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The regulatory relationships between genes and proteins in a cell form a gene regulatory
network (GRN) that controls the cellular response to changes in the environment. A
number of inference methods to reverse engineer the original GRN from large-scale
expression data have recently been developed. However, the absence of ground-truth
GRNs when evaluating the performance makes realistic simulations of GRNs necessary.
One aspect of this is that local network motif analysis of real GRNs indicates that the feed-
forward loop (FFL) is significantly enriched. To simulate this properly, we developed a novel
motif-based preferential attachment algorithm, FFLatt, which outperformed the popular
GeneNetWeaver network generation tool in reproducing the FFL motif occurrence
observed in literature-based biological GRNs. It also preserves important topological
properties such as scale-free topology, sparsity, and average in/out-degree per node. We
conclude that FFLatt is well-suited as a network generation module for a benchmarking
framework with the aim to provide fair and robust performance evaluation of GRN inference
methods.
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INTRODUCTION

Understanding large-scale biological relationships between genes and the proteins they encode
remains a great challenge in systems biology. The wide availability of system-level expression datasets
has given rise to a variety of reverse engineering methods that aim to reconstruct the hidden
regulatory gene–gene and gene–protein relationships. Such relationships form a gene regulatory
network (GRN) that regulates developmental processes in organisms and controls adaptation to
changes in the environment (Davidson, 2010). By contrast with other networks in biological systems,
GRNs are harder to validate as the interactions that occur between genes usually involve indirect
interactions through biological molecules making the interaction hard to detect and quantify. The
incompleteness and scarcity of ground-truth networks results in problems when evaluating the
performance of methods that seek to infer GRNs from large-scale expression data (Emmert-Streib
and Dehmer, 2018).

The problem of inferring a gene regulatory network from gene expression data has received
significant attention. A variety of GRN inference methods are commonly used (Margolin et al., 2006;
Faith et al., 2007; Friedman et al., 2010; Huynh-Thu et al., 2010; Zavlanos et al., 2011) to tackle this
problem. It was also the focus of four separate Dialogue for Reverse Engineering Assessments and
Methods (DREAM) challenges, with DREAM5 being the most recent one (Marbach et al., 2012).
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Newer, more advanced algorithms require not only expression
data but also utilize additional information such as
experimentally validated interactions and Gene Ontology
terms (Chouvardas et al., 2016), structures of genomic datasets
and network topology (Siahpirani and Roy, 2017), DNA binding
domains of transcription factors, and promoter sequences of its
putative targets (Kang et al., 2018), or use the iterative kernel PCR
model (Iglesias-Martinez et al., 2021). Despite this, for most
methods the performance on real experimental datasets
remains modest (Marbach et al., 2012; Chen and March 2018;
Pratapa et al., 2020).

Regardless of the method used, it is important to fairly assess
its performance with respect to other methods. As some methods
can only predict Boolean networks, assessment should be done in
terms of binary error classification such as the number of false
positives and false negatives. In addition to this, experimental
information about transcriptional interactions is usually only
available in the binary form. Boolean networks can only be
defined by their topology, which is why it is essential to
understand the structure of GRN graphs. It is also worth
pointing out that most GRN inference methods can only
predict a static network structure, which implies that in-silico
generated GRNs should also possess biological stability.

While the true structure of real GRNs is usually not known,
they tend to share some topological features: the scale-free
property (Barabasi and Albert, 1999), where the node degrees
follow a power-law degree distribution, and often have the small
world property (Watts and Strogatz, 1998), and where nodes
form distinct clusters in which they are connected to each other in
lattice rings. These properties are different from random graphs
where node degrees are normal distributed across all nodes in the
system. Some attempts to simulate GRNs have been made by
implementing methods that generate random (Watts and
Strogatz, 1998; Mendes et al., 2003) or scale-free (Barabasi and
Albert, 1999) graphs with given sets of parameters, but eventually
methods based on the idea of subnetwork-selection from
biological networks gained more popularity (Van den Bulcke
et al., 2006). One example of this is GeneNetWeaver (GNW)
(Schaffter et al., 2011), which was used to generate in silico
networks for the DREAM challenges.

