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ABSTRACT Human health is threatened by bacterial infections that are increasingly
resistant to multiple drugs. A recently emerged strategy consists of disarming patho-
genic bacteria by targeting and blocking their virulence factors. The type VI secretion
system (T6SS) is a widespread secretion nanomachine encoded and employed by
pathogenic strains to establish their virulence process during host invasion. Given
the conservation of T6SS in several human bacterial pathogens, the discovery of an
effective broad-spectrum T6SS virulence blocker represents an attractive target for
development of antivirulence therapies. Here, we identified and validated a protein-
protein interaction interface, TssK-TssG, as a key factor in the assembly of the T6SS
baseplate (BP) complex in the pathogen enteroaggregative Escherichia coli (EAEC). In
silico and biochemical studies revealed that the determinants of the interface are
broadly conserved among pathogenic species, suggesting a role for this interface as
a target for T6SS inhibition. Based on the high-resolution structure of the TssKFGE
wedge complex, we rationally designed a biomimetic cyclic peptide (BCP) that
blocks the assembly of the EAEC BP complex and inhibits the function of T6SS in
bacterial cultures. Our BCP is the first compound completely designed from prior
structural knowledge with anti-T6SS activity that can be used as a model to target
human pathogens.

IMPORTANCE New therapeutic options are urgently needed to fight drug-resistant and
life-threatening infections. In contrast to antibiotics that inhibit the growth pathways
of bacteria, the antivirulence strategy is a promising approach to disarm pathogens by
interfering with bacterial virulence factors without exerting evolutionary pressure. The
type VI secretion system (T6SS) is used by many pathogens, including members
of the antibiotic-resistant ESKAPE bacteria (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp.), to establish their virulence during the invasion of the
human host. Although the T6SS is undoubtedly involved in pathogenesis, strat-
egies targeting this virulence factor are crucially lacking. Here, we used a combi-
nation of genetics, microbiology, biochemical, biophysics, and bioinformatics
approaches to rationally design a biomimetic peptide that interferes with T6SS
assembly and functioning. This study represents a novel proof of concept for an
antivirulence strategy which aims to interfere with the assembly of the T6SS.
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During the past half-century, seven new antibiotic classes have been approved by
the Food and Drug Administration (FDA) (1). None of them is efficient against the

Gram-negative WHO priority list ESKAPE pathogens, namely, Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa and Enterobacter species, which are responsible for approximately 75% of
infections and deaths by antibiotic-resistant bacteria (2, 3). In this postantibiotic era,
new therapeutic options are required to fight against drug-resistant and life-threaten-
ing infections. The antivirulence strategy is a promising approach that seeks to disarm
and neutralize pathogenic bacteria by interfering with bacterial virulence factors instead
of growth pathways. Virulence factors are bacterial products that promote disease by ei-
ther damaging the host or circumventing and evading the immune system (4). As they
are not essential for growth, blocking virulence factors does not impose a strong evolu-
tionary pressure on bacteria and hence could serve as an alternative or complement to
traditional antibiotics (5–7). Virulence factors are numerous and include secretion appara-
tus involved in toxin translocation across the bacterial envelope (8). To date, nine secre-
tion systems have been discovered, and the type VI secretion system (T6SS) is one of the
most recently recognized examples (9–11). Genes encoding T6SS have been identified in
more than 25% of sequenced Gram-negative bacteria, including pathogenic ESKAPE
strains (12, 13). The T6SSs of P. aeruginosa, Aeromonas hydrophila, and Vibrio cholerae act
on the host cytoskeleton to promote internalization (14) or to impair phagocytic functions
(15, 16) and contribute to virulence in mouse models (17, 18). The T6SS promotes the in-
tracellular spread of Francisella tularensis, Yersinia pseudotuberculosis, Burkholderia mallei,
and Edwardsiella tarda, and T6SS mutants consistently exhibit a virulence defect in vivo
(19–22). Similarly, the T6SS of Acinetobacter baumannii causes a host viability decrease in
Galleria mellonella (23), while Salmonella enterica serovar Typhimurium, Shigella sonnei,
and Vibrio cholerae employ the T6SS to disrupt the intestinal microbiota and colonize the
host gastrointestinal tract (24–27). Although the T6SS is undoubtedly involved in patho-
genesis initiation, strategies targeting this virulence factor are crucially lacking (28).

