h following

shock wave therapy of 0.19 mJ/mm2 or LPS, as compared

to the negative control group (Co) (Fig. 2).

ATP Release After Shock Wave Treatment

Figure 3 shows ATP concentration, detected in supernatants

from HFF1 cells, treated in the absence (control) or presence

of ESWTs, or with LPS as a positive control. The same

figure shows that HFF1 cultured in the presence of LPS

released a significantly higher amount of ATP, as compared

to control cells. Interestingly shock wave treatment caused a

significantly higher release of ATP as compared to both

controls and LPS-treated cells (Fig. 3).

ROS Produced in HFF1

Figure 4 shows that ROS were gradually released after 1 h of

ESWT treatment, peaking at 8 h, then gradually decreased in

HFF1. The same figure shows that also LPS-treated cells

stimulated ROS release; nevertheless, ESWT was able to

induce the production of a higher amount of ROS as com-

pared to both the negative and positive (LPS-treated cells)

control.

Cytokine Release

IL-6 was detected already after 4 h in cells treated with LPS,

but no significant differences could be detected between

ESWTs treated and the negative control at this time point

(Fig. 5). Nevertheless, IL-6 was upregulated in cells treated

with ESWTs after 8 h, similar to what was observed in LPS

positive control. At 12 and 24 h, IL-6 was still increased

above the control levels in both LPS-treated and ESWT-

exposed cells (Fig. 5).

The level of IL-8 was significantly upregulated already

after 4 h following LPS treatment, as well as in cells that

received ESWT treatment; however, in ESWT-exposed cells

IL-8 declined at subsequent time points with similar expres-

sion levels as those detected in unexposed cells (Fig. 5).

The timely pattern of MCP-1 expression reproduced the

expression of IL-8 and IL-6 at 8 h, with a significant

upregulation in both ESWT- and LPS-exposed cells,

when compared to unexposed controls. Consistent with

the time course expression of IL-8, MCP-1 levels in

ESWT-treated HFF1 declined at 12 and 24 h with no

significant difference compared to values observed in

untreated controls (Fig. 5).

Gene Expression Analysis

Figure 6 shows that IL-8 transcription was strongly enhanced

in HFF1 that had been cultured for 4, 8, 12, and 24 h with

LPS. ESWT-treated cells exhibited a significant increase in

IL-8 mRNA expression only at 4 h after exposure, with a

progressive decline at 12 and 24 h. MCP-1 gene expression

was significantly increased after 4 h in HFF1 that had been

treated with LPS, compared to untreated cells. ESWT

slightly enhanced MCP-1 gene expression at 4 and 8 h. After

12 or 24 h, the transcriptional enhancement was only

observed in LPS-treated cells (Fig. 6).

Figure 7 shows that the mRNA levels of the analyzed

HSPs were differentially modulated by LPS and ESWTs.

In particular, HSP90 gene expression exhibited an increase

after 4 and 8 h in both ESWT- and LPS-treated cells, being

then lowered to control values in both experimental groups

at 12 and 24 h (Fig. 7). Transcription of HSP60 was

increased in ESWT-treated HFF1 over both control and

LPS-treated cells at 4 h, with no significant changes among

the investigated groups at 8, 12, and 24 h. Conversely,

HSP27 gene expression not only increased at 4 and 8 h in

SW- and LPS-treated cells, but its overexpression persisted

at similar levels in both experimental groups at 24 h, as

compared to unexposed cells (Fig. 7). HSP70 transcription

was only slightly increased at 4 and 8 h in ESWT-exposed

24h BrdU
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Fig. 2. Cell proliferation analysis with BrdU was performed in HFF1
at 24 h after exposure in the absence (Co, gray bars), or presence
of ESWT 0.19 mJ/mm2 treatment 100 pulses (ESWT, orange bars).
LPS was administered as a positive control (LPSCo, white bars)
(***P < 0.01).
ESWT: extracorporeal shock wave; HFF1: human foreskin fibro-
blast; LPS: lipopolysaccharide; SW: shock wave.
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cells, with no significant change at subsequent time points,

where only LPS proved effective, as compared to untreated

controls (Fig. 7).

Discussion

Although the effectiveness of ESWTs has been clearly

demonstrated in clinical applications, the underlying mole-

cular mechanisms are not fully clarified yet. ESWTs were

initially used to disintegrate renal stones25, afterwards the

use of ESWTs was completely updated into a pro-

regenerative treatment in musculoskeletal disorders26,27, soft

tissue wounds repair,28,29 and neurological pathologies30.