The regulatory dynamics of GRNs is shaped by network
patterns that are more frequent in GRNs than in other
networks (Milo et al., 2002; Shen-Orr et al., 2002) and may
carry information-processing functions. These local patterns, or
motifs, and do not result in emergence of specific patterns in gene
expression but rather determine dynamical boundaries of the
phase space of the system (Ahnert and Fink, 2016). It was
suggested that some motifs could be particularly important for
network dynamics and therefore become overrepresented and
drive the evolution of the networks (Prill et al., 2005). Examples of
how feed-forward loops are involved in such dynamics are ample,
including sign-sensitive delay elements (Mangan et al., 2003), bi-
phase response generators (Kaplan et al., 2008), band-pass filters
(Sohka et al., 2009), and decoders of oscillatory signals (Zhang
et al., 2016). Due to this, simulating a network structure that
preserves the overrepresentation of motifs is of utmost
importance for capturing realistic dynamics of GRNs. The idea

of building gene regulatory networks by using motifs as building
blocks was first introduced by Abdelzaher et al. (2015a) that
hypothesized that this could be important for the evolution of
GRN topology in E. coli.

Network inference methods aim to solve the problem of finding
regulatory interactions within a set of genes. This, however, doesn’t
imply that all edges in a reconstructed network represent physical
binding between transcription factors and their respective targets.
Gardner and Faith (2005) describe two groups of reverse-engineering
algorithms. The first group seeks to identify regulators that directly
control mRNA expression, and the second one is focused on
identification of general regulatory interactions between different
genes that may be indirect. Regardless of interaction type, simulated
data should allow for exploring a wide range of network properties to
evaluate inference algorithms performance. It was shown that FFLs
are significantly overrepresented in experimentally validated
transcriptional regulation databases (Lee et al., 2002; Milo et al.,
2002). FFLs were also found to be significantly overrepresented in
other databases ofmicroRNAs and their predicted targets (Krek et al.,
2005; Lewis et al., 2005) with Z-score range between 1.39 and 6.03
(Shalgi et al., 2007). Other TF-microRNA studies demonstrated that
in the circuitry of gene regulation via intermediate microRNAs, in
mouse and human, and the FFL motif is also enriched (Tsang et al.,
2007). This suggests that FFL is an important signature of real GRNs
that represent either direct or indirect interactions between genes.

In the present study the significance of 3-node motifs in
four directed GRNs based on experimentally verified
transcriptional interaction databases were evaluated. In
agreement with previous studies (Lee et al., 2002; Milo
et al., 2002; Boyer et al., 2005), it was found that the feed-
forward loop (FFL) is the only motif that is overrepresented.
This motivated us to develop a novel motif-based preferential
attachment algorithm called FFLatt for simulating realistic
structures of GRNs that are enriched with the FFL motif. The
networks generated by FFLatt demonstrate structural
properties that agree with biological GRNs, and have good
robustness in stability analyses. Given their realistic
properties, they are well suited for fair and robust
evaluation of the performance of GRN inference algorithms.

METHODS

Transcriptional Interaction Databases
Three biological databases that contain information of
experimentally validated transcriptional regulation were chosen
as ground-truth networks: RegulonDB (Santos-Zavaleta et al.,
2019) for E. coli (Balaji et al., 2006), for S. cerevisiae, and TRRUST
v2 (Han et al., 2018) forM. musculus andH. sapiens transcription
factor—target regulatory relationships.

Motif-Node Participation and Motif
Enrichment
We chose to test for node-motif participation for all possible
connected three-node motifs with no reciprocal links between
them (Figure 1). Reciprocal links were not considered as they are
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very rare in the biological networks studied here. To calculate the
motif-node counts, Nreal, for every node in the network we
calculated the presence of a given node in all different roles of
a given motif, N(i). and so for a set of nodes {1 = 1, . . . , M} in the
network of size M it could be framed as:

Nreal � ∑M
i�1
Nrole1(i) +Nrole2(i) +Nrole3(i) (1)

For example, node a could either participate in Role 1 (2
outgoing edges, 0 incoming), Role 2 (1 outgoing edge, 1
incoming), and Role 3 (0 outgoing edges, 2 incoming) of FFL
motif 1 but at the same time participate in different role of other
FFL motif 2 (Figure 2).