The T6SS belongs to the broad family of contractile injection systems, including
bacteriophages, R-pyocins, and the metamorphosis-associated contractile structure
(MAC) (29–32). The T6SS machinery includes a needle-like structure loaded with effec-
tors and wrapped into a sheath built in an extended metastable conformation from an
assembly platform, the baseplate (33). The T6SS contractile sheath is made of the TssB/
C subunits surrounding an inner tube composed of HCP proteins and tipped by the
VgrG puncturing spike (34–37). The cytoplasmic contractile tail is anchored to the bac-
terial cell wall through the TssJ-TssL-TssM transenvelope complex (38–40). Contraction
of the tail leads to the perforation of the target cell and the delivery of a broad reposi-
tory of effectors into both eukaryotic and prokaryotic cells (41–44).

The T6SS baseplate is a central piece of the T6SS machinery as it connects the tail
to the membrane complex and initiates needle polymerization (33, 45–47). This com-
plex includes the proteins TssF, TssG, and TssE, respectively, homologous to the T4 bac-
teriophage baseplate proteins gp6, gp7, and gp25, as well as TssK, which shares struc-
tural properties with siphophage receptor-binding proteins (36, 45, 46). TssK interacts
with TssG, which is stabilized by TssF, resulting in the formation of the TssKFG wedge
complex, representing an early T6SS baseplate building block homologous to the T4
baseplate wedge complex (45, 48–50). Recently, the high-resolution structure of the
TssKFG complex from the pathogen enteroaggregative Escherichia coli (EAEC) has been
solved and provided incisive insights into the structural organization of the protein
complex (50, 51). This 500-kDa complex is composed of a monomeric TssG serving as a
central backbone that interacts with a TssF dimer and two TssK trimers. While TssG
contacts TssF proteins throughout its structure, the interaction with the two TssK
trimers is localized and mediated by two small loops (foot 1 and foot 2) at the C termi-
nus of TssG. Foot 1 (residues 216 to 252) and foot 2 (residues 300 to 330) form two tri-
angular loops following the C3 symmetry of the TssK trimer and interacts with its N-ter-
minal region (residues 1 to 18). Recently, we showed that overproduction of a
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truncated version of TssG lacking foot 1 and foot 2 interferes with baseplate assembly
and leads to T6SS function impairment (50).

In this study, we deciphered the TssK-TssG interface of EAEC and assessed its rele-
vance as a target to hinder T6SS-associated virulence. After validating the role of TssG
feet in T6SS baseplate assembly and functioning, we investigated the sequence deter-
minants of the TssK-TssG interacting region. Based on the available structures of the
TssK-TssG interface and multiple-sequence alignments (MSA) of homologous proteins,
we identified interacting motifs that we validated through site-directed mutagenesis
coupled to functional assays. Guided by this structural and biochemical knowledge, we
rationally designed a cyclic peptide able to interfere with T6SS baseplate biogenesis in
EAEC. Furthermore, we carried out a comparative analysis of the predicted protein-pro-
tein interaction interface of TssK-TssG on 17 pathogens harboring at least one T6SS
gene cluster. This analysis revealed a high conservation level of the TssK motifs tar-
geted by our peptide as well as a preserved TssK-TssG interacting region that we fur-
ther confirmed through cross-species protein pulldown experiments. Altogether, this
study highlighted a conserved protein-protein interface that plays a key role in T6SS
baseplate biogenesis and provided, to our knowledge, the first rationally designed
T6SS inhibitor that could serve as a model to reinforce our arsenal against clinical
pathogens and pave the way for new antivirulence inhibitors.

RESULTS
Validation of the TssK-TssG interface as a drug target. We analyzed the effect of