ESWT action was found to trigger the secretion of IL-6,

IL-8, MCP-1, and tumor necrosis factor alpha (TNF-a) in

a way that is strictly related to the applied “dose”31,32. In a

study published by Weihs et al., different dosages of ESWTs

enhanced cell proliferation in C3H10T1/2 murine mesench-

ymal progenitor cells, primary human adipose tissue–

derived stem cells, and human T cell line, and improved

wound healing via ATP release-coupled Erk1/2 and p38

mitogen-activated protein kinase (MAPK) pathways2. This

is in line with the report of Chen et al. who showed that the

ESWT mechanism is mediated by ATP release and P2 recep-

tor activation that promote cell proliferation and tissue remo-

deling via Erk1/2 activation20. In addition, the implication of

PI-3K/AKT and nuclear factor kappa B (NF-kB), as well as

TLR3/TLR4 signaling pathways has been reported follow-

ing ESWT cell treatment33. Recently, it was observed that

ESWTs can modulate the expression of IL-6, IL-8, MCP-1,

and TNF-a in human periodontal ligament31. In the present

study, we show that ESWT action can trigger the activation

of proinflammatory pathways. It is known that during stress,

Fig. 3. ATP concentrations in HFF1 supernatants were determined at 0, 5, 10, 15, 30, 60, and 120 min after ESWT 0.19 mJ/mm2 treatment
100 pulses (orange bars) or no treatment (gray bars), LPS (white bars) was administered as a positive control.
HFF1: human foreskin fibroblast; ESWT: extracorporeal shock wave; LPS: lipopolysaccharide.

Fig. 4. HFF1 ROS measurement analysis with electron spin reso-
nance using PPH was performed at 0, 1, 4, 8, 12, 24, and 48 h after
ESWT 0.19 mJ/mm2 treatment 100 pulses (orange bars) or no
treatment (gray bars). LPS (white bars) represents the positive
control. Orange asterisks are related to ESWT treatment, black
asterisks are related to LPS treatment.
EPR: electron paramagnetic resonance; ESWT: extracorporeal
shock wave; HFF1: human foreskin fibroblast; LPS: lipopolysacchar-
ide; PPH: 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethyl-
piperidine; ROS: reactive oxygen species.
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cells respond with various reactions, including inflamma-

tion34. Our observation that the LPS-induced inflammatory

response was coupled with HFF1 proliferation is in line with

the report from He et al., who observed significantly

enhanced proliferation in lung fibroblast exposed to LPS35.

Recently, other authors described the effect of ESWTs on the

modulation of IL-6, IL-8, MCP-1, and TNF-a in periodontal

ligament fibroblasts31. In the present in vitro experiments,

we hypothesized that ESWTs at 0.19 mJ/mm2 may modulate

early proinflammatory response (initiation phase). Hence,

the hypothesis that ESWT-primed mechanotransduction

may have enhanced fibroblast proliferation through a

proinflammatory induction is inferred by the observation

that as early as 4–8 h after delivery, ESWT was able to

enhance both the protein and gene expression of various

cytokines, including IL-6, IL-8, and MCP-1. ILs are pro-

duced by numerous cell types, including macrophages,

monocytes, fibroblasts, endothelial cells, and smooth muscle

cells36. Interestingly, unlike the LPS-mediated cytokine

overexpression, the effect produced by ESWT did not occur

as a long-lasting phenomenon. Moreover, ESWT therapy has

been found to promote TLR3 stimulation, alongside TLR-4,

and downstream signaling, leading to the production of cyto-

kines and chemokines that in turn modulate a macrophage-

mediated inflammatory response37. Additional evidence

shows that LPS promotes ATP release as well33 by the acti-

vation of macrophage cells. In other studies, the ability of

ESWTs to induce ATP release, which in turn activates Erk1/

2, an upstream effector for Mek1/2, and p38 MAPK, was

consistently demonstrated2. Here we confirmed these results,

by showing that ESWTs mainly enhanced cell proliferation,

acting on ATP release (Fig. 3). ROS physiologically play a

role as secondary messengers during the repairing process,

and appear to be important in coordinating the recruitment of

white blood cells during healing38. Endogenous cellular

ROS can arise from mitochondrial oxidative phosphoryla-

tion during ATP production, from the endoplasmic reticulum

or from a class of enzymes known as oxidoreductases39.

ROS have an established role in inflammation and have been

implicated in the activation of signaling pathways such as

MAPKs, NF-kB, and guanylate cyclase40. Recently, it was

observed that ROS also played a role in the activation of the

NLRP3 inflammasomes, a pathway for generation of active

caspase-1 and secretion of mature IL-141,42.