To test for motif enrichment, we calculated Z-score for every
motif type:

Nreal − μshuffled
σshuffled

(2)

where Nreal is the number of motif counts in the original
network, μshuffled and σshuffled are the mean and standard
deviation of motif counts in the distribution of shuffled
networks. Every network was shuffled with a preserved in/
out-degree for all nodes until at least 80% of edges in the
original network were swapped. To calculate the mean and
standard deviation of motif counts in the shuffled networks
every network was shuffled 10,000 times. To ensure that the
same type of nodes stay connected after shuffling, we
calculated the correlations between the degree of connected
nodes as weighted average nearest-neighbors degrees (Barrat
et al., 2004) in the original and shuffled networks.

Algorithm Description
The FFL-based generation algorithm starts with a nucleation step
where an input network is used to find a subnetwork of
predefined size (default 20 nodes) with all FFLs connected via
shared nodes as in all analyzed networks, almost all FFL motifs
share a common node with another FFLmotif (Table 1). To avoid
excessive parameters that could additionally control for in/out
degree distribution, the E. coli GRN graph was used for the
nucleation step. The degree distribution in the “FFL nucleus”
sampled from a biological GRN was utilized by the preferential
attachment rules as initial conditions to reconstruct a scale-free
topology when attaching new edges and nodes to the growing
network. The outline of the algorithm is presented graphically
(Figure 3).

Once the substrate is selected the algorithm adds nodes and
edges iteratively such that at every iteration, a candidate node is
selected with a random uniform probability. Once selected, one of
the four attachment rules (R1, R2, R3, and R4) is applied
(Figure 4) based on four predetermined probabilities (p1, p2,
p3, and p4) that add up to 1. The iterations are repeated until the
required number of nodes in the network is reached.

If the random float number r1 is less or equal to p1 then R1 is
picked. For the R1 rule we applied the modified preferential
attachment algorithm from Abdelzaher et al. (2015a) with a
power-law kernel:

P(g) � Kγ
g

∑n
i�1
Kγ

i

(3)

where Ki denotes node-degree connectivity, P(g) is the probability
that a new node will be connected to existing node g, and ɣ is a
parameter that controls the shape of the out-degree distribution.

If r1 is greater than p1 then one of the motif-based preferential
attachment rules (R2, R3 or R4) is applied, and so 1-p1
corresponds to the desired percentage of nodes that participate
in FFL motifs. For R2-R4 rules, one of the already existing FFL
motifs is picked based on it’s connectivity with the others.

Once the candidate motif and rule are chosen, a new random
float number, r2, is generated. If 0 < r2 7 p2, the R2 rule is
applied. In that case, two new edges and one new node will be
added to the existing node so the new FFL motif is formed. If r2 >
p2, one of the R3 or R4 rules is selected with equal probability. For
the R3 rule, two edges are added to nodes in existing FFLmotifs to
create a new FFL motif. For the R4 rule, and one edge is added
between nodes in two existing FFL motifs to create a new FFL
motif. If R2 is applied, it creates an FFL motif where one node has

FIGURE 1 | Motif collection. The five possible three-node motifs with 2 or 3 unidirectional links.

FIGURE 2 | Node participation in FFL motif. An example of 3-node motif
counts given on an FFL motif. Node a plays different roles in two FFL motifs
[(a c) and (d, a, and e) respectively]. Colors represent different roles.
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only incoming edges. If R2 or R3 is applied, it creates an FFLmotif
where all participating nodes have at least one incoming and one
outgoing edge. See Figure 4 for details.

All nodes have to have an out-degree smaller or equal to a
threshold Kmax after which no new outgoing edges are added. If
the candidate motif doesn’t satisfy the conditions for a chosen
FFL attachment rule, another candidate motif picked and this is
repeated until a motif is found that meets the rule conditions. If a
new motif is created, the library with FFL motifs is updated.