TssG foot mutation on T6SS biogenesis and functioning in the enteropathogenic orga-
nism EAEC. Using a chromosomally encoded and functional fusion protein of TssK and
the superfolder green fluorescent protein (sfGFP), we monitored T6SS baseplate bio-
genesis by fluorescence microscopy in EAEC (45, 50). In this context, the deletion of
both TssG feet abrogates the assembly of the baseplate (Fig. 1D and Fig. S1D). We pro-
ceeded with an in-frame chromosomal deletion of TssG foot 1 or foot 2, which resulted
in the total loss of T6SS activity, highlighting the crucial role played by these two TssG
structural elements (Fig. 1A and B). In order to diagnose at which stage the T6SS bio-
genesis was affected by TssG foot deletion, we biochemically analyzed the behavior of
the TssKFGE unit using native gel experiments and observed that deletion of either
foot 1 or foot 2 destabilizes the wedge complex (Fig. 1C and Fig. S1A and C). The TssG
variants have no impact on the production and stability of TssF and TssK, which ruled
out any indirect effect of TssG mutation on the stability of the wedge proteins (Fig. 1C
and Fig. S1A and C). Based on the structure of the wedge complex, which displays a
very localized interaction between TssG and TssK mediated by the feet, one could
hypothesize that the deletion of the feet would uniquely impair the interaction
between these two proteins. However, we found that the amount of TssG copurified
using TssF-based pulldown was significantly lower (4.6% and 1.1% compared to 74.8%)
when either of the 2 feet was deleted (Fig. S1B). We thus concluded that deletion of
TssG foot 1 and foot 2 impairs the interaction of TssG with TssK and reduces the associa-
tion with TssF. This was further confirmed using native polyacrylamide gel electrophoresis
(PAGE) analysis, which showed that no complex intermediates were observable when
foot 1 and/or 2 was deleted. Previous work suggested the importance of foot 1 and foot
2 in mediating the interaction with TssK through overproduction of TssG-derived interfer-
ing domains (50) or heterologous bacterial two-hybrid (BACTH) experiments (51). All this
accumulated evidence indicates that any manipulations of TssG feet (i.e., deletion, muta-
tions, and binding interference) has an important effect on the T6SS assembly and func-
tion and that the foot region of TssG represents a crucial target for therapeutic interven-
tion that aims to block the T6SS assembly and functioning.

Based on the role of TssG feet in T6SS biogenesis, we hypothesized that targeting
the interaction between TssK and TssG through a suitably designed molecule would
essentially reproduce the results of TssG manipulations and hence would be detrimen-
tal to T6SS function. For this purpose, we decided to perform an in-depth analysis of
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FIG 1 TssG foot domains are essential for T6SS functioning. (A) Architecture of the T6SS nanomachine. (Left)
The different subcomplexes of the T6SS are presented: membrane complex (MC), baseplate complex (BP),
and tail-tube complex (TTC). OM, outer membrane; PG, peptidoglycan; IM, inner membrane. (Center)
Assembly of the BP, highlighting the three main components: TssK (red), TssG (yellow), and TssF (blue). The
encircled inset shows the TssK-TssG interface. (Right) Structure of the fundamental unit, the wedge complex.
(B) Antibacterial assay. The number of recovered Escherichia coli recipient cells (in log10 CFU), indicating their
survival after 4 h of incubation against the indicated attacker cells. The assays were performed at least three
independent times, with technical triplicates, and representative technical triplicate measurements (circles)
are shown, with the corresponding average value calculated on all assays (white bar). (C) Native 4 to 16%
gel analyzed by immunoblotting using anti-His antibodies on BL21(DE3) lysate expressing TssK-6�His,
TssK-6�His plus TssFGE, TssK-6�His plus FGDFoot1E (tssG containing a deletion of the foot 1 domain), TssK-
6�His plus FGDFoot2E (tssG containing a deletion of the foot 2 domain). The TssK-6�His plus TssFGE
produced from BL21(DE3) cells shows the positions of two high-molecular-weight complexes (HMWCs) (*,
TssK trimer; **, TssKFGE wedge complex). Formation of the HMWCs was monitored in a variant of TssG
with either the foot 1 or foot 2 domain deleted. In each indicated construct, the TssK production level was
analyzed by SDS-PAGE followed by immunoblotting and used as loading control (bottom). The native gel
experiment was independently performed three times, and results of a representative experiment are

(Continued on next page)
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the TssK-TssG interface and identify critical motifs that can guide toward the rational
design of a biomimetic peptide (52). To better decipher the EAEC TssK-TssG binding
region and to highlight molecular properties required for its interference, we con-
ducted a conservation study using MSAs of EAEC close homologs. TssK is a trimeric
protein composed of three domains: an N-terminal b sandwich shoulder domain
(NTD), a 4-helix bundle middle domain, and a C-terminal a/b head domain (CTD) (46).
Mapping the amino acid conservation onto the TssK and TssG structures revealed a
clustering of highly conserved motifs located on the TssK NTD (Fig. 2A and B).
Remarkably, the TssK NTD has a conservation level that is higher than that of the full-
length TssK and TssG proteins, as well as TssG foot 1 and TssG foot 2, and even exceeds
the conservation level of TssB protein, which is one of the most conserved proteins in
T6SS (13) (Fig. 2C; also, see Materials and Methods). The high conservation level of the
TssK NTD, which directly interacts with the TssG feet, strengthens the hypothesis that
this region might serve as a target for therapeutical purposes.