The transient cytokine response to ESWTs and the asso-

ciated cell proliferation may be placed within the context of

a stress-induced resilience mechanism. Therefore, the

stress associated with a low-level and/or short-lived inflam-

matory response may be funneled into an organized protec-

tive response, like the observed cell proliferation. ESWTs

have been applied as a successful therapy in heart failure

and cardiovascular diseases in humans43–45. Moreover, in

vivo experiments carried out in rats in the presence of LPS

or ESWTs resulted in post-infarct cardiac tissue

regeneration46,47.

To demonstrate that the mechanism, by which cells con-

vert mechanical signals into biochemical responses, may

involve HSP recruitment, we analyzed the gene expression

of specific HSPs. HSPs, also known as chaperones or

stress-induced proteins, have a crucial role during proteins

folding/unfolding, assembly of multiprotein complexes,

and transport/sorting of proteins into correct subcellular

compartments17,48,49.

In our experiments, HSP60 and HSP90 were upregulated

after 4 h of ESWT treatment. It was recently shown that

HSP60 plays a regulatory role during proinflammatory acti-

vation via TLR4–p38 MAPK axis50, as well as HSP9017.

These findings again could be strictly associated with

Fig. 5. Effect of shock wave treatment on cytokine production in
HFF1 at different time points (1, 4, 8, 12, and 24 h) in response to
shock wave treatment. The levels of IL-6 (A) and IL-8 (B), and MCP-
1 (C) were measured in cell supernatants using ELISA. Orange
asterisks are related to ESWT treatment, black asterisks are
related to LPS treatment, both compared to untreated control at
the given time point.
CTR: control; ELISA: enzyme-linked immunosorbent assay; HFF1:
human foreskin fibroblast; IL: interleukin; ESWT: extracorporeal
shock wave; LPS: lipopolysaccharide; MCP-1: monocyte chemoat-
tractant protein 1.
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Fig. 6. Effect of shock wave pulses on IL-8 and MCP-1 gene expression on HFF1. Cells were exposed (orange bar) or not (gray bars) to 100
pulses 0.19 mJ/mm2, cell treated with 1 ng/ml LPS are positive control (white bar). The amount of IL-8 (A), MCP-1 (B) mRNA was assayed
during 4, 8, 12, and 24 h and was normalized to glyceraldehyde 3-phosphate dehydrogenase. The data were plotted as fold change relative to
the mRNA expression in control cell at 0 h (mean + SD; n¼ f3), orange asterisks are related to ESWT treatment, black asterisks are related
to LPS treatment.
ESWT: extracorporeal shock wave; HFF1: human foreskin fibroblast; IL: interleukin; LPS: lipopolysaccharide; MCP-1: monocyte chemoat-
tractant protein 1.

Fig. 7. Effect of shock wave pulses on HSP gene expression on HFF1. Cells were exposed (Bordeaux bar) or not (gray bars) to 100 pulses
0.19 mJ/mm2. Cells treated with 1 ng/ml LPS are positive control (white bar). The amount of HSP90 (A), HSP27 (B), HSP60 (C), and HSP70
(D) mRNA was assayed at 0, 4, 8, 12, and 24 h and was normalized to glyceraldehyde 3-phosphate dehydrogenase. The data were plotted as
fold change relative to the mRNA expression in control cell t0 (mean + SD; n ¼ 3).
ESWT: extracorporeal shock wave; HFF1: human foreskin fibroblast; HSP: heat shock protein; LPS: lipopolysaccharide.
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previous observations concerning the involvement of

ESWTs in the Erk1/2 and p38 MAPK activation path-

ways2,20 and with the modulatory action of ESWTs on the

plasticity of TLRs5. On the other hand, HSP70 did not show

any significant change during ESWT treatment, being prob-

ably not a target of the ESWT effect. Overall, the ability of

ESWTs to trigger similar increase in HSP gene expression as

LPS may be viewed as the induction of a protective arm from

oxidative stress, apoptosis, and cell death during an inflam-

matory response. In the case of ESWTs, the increase in HSP

transcription coupled with the short-term increase in cyto-

kine expression may prove successful in activating a resilient

protective mechanism. Such acquired resilience may on the

contrary largely fail when HSP induction occurs within a

persistent inflammatory response, as in the case of LPS.

Further understanding of the coupling of transient inflam-

matory and cytoprotective responses by ESWTs may help

taking a glimpse into the complex patterning through which

physical energies support tissue regeneration.
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