When the desired network size is reached, the algorithm
adjusts the sparsity (average number of connections per gene)
until it reaches the set sparsity level in terms of average links per
node. If the network is too dense, edges are selected for removal
based on out-degree node connectivity so that an edge is
proportionally more likely to be removed if it is attached to a
node with a high out-degree. If the network is too sparse, edges
are added to nodes selected proportionally to their out-degree
connectivity, connecting them to randomly selected nodes. When
network generation is completed, the network is saved as an
unweighted directed graph.

Network Generation
For network simulation comparison five algorithms were chosen:
FFLatt (developed in present study), GeneNetWeaver (GNW;
Schaffter et al., 2011), NetworkX directed scale-free graph
algorithm (NetworkX; Hagberg et al., 2008), and sparse

uniformly distributed random matrix with and without
allowing for feedback loops in the network (DAG and
RandG; Guo and Amir, 2021). DAG and RandG matrices
were binarized by setting all non-zero elements equal to 1.
The NetworkX graph algorithm was modified to control for
sparsity as the FFLatt algorithm does, i.e., edges are added to or
removed from nodes proportionally to their out-degree node
connectivity. For network generation of different sizes with
FFLatt, the set of transcriptional interaction graph properties
estimated from the E. coli transcriptional interaction network
(Table 1) was used. For each organism, the number of nodes
that participate in FFL motif was used to set p1, with p2 equal
to (1-p1)*0.9, and p3=p4=(1-p1)*0.05 respectively. For
network generation of different sizes with other algorithms
(except GNW), only network size and sparsity parameters
were taken into account as only controllable parameters
available. For network generation/subselection with GNW
the following (default) parameters were used: -random-seed,
--greedy-selection, --keep-self-interactions as well as the size of
the subtracted network.

When mimicking the E.coli transcription network model,
all three-node cycles were disrupted, by removal of one edge,
as they are absent in the target network. The removal was done
by deleting the outgoing edge of the node with the highest out-
degree and an edge was instead attached to a random node
with a probability based on the connectivity of each node.

TABLE 1 | Biological GRNs’ graph properties.

Organism # Of
nodes

% Of
nodes that

participate in
FFL motifs

% Of
FFL motifs

sharing nodes
with other

FFLs

Sparsity In-degree Out-degree

E. coli 1,917 37.4 99.1 2.328 1.106 1.222

S. cerevisiae 4,441 27.0 100 2.899 1.421 1.477

M. musculus 2,862 31.5 99.7 2.643 1.274 1.369

H. sapiens 2,456 34.7 99.9 2.944 1.364 1.580

FIGURE 3 | Graphic outline of the FFLatt algorithm. It starts with selecting a seed from the input network, and then iteratively grows the nucleus until the required
size is reached. Finally, the sparsity of the network is adjusted according to the sparsity level.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8156924

Zhivkoplias et al. The FFL Attachment Algorithm

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


To mimic the complete three-node motif profile in biological
GNRs in which non-FFL motifs are depleted, an optional motif
depletion step can be executed. Here all three-node cycles are
converted to FFL motifs by swapping the direction of one of the
edges. In addition, up to one tenth of the cascades that do not share
edges with FFL motifs were used to create new FFLs by adding an
edge. The total number of edges that was used for motif conversion
was taken into account when adjusting the network sparsity.

For stability analysis, self-loops (if any) were removed from
network graphs generated with above mentioned algorithms
before applying the stability analysis model.

Stability Analysis Model
To measure the stability of a network, i.e., how a network graph
structure affects the dynamical stability of a gene regulatory
interaction model, we utilized the model developed by (Guo
and Amir, 2021) that explores how the dynamics of protein and
mRNA concentrations control the transcriptional regulation. The
model allows for multiple proteins acting on the same gene, and is
defined by the authors as:

gi( �c) � gi0 +∏
j

(1 + γijfij(cj)) (4)

where gi and gi0 is the effective gene copy number of gene i with
and without input of other genes respectively, cj is the
concentration of transcription factor j, and γij relates to the
strength of the regulation of gene i by cj. The functional
relationship between the transcription factor and target gene,
fij, is modelled as a sigmoid Hill function:

fij(cj) � chj
Kh

ij + chj
(5)

where h is the saturation binding coefficient, i.e. the number of
proteins required for saturation of binding to DNA, and K is the
protein concentration threshold needed to produce a significant
increase in mRNA.