TssG foot 1 has a conservation level lower than that obtained for the TssK NTD,
although similar to that of the full-length TssK, while foot 2 is very variable. Nevertheless,
both feet possess a conserved repeated pattern consisting of a hydrophobic amino acid
(e.g., leucine or methionine) followed by a small or a basic residue (e.g., glycine, serine, ar-
ginine, or lysine) alternating with a variable region, i.e., LGXXXX1LGXXXX2LG (referred to
here as the LG repeat). The first variable region (XXXX1) is heterogeneous in length and
composition, while the second (XXXX2) has a conserved length of about four residues,
and it is less variable (Fig. 2D). Substitution of the three hydrophobic residues in the TssG
LG repeat motif by an arginine in EAEC has been shown to impair TssK binding in vitro
(51). This observation indicates that the interaction between TssK and TssG is stabilized
by hydrophobic interplays between the conserved LG repeats of both TssG feet and the
TssK NTD. In agreement with these observations, the TssK NTD harbors three highly con-
served amino acids (W8, L14, and F19) forming hydrophobic cavities hosting the three LG
repeat motifs in each TssG loop (Fig. 2D and E). To analyze the role of these three interfa-
cial motifs, we performed alanine-scanning mutagenesis and created TssK variants (i.e.,
W8A, L14A, and F19A). In EAEC, a TssK transcomplementation experiment with a plasmid
expressing each TssK mutant did not restore T6SS-dependent killing of the prey (Fig. 3A).
Biochemically, these three mutations had no impact on the stability or the oligomeric
state of TssK (Fig. S1E) but abolished the direct interaction with TssG, as monitored by af-
finity copurification experiments where streptavidin (Strep)-tagged TssK variants were
used to pull down TssG (Fig. 3B). We thus concluded that the TssG-TssK hydrophobic
interaction is an absolute determinant for the entire wedge complex stability and is also
highly specific, since a mutation of each of the three side chains belonging to the hydro-
phobic pocket of TssK leads to the complete disruption of the assembly.

Design of a biomimetic cyclic peptide. Inspired by the specific TssK-TssG hydro-
phobic interaction deciphered above and its influence on the T6SS function, we aimed
to design a peptide inhibitor mimicking the arrangement of the TssG foot domains
bound to TssK. Structural analysis of the TssKFGE unit revealed that the TssG feet
region harbors an intrinsic triangular fold that fits the C3-symmetric shape of the TssK
NTD (Fig. 4). Following this observation, we hypothesized that a peptide with a cyclic
structure and LG repeats organized as in TssG feet might be sufficient to bind to the
TssK NTD and hence compete with TssG association (Fig. 4). We decided to design
such a peptide using the TssG foot 1 as a template for two main reasons: (i) foot 1 has
a higher conservation level than foot 2 (Fig. 2C) and (ii) foot 1 is less structurally com-
plex than foot 2. In fact, foot 2 has a partially globular fold and more intramolecular

FIG 1 Legend (Continued)
shown. (D) Fluorescence microscopy recordings showing TssK-sfGFP localization in the absence of TssG,
the TssG foot 1 domain (tssGDfoot1), or the TssG foot 2 domain (tssGDfoot2). The positions of foci
corresponding to fully assembled baseplates are indicated by arrowheads. Microscopy analyses were
independently performed three times, each in technical triplicate, and results of a representative
experiment are shown. Bars, 1mm.
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FIG 2 EAEC TssK-TssG interface conservation. (A and B) TssK and TssG residue conservation obtained with aligned EAEC variants mapped on the EAEC
wedge complex structure (PDB 6N38). A dense group of highly conserved residues can be observed on the top of TssK trimers. This is particularly visible in
panel B, in the top view of the trimer. TssG exhibits another group of conserved residues on its antenna (A), which is the domain involved in the
interaction with the two TssF copies of the wedge complex. (C) Conservation level for TssK, TssK NTD, TssG, TssG foot 1, TssG foot 2, and TssB on EAEC.
The numbers at the top of the bars indicate the amount of aligned EAEC homolog sequences used to compute the conservation level. (D) Sequence logos

(Continued on next page)
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contacts than foot 1. Based on the residue conservation analysis (Fig. 4B), we selected
the sequence between the second and the third LG repeats of TssG foot 1, SRPVMG
(positions 238 to 243), as a repeat unit. The SRPVMG unit was repeated twice to fill the
three hydrophobic cavities located within the TssK NTD (Fig. 4C), resulting in the
sequence SRPVMG-SRPVMG-SRPVMG. We applied the head-to-tail cyclization to create
a triangular shape that could best fit the TssK trimeric fold (Fig. 4C). In parallel and to
further substantiate the inhibitory potential of the biomimetic cyclic peptide (BCP), we
rationally designed two additional cyclic peptides for control experiments (Fig. S8A): (i)
a randomized version (SVRMPG-SPMRVG-SMVRPG) (see Materials and Methods) aiming
to evaluate the importance of the amino acid order in the binding to TssK NTD and (ii)
a mutated version generated by mutating each methionine to alanine (SRPVAG-
SRPVAG-SRPVAG) to explore the importance of the conserved methionine residue in
binding to the TssK hydrophobic pocket.

Molecular properties of the BCP and specificity of its binding to TssK. In order to
characterize the biophysical and binding properties of the peptide, a series of nuclear
magnetic resonance (NMR) experiments were performed. These experiments included
one-dimensional (1D) 1H-1H total correlation spectroscopy (1H-1H-TOCSY), 1H nuclear
Overhauser effect spectroscopy (1H-NOESY), and 1H-15N heteronuclear single quantum
coherence (HSQC) spectroscopy using its 15N natural abundance. 1H-15N HSQC spectros-
copy is of particular interest in characterizing the peptide, as each H/N correlation peak is
associated with the NH group of an amino acid in a particular chemical and magnetic
environment. Here, we observed only 5 correlations for the 5 observable amino acids out
of 6 (Fig. S7A), the last being a proline. This confirmed that the amino acids of the three
repeated (circular) sequences are equivalent (i.e., 3-fold axis symmetry). In addition to

FIG 2 Legend (Continued)
illustrating the residue conservation of the TssK-TssG interacting regions for EAEC close homologs. The height of each letter represents the information
content of the corresponding amino acid at that position in bits. Black boxes highlight the three hydrophobic residues forming the TssK NTD hydrophobic
cavity on top of TssK trimers and the TssG foot LG repeats. (E) TssK-TssG binding sites. The triangular TssG loops, foot 1 and foot 2, bind TssK trimers on its
N-terminal region. These contacts are mediated by hydrophobic interactions between the TssK NTD hydrophobic cavity and the conserved LG repeats of
both feet.

FIG 3 TssG foot domains are essential for T6SS functioning. (A) Antibacterial assay. The relative fluorescent level (in arbitrary units) and the number of
recovered Escherichia coli recipient cells (in log10 CFU) are indicated. The assays were performed at least three independent times, with technical triplicates,
and the measurements of a representative technical triplicate (circles) are shown, with the corresponding average value calculated for all assays (white bar).
(B) Interaction between Strep-tagged TssK (TssKS) and Flag-tagged TssG (TssGF) studied by affinity copurification. Copurification was carried between TssGF

and variants of TssKS. TssK harboring the mutations W8A, L14A, and F19A are indicated by TssK(W8A)S, TssK(L14A)S, and TssK(F19A)S, respectively. Soluble
extracts of E. coli BL21(DE3) cells producing the proteins indicated on top of the gels were submitted to an affinity purification step on a StrepTrap
column, pulling down Strep-tagged TssK. The lysate (total soluble material [L]), flowthrough (FT), wash (W), and eluate (E) were subjected to denaturation
by 12.5% acrylamide PAGE and subsequently immunodetected with the appropriate antibody. Immunodetected proteins are indicated on the right, while
molecular weight markers (in kDa) are indicated on the left. As observed for wild-type TssKS, the simultaneous presence of a band in the eluate of TssK
and a band in the eluate of TssG indicates the presence of interaction between the two proteins. As observed for all three TssKs mutants, the presence of a
band in the eluate of TssK and the absence of a band in the eluate of TssG indicate the lack of interaction.
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HSQC spectroscopy, the 1H-NOESY experiment did not exhibit any indications of a partic-
ular 3D folding (Fig. S7B). After addition of a 1:10 final concentration of TssK (1 part TssK
to 10 parts BCP), the 1H-15N HSQC correlations (same conditions as the free-peptide
experiment) totally disappear, while 90% of the peptide is supposed to be in the
unbound form, in solution. The 1H-15N HSQC spectrum could not be recovered by a lon-
ger data accumulation. This deleterious effect was also confirmed on the 1D 1H proton
NMR spectrum (Fig. S7C), exhibiting a strong broadening of the peptides peaks that
clearly indicates information transfer between the peptide and the protein either by
chemical exchange relaxation (millisecond range for kon/koff) (kon [association rate con-
stant] is the rate at which an interaction happens per second in a unimolar mixture; koff
[dissociation rate constant] is the fraction of complex which dissociates per second) or a
peptide/protein size cross-relaxation effect. Overall, these experiments confirmed the ab-
sence of an internal structure of the free peptide and confirmed our in silico prediction.