The process of gene expression could be described as coupled
dynamics of protein and mRNA concentrations. It was shown
that in yeast (Zhurinsky et al., 2010) and mammalian cells
(Schmidt and Schibler, 1995), the RNA polymerase
concentration limits the transcription of mRNA, and the
number of ribosomes limits the process of translation. The
general transcription model (4) that connects transcription
rate of gene i and the number of RNA polymerases can then
be described as:

dCmi

dt
� kmϕi( �c)n − Cmikpcr − Cmi

τ
(6)

dci
dt

� kpcr(Cmi

CmT
− ci) (7)

where n is the total number of RNA polymerases, Cmi is the
mRNA concentration of gene i, CmT is the concentration of all
mRNAs, ϕ is the gene allocation fraction of gi( �c) controlled by
RNA polymerases active on gene i, km is the transcription rate of
RNA polymerase, kp is the translation rate of the ribosome, cr is
the ribosomal concentration, and τ is the degradation rate
difference between proteins and mRNA.

We assume that mRNAs degrade much faster than
proteins, and as suggested by (Guo and Amir, 2021) we
can set dCmi

dt ≈ 0 to neglect fast dynamics aiming to simplify
the model. By substituting Cmi from 6 into 7, the dynamics
of transcription factors concentrations can be simplified as:

dci
dt

≈ kpcr(ϕi( �c) − ci) (8)

In such case, the stability of a steady-state in the dynamical
model is dependent on the Jacobian matrix A of size NxN:

A � kpc
ss
r (M − I) (9)

where cssr is the steady-state ribosomal concentration, M is the
gene-gene interaction matrix that consists of γij weights of the
regulation, I is the identity matrix, and N is the number of genes
in the system. The system is stable if the maximal real part of all
eigenvalues of M, λM, is smaller than 1, i.e., the real part of all
eigenvalues of A are negative. As the imaginary part of the
eigenvalues is ignored, both oscillatory systems and systems
without oscillations around the steady state are considered to
be stable.

In contrast to random matrix theory (May 1972) or the
generalized models (Gross and Feudel, 2006; Gross et al.,
2010), the Jacobian matrix here is not a random matrix nor
approximated through studying system bifurcations. In the Guo
and Amir model it is derived by applying a knowledge-
driven modelling approach which we find convenient for such
a well-studied biological process like transcription. We applied
this model to all network graphs simulated with different
algorithms. Each graph, in a form of adjacency matrix, was
supplied as a binary interaction matrix. For each replicate of a

FIGURE 4 | Attachment rules that create FFL motif enriched network;
p1, p2, p3, and p4 correspond to probabilities for choosing rule R at the next
iteration while growing network. FFLTTG and FFLTTT correspond to different
FFL motif types, where G or T (Gene or Transcription factor) indicate
whether a participating node has only incoming edges (G), or at least one
outgoing edge (T). The red dotted arrows here show new edges added to the
network and the solid blue arrows show edges participating in the new FFL
motif with the new edges.
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different size generated with a given algorithm, we repeated
assigning the network graph with link strengths 10 times. To
focus on the effect of the GRN structure and FFL content on
stability, we forced the distribution of link strengths of all GRNs
to be similar. This was done by randomly setting half of the links
in the binary interaction matrix to be upregulated and the other
half downregulated (setting max (γij) and min (γij) to 1.5 and −1.5
respectively as boundaries of a normal distribution). In every trial,
we first numerically solved for the ribosomal concentration cssr
with which the system reaches its non-zero steady state with Eq.
8. Given cssr , A was found such that it only has negative real part
eigenvalues using Eq. 9 by optimizing M, and the highest
eigenvalue in λM from this solution was compared across
networks of different sizes.