To evaluate the direct interaction between the BCP and its target TssK, we performed
isothermal titration calorimetry (ITC) experiments. The wild-type BCP and TssK interact
with an observable affinity (KD) of 60mM (Fig. 5A). The ITC binding signature of TssK-BCP
suggests that it is driven by a favorable enthalpy, presumably based on hydrogen bonds
and van der Waals interactions. The positive entropy suggests conformational changes
which could be responsible for the low affinity observed. To confirm the specificity of this
interaction, we performed a series of controls consisting of (i) mixing the BCP with the
TssK-L14A variant, which we previously demonstrated has lost its capacity to interact with
TssG, and (ii) incubating TssK with each of the control peptides. None of these conditions
led to a detectable ITC binding signal (Fig. 5A and Fig. S8B), demonstrating the direct liai-
son of BCP to the TssK target, precisely at the TssG foot binding site.

Inhibition of the EAEC TssK-TssG interface by the BCP. We conducted in vitro
and in vivo experiments to assess the potential T6SS-blocking activity of our BCP. First,
the assembly of the TssKFGE wedge complex was reconstituted in vitro on the surface
of a biolayer interferometry biosensor (Fig. 5). Briefly, biotinylated TssK trimers were

FIG 4 Biomimetic inhibitor in silico design. (A) EAEC wedge complex (PDB ID 6GIY). The box indicates the position of TssG foot 1,
the template used to design the inhibitor. (B) The residue conservation of TssG foot 1 calculated from EAEC variants was used
together with other indicators, such as coevolution, to select the biomimetic candidate segment (see Materials and Methods). (C)
A 6-residue peptide of foot 1 (from S238 to G243) was used to generate a cyclic peptide that mimics foot 1 in its interaction with
TssK trimer.
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FIG 5 Biomimetic peptide interfere with TssK-TssG interface. (A) Isothermal calorimetry was used to
demonstrate the specific interaction between TssK and wild-type BCP. (Left) Interaction between 25mM
TssK-WT, TssK-L14A and 1mM wild type BCP. (Top) Heat exchange upon TssK ligand titration with BCP
for TssK WT as ligand and BCP as analyte (blue curve), and for TssK-L14A as ligand and BCP as analyte
(red curve). (Bottom) Integrated data with binding isotherms (solid line) fitted to a single-site binding

(Continued on next page)
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immobilized onto a biosensor. Normalized bacterial cell lysate without TssFGE plasmid
was added to the TssK-bound biosensor to block free Strep sites. To demonstrate the
specific binding of TssFGE with TssK, normalized bacterial cell lysate expressing the
TssFGE protein partners was added to the bound TssK to form the TssKFGE wedge
complex (Fig. 5B and Fig. S2). TssK was shown to interact specifically with its natural
partners, with a maximum binding average response from three independent
assays of 0.1896 0.036 nm at 150 s association. When TssK was preincubated with
the different BCP constructs, i.e., the mutated BCP, the randomized BCP, and the
wild-type BCP, the maximum binding average responses of three independent
assays were 0.1696 0.016 nm, 0.1606 0.028 nm, and 0.1216 0.0102 nm, respec-
tively (Fig. 5B, inset), demonstrating that the wild-type BCP significatively interferes
with the TssKFGE formation and the control peptides have a negligible activity.

Modulation of bacterial competition by the BCP. Based on the BCP ability to bind
to TssK and to limit the in vitro binding of the TssFGE wedge components onto TssK, we
evaluated its T6SS interference potential on bacteria. We set up a competition experi-
ment between EAEC (predator, T6SS1) and E. coli (prey, T6SS2) strains (see Materials and
Methods) in the presence or absence of the BCP. Incubation of cells with 1 mM BCP is
accompanied by a drastic decrease of prey cells number, similar to what is observed in
the absence of BCP. We concluded that the BCP does not affect the killing ability of
EAEC when added directly in the competition mixture (Fig. S3C), which can be explained
by its physicochemical properties, which prevent its diffusion across biological mem-
branes. To test this hypothesis, we developed a protocol favoring BCP entry into bacte-
rial cells without any electroporation or chemical steps likely to impair T6SS activity (see
Materials and Methods). This procedure, relying on an osmotic change, has been applied
to the TssK-sfGFP strain, which allowed us to enumerate the number of fluorescent foci
and hence assembled baseplates (45, 50) in presence or absence of the BCP (Fig. 5C).
Osmoporation of the TssK-sfGFP strain with 1mM BCP increased significantly (;30%)
the proportion of bacteria with no observable foci compared to peptide-free treated
cells (Fig. 5C). In contrast, incubation with a 1 mM concentration of the control peptides
did not impact the number of fluorescent foci, which was comparable to that in the free-
peptide condition. Importantly, the peptide was not toxic for bacteria up to 1mM
(Fig. S3A), and the osmotic stress did not affect fluorescent-focus assembly (Fig. S3B).

Evolution of the TssK-TssG interaction interface. Our functional analysis and pep-
tide design revealed the determinants of the TssK-TssG interaction, which relies on
hydrophobic interplays conserved within EAEC. To assess whether BCP can target other
T6SS-harboring bacteria, we systematically compared the sequences of full-length
TssK, TssG, TssK-TssG interacting domains (i.e., the TssK NTD and TssG foot 1 and foot 2),
and TssB, which was used as a reference. For this purpose, we (i) collected the sequences
from bacteria encoding a T6SS directly linked to pathogenicity or with host-associated

FIG 5 Legend (Continued)
model. The constant heat dilution was removed before the integrated binding isotherms. The red
squares indicate the integrated data of TssK-WT and BCP, and the green triangles show the lack of
binding for TssK L14A and BCP. (Right) Signature plot of TssK-WT with BCP, suggesting an enthalpy-
driven interaction with a favorable DG. (B) TssF-TssG-TssE binding to biotinylated TssK. Binding
sensograms display responses from three independent assays of 47mM TssFGE binding to TssK in the
presence or absence of different 1mM BCP constructs in kinetic buffer. Each sensogram represents
three steps: initial baseline, association, and dissociation. Top to bottom: delta BCP (purple), mutated
BCP (green), randomized BCP (red), and wild-type BCP (blue). (Inset) Maximum association response at
150 s of TssFGE binding to TssK in the presence or absence of different BCP constructs. The standard
deviation is computed over three independent assays. Left to right: randomized BCP (red)
(0.1606 0.028 nm), mutated BCP (green) (0.1696 0.016 nm), wild-type BCP (blue) (0.1216 0.010 nm),
and delta BCP (purple) (0.1896 0.036 nm). (C) Biomimetic peptide diminishes TssK-sfGFP foci in vivo.
EAEC with a TssK-sfGFP chromosomic fusion was subjected to a hypo-osmotic shock in the presence of
1 mM peptide or in the presence of buffer for the control. After regrowing, cells were observed by
microscopy. (Top) Fluorescence microscopy illustrations of TssK-sfGFP foci with or without the peptide
and control peptides (mutated and randomized). Examples of foci corresponding are indicated by
arrowheads. Bar, 1mM. (Bottom) Focus quantitation from three independent experiments. The BCP
decreased TssK-sfGFP foci compared to both control peptides. The experiment was done in triplicate,
and ;500 cells were analyzed for each condition.
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activity (Table S1B and C), (ii) clustered the sequences based on the sequence similarity
and also their variants, and (iii) computed their conservation levels.

Unexpectedly, TssK and TssG have divergent sequence clustering patterns, while
being structural neighbors (Fig. 6). Indeed, clustering of TssB and TssG sequences
(Fig. 6D) followed the standard T6SS subtype classification (53) (Fig. S6B), whereas TssK
(Fig. 6B) did not. i2 is the only T6SS subtype that is consistently clustered in both TssK
and TssG as well as their interacting domains. Importantly, our EAEC T6SS model
(referred to here as EAEC3 to differentiate the three EAEC T6SS gene clusters under
study) belongs to this specific T6SS subtype. This pattern indicates the existence of a
conserved and specific TssK-TssG interface signature and suggests that the interfering
activity spectrum of the BCP applies not only to EAEC3 but also to other subtype i2
T6SSs, such as those of Klebsiella pneumoniae (K.p 1 and K.p 2), Yersinia pseudotubercu-
losis (Y.ps 3 and Y.ps 5), Yersinia pestis (Y.p 3), and Burkholderia cenocepacia (B.c 1)
(Table S1A; Fig. S6C).