RESULTS

Feed-Forward Loop is the Only Enriched
Three-Node Motif in Biological Gene
Regulatory Networks
Of all possible 3-gene network motifs with 2 or 3 unidirectional
links, we found a strong enrichment relative to shuffled networks
of the FFLmotif in the networks studied here, which are networks
that mainly capture transcription factor to target interactions
(Supplementary Table S1). This was previously shown for E. coli
(Milo et al., 2002) and S. cerevisiae (Lee et al., 2002). We also
found that the cascade, uplink, and downlink motifs were
consistently and significantly (p-value < 0.05) depleted in all
four target networks. To ensure that the shuffling procedure
produced topologically similar networks, we verified that the
distribution of correlations between the degree of connected
nodes was similar for the original and shuffled networks
(Supplementary Figure S1).

All depleted motifs are 3-node motifs with two edges
(Figure 1), and these have previously been shown to be
significantly depleted in other biological networks, for instance
in a protein structure network and a human brain functional
network (Mirzasoleiman and Jalili, 2011). However, how the
depletion of these motifs contributes to the function of the
gene circuitry, and how it relates to the evolution of gene
regulatory networks, remains to be answered.

We found that FFL is the only enriched motif, and this was
observed in all analyzed networks (Supplementary Table S1).
Almost all FFL motifs share a common node with another FFL
motif, as this fraction ranges from 99.1% in the E. coli GRN to
100% in S. cerevisiae (Table 1). The fraction of nodes that
participate in FFL motifs ranges from 27 to 37.4%. This
inspired us to develop a GRN generation algorithm that
attaches nodes to form connected FFL motifs at a high rate.
For each GRN we also calculated the average number of edges per
node, here referred to as sparsity, and average in- and out-
degrees, and these properties were also used as targets for the
algorithm.

Each regulatory interaction in the FFL motif can be either
positive or negative, i.e., activating or inhibiting, resulting in

eight different types that can act as e.g. accelerators, delay-
generators or pulsers (Mangan and Alon, 2003), resulting in
different dynamics of gene circuits. Given the wide variety of
FFL types and their importance to GRN dynamics, an unsigned
in silico GRN graph needs a large number of FFLs to
accommodate these. A combination of the eight signed
types of FFL motifs will in turn reflect a realistic flow of
GRN circuits.

We generated a set of GRNs of different sizes from 500 to
1,500 nodes, 10 replicates for each size, using five different
algorithms: FFLatt, GNW, NetworkX graph, RandG, and
DAG. For each algorithm we analyzed four properties of
their GRNs: the number of nodes that participate in FFL
motifs, network sparsity, average in- and out-degree within
the network. We repeated these simulations for all four
organisms, as they have different graph properties. The
results for E. coli are shown in Figure 5, and for the other
organisms in Supplementary Figures S2, S3, and S4. Each
organism-related GRN was used to set the topological
parameters in the GRN simulated by FFLatt as described in
Methods.

To assess the accuracy of GRN inference algorithms, the
topological parameters such as in- and out-degree
distribution and sparsity should be controlled when
simulating data for benchmark analysis. We found that
sparsity as well as out-degree of artificial networks
generated with the subnetwork selection based GNW
algorithm deviates considerably from the target networks
for E. coli in sizes 500 and 750 (Figures 5B,D), for S.
cerevisiae in size 500 (Supplementary Figures S2B, S2D),
and in all sizes for M. musculus and H. sapiens
(Supplementary Figures S3B, S3D, S4B, and S4D). While
this alone does not indicate a poor performance of the GNW
algorithm, it does advocate for the necessity of network
generation algorithms to control topological parameters.

More importantly, when subsetting networks from
biological GRNs with the GNW algorithm, we obtained a
significant underrepresentation of FFL motifs in sizes 500,
750, and 1,000 for E. coli (Figure 5A) in comparison with
FFLatt networks. Similar results were obtained for GRNs of
other organisms (Supplementary Figures S2A, S3A, and
S4A). To confirm and extend these findings, we performed
motif enrichment analysis on the simulated networks as well
as on biological GRNs (Figure 6; Supplementary Table S1).
This showed that FFL motifs are not significantly
overrepresented in GNW networks, but they are highly
significantly enriched in the E. coli GRN (Z-score 7.4). In
networks generated with other algorithms, the FFL motif was
also not significantly overrepresented, with the exception of
FFLatt whose networks were significantly enriched with
Z-scores between 2.95 and 4.98. By default, FFLatt does not
deplete other 3-node motifs, and but this is possible with an
optional motif depletion step. We explored how this step in
combination with various parameter values can mimic the
complete 3-node motif distribution profile with the FFL motif
enriched, and all other motifs depleted (Supplementary
Table S2).
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FIGURE 5 | Topological properties of simulated networks (E. coli). FFL motif node participation, average sparsity, in- and out-degree distribution in simulated
networks. For FFL-motif node participation counts, up to three participations for each node were allowed (in different roles). Each data point was calculated as the
average of ten different replicates of each network size. Error bars represent standard deviation.

FIGURE 6 |Motif enrichment analysis of 3-node network motifs in simulated networks (E. coli). For networks generated with GNW, the E. coli RegulonDB (Santos-
Zavaleta et al., 2019) database was used. For networks generated with FFLatt, we used the graph properties for E. coli specified in Table 1. RandG is a random
assignment of links and DAG is the same with cycles removed. NetworkX graph GRNs are scale-free. For RandG, DAG, and NetworkX graph GRNs we used the E. coli
network sparsity.
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Topology, Motif Composition, and Network
Stability
In biology, random matrix theory, that seeks to understand the
properties of matrices with randomly drawn elements, is known
from R. May’s research on the stability of large biological systems
(May 1972). He demonstrated that the stability of a large
ecological system depends on satisfying the following inequality:

1> α

nC

√
(10)

where α is the average interaction strength, n is the number of
species, and C is the density of interactions between them.
Therefore, the larger a system gets the more unstable it
becomes unless the sparsity and/or interaction strengths are
scaled down accordingly. May’s approach has been proven to
be highly valuable to other biological networks (Aljadeff et al.,
2015), including those that aim to describe gene regulations (Prill
et al., 2005; Stone, 2018).

It was earlier suggested that motif composition contributes to
fault-tolerance in transcriptional networks (Roy et al., 2020). To
test if the structural composition is important for stability in
artificially generated networks, we analysed the stability of the five
network models using the method by Guo and Amir (2021). As
expected, all GRNs with fixed sparsity and interaction strengths
became more fragile when increasing in size. We found that
GRNs with different motif profiles demonstrated different levels
of network stability (Figure 7). The RandG GRNs that were
neither enriched nor depleted with any 3-node motifs (Figure 6)
were far less stable than the other ones. The DAG GRNs which
are generated like RandG GRNs but without cyclic motifs were
more stable but still considerably less stable than NetworkX,
GNW, and FFLatt GRNs. We note that NetworkX, GNW, and
FFLatt GRNs have different network motif abundances, such as
either depleted or enriched FFL motifs, and yet they show similar

stability. The abundance of the FFLmotif alone therefore does not
seem to be amajor factor for network stability, which is congruent
with previous findings about non-importance of the FFL motif to
system robustness under random node failure test (Abdelzaher
et al., 2015b).

We note that the two lines that represent size-dependent
stability of DAG and RandG GRNs have a steeper slope than
the other three. This means that as the GRN increases in size,
DAG and RandG GRNs become less stable faster than the other
three. To find a reason for this, we analyzed the degree
distribution of the GRNs. Since RandG and DAG networks
are sparse uniformly distributed random binary matrices, their
degree distributions do not follow the power-law and therefore
they are not scale-free (Figure 8). This suggests that a scale-free
topology which has been previously found to be central for
creating a robust system, protecting the GRN from random
mutations (Greenbury et al., 2010), can in fact help gene
regulatory systems to reach a stable state after perturbation.

DISCUSSION

Here we present a new algorithm, FFLatt, for generating realistic
directed GRN graphs to enable more accurate and authentic
performance evaluation of GRN inference methods. The novelty
of the presented algorithm is that it generates networks with
boosted FFL motifs, which are known to be important for
network dynamics. Besides being enriched with the FFL motif,
the resulting GRN graphs generated with FFLatt exhibit
topological properties similar to experimentally validated
biological GRNs.

We show that the motif profile and topological properties of
FFLatt network graphs demonstrate a biological stability
comparable with other models, such as the NetworkX and
GNW algorithms. It is particularly important for network

FIGURE 7 | Stability of randomly wired simulated network graphs. λ is
the lowest eigenvalue of the interaction matrix M. Each data point was
calculated as the average of ten different repeats of overlaying links chosen
randomly with strengths from a standard distribution, with
corresponding semi-transparent areas indicating the 95% confidence interval.

FIGURE 8 | Degree distributions in simulated networks generated by
different algorithms. GRNs of sizes 500, 750, 1,000, and 1,500 were used, ten
of each size. A power-law distribution should generate a straight line.
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inference methods working with steady-state gene expression
data as many of them, for instance Least-Squares with Cut-Off
(LSCO; (Tjärnberg et al., 2013), LASSO (Tibshirani, 1996;
Friedman et al., 2010), LASSO-VAR (Larvie et al., 2016), and
GENIE3 (Huynh-Thu et al., 2010) aim to infer a stable static
network from steady-state data. To summarize, the FFLatt graph
generation algorithm provides an opportunity to simulate
biologically meaningful network graphs that can be wired with
realistic biological dynamics.

We also noted that the FFLatt networks were enriched with
three other motifs: uplinks, downlinks and cascades whereas in
GNW networks and biological GRNs these motifs are usually
depleted. Sorrells and Jonhson (2015) suggested that in biological
GRNs, FFL formation proceeds through a non-adaptive rewiring
of gene regulatory regulation which could explain how the
abundance of FFLs and the depletion of uplinks, downlinks,
and cascades is coupled. The algorithm can be run to allow
for depletion of other 3-node motifs while growing the network.
However a reason that such depletions are important for network
dynamics is yet to be found. A thorough search of the relevant
literature did not yield in related articles. We also could not find
evidence that different three-node motif profiles affect network
stability. NetworkX, GNW, and FFLatt motif profiles are fairly
different yet they demonstrated comparable stability across
different sizes. While being out of scope for this study, it
remains an interesting question how the composition of more
complex and higher-order structures known to be present in
GRNs (Benson et al., 2016; Gorochowski et al., 2018) could
contribute to stability of the system.

In this article we focus on the proof of concept of the FFL
attachment algorithm to demonstrate its necessity and feasibility.
However, to increase model performance, it could be extended
with other parameters. For example, to better capture “small
world” (Watts and Strogatz, 1998) structural properties that are
known to be present in biological networks, one parameter could
be a desired number of biological modules so that within each
module the connectivity is higher than in between them. The
clustering algorithm should however be biologically motivated so
that the connection between modular graph structure and
expression dynamics is clear.

Despite a continued uncertainty of how structural properties
and functional modularity of GRNs relate to each other, some
patterns such as FFLs are known to be key signatures of
transcriptional regulation networks. Here we developed a
novel algorithm that generates biologically realistic structures
of large artificial gene regulatory networks with controlled size,
sparsity, topology, and number of FFLs. The implementation
executes with reasonable runtimes (Supplementary Figure S5).
FFLatt graphs are binary and can thus assume a wide range of
dynamical structures with signed strengths. They could be used as

input to already established tools based on Hill function kinetics
such as GNW, which allows for knock-out and knock-down
perturbation designs when generating expression data, and some
control of the number of nodes, including the number of
transcription factors, based on a user-defined input network.
To generate expression data it utilizes a non-linear ordinary
differential equations (ODE) model for gene expression, and
stochastic differential equations (SDEs) for molecular noise
generation. Potentially, they could also become a part of future
deep learning frameworks that aim to model gene expression
from DNA sequence (Zrimec et al., 2020; Avsec et al., 2021). In
such frameworks, FFLatt networks could be used as a deep
learning model constraint to incorporate prior knowledge of
each node participation in FFL motifs. As a result, we believe
that it will contribute to future development of benchmarking
tools that could fairly and accurately evaluate the performance of
GRN inference methods.
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