The overall sequence conservation level was computed for the full-length TssK,
TssG, and TssB proteins as well as the interacting domains TssK NTD, TssG foot 1, and
TssG foot 2 of each pathogen (Fig. S4 and Fig. 2C). In general terms, the TssK NTD has a
higher conservation level than full-length proteins and TssG feet. TssG foot 2 is less
conserved than foot 1. Multiple-sequence alignments of TssK NTD for all pathogens
and their variants (2,482 sequences) show that the TssK NTD hydrophobic amino acids
W8, L14, and F19 are highly conserved, as they are for EAEC3 (Fig. S6A). Likewise, con-
sidering the MSA for all pathogens (3,712 sequences), the LG repeat motif is consis-
tently conserved in both feet (Fig. S6A). All these observations indicate that all the
TssK-TssG interfaces of pathogenic T6SS follow the same physicochemical rules as in
EAEC3, which consists of TssK hydrophobic cavities accommodating the TssG hydro-
phobic residues. Based on this analysis, we therefore expect that the BCP can bind to a
larger repertoire of TssK targets and hence have a greater spectrum of activity.

Proof-of-concept evaluation of the broad-spectrum activity of the anti-T6SS
BCP. Based on the high and low conservation levels, respectively, of the TssK NTD and
TssG feet, we hypothesized that the TssK-TssG hydrophobic interplay in EAEC3 is a gen-
eral binding mechanism. To challenge this hypothesis, we investigated the ability of
the EAEC TssK target to accommodate several TssG protein partners encoded in strains
clustered outside the T6SS i2 subtype. We selected three TssG homologs belonging to
different subgroups (Fig. 6A), including the pathogenic species Acinetobacter bauman-
nii (A.b subgroup i4b) and Pseudomonas aeruginosa H2 (P.a2 subgroup i1) as well as a
member of the human microbiota, Bacteroides fragilis (B.f subgroup iii). We performed
protein copurification experiments with TssK-TssG pairs and evaluated cross-species
interactions. No interaction was observed between TssKEAEC and TssGPa, while TssKEAEC

interacts with both TssGBf and TssGAb (Fig. 6A and Fig. S5B), and reciprocally, TssGEAEC

interacts with both TssKBf and TssKAb (Fig. S5D). To validate these interactions, we per-
formed the same experiments using the EAEC TssK variant mutated at the W8 residue.
Substitution of the TssK hydrophobic residue tryptophan by an alanine induces the
loss of interaction with TssGBf and TssGAb, suggesting that these proteins interact
through a mechanism similar to that in EAEC (Fig. S5C). Based on the interaction
between TssKEAEC and TssG homologs from non-co-occurring species, we proposed
that the TssK-TssG binding properties expands beyond the i2 subtype. Overall, the
high conservation of hydrophobic characteristics found in both protein sides com-
bined with biochemical experiments revealed that few determinants are required to
drive the interaction specificity between TssK and TssG. We thus propose that BCP pro-
vides a framework for the design of broad-spectrum T6SS inhibitors targeting multiple
bacterial pathogens.

DISCUSSION

The T6SS is a phage-related contractile machinery responsible for toxin secretion
into both eukaryotic and prokaryotic cells. This secretion apparatus is found in more
than 25% of Gram-negative bacteria, including the ESKAPE pathogens K. pneumoniae,
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FIG 6 Phylogeny and conservation of the TssK-TssG interface among pathogenic bacteria. (A) The TssK-TssG interface shares common
features among pathogenic bacteria. Summary of the results of copurification experiments presented in detail in Fig. S5. EAEC3 or P.a2

(Continued on next page)
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A. baumannii, P. aeruginosa, and Enterobacter species, where it plays a significant role
in either colonizing and damaging the host or manipulating and evading the immune
system (12, 23–27, 54–57). Although the T6SS is structurally well characterized and
meets all the criteria as a promising virulence factor candidate, a very limited number
of studies have attempted to develop anti-T6SS molecules or peptides. Certain studies
have used phenotypic screening (58), and others have employed a targeted approach,
such as blocking the interaction between the two sheath proteins (TssB and TssC) or
the dissociation of a toxin immunity complex (28, 59). Another study employed a nano-
body intracellularly expressed to block the assembly of the membrane complex (MC)
(60), which is limited in terms of a possible therapeutic application, since nanobodies
cannot cross the bacterial outer membrane. All these studies lack a molecular and
structural description of the hit binding site, which precluded hits-to-lead optimization
and a broad applicability to a large number of human pathogens, including the ones
from the ESKAPE list. In our study, we decided to combine structural, molecular, and
bioinformatics analysis with the aim of targeting a conserved molecular interface in
the T6SS baseplate that is crucial for the functioning of the whole nanomachine.

The TssK-TssG interface plays a pivotal and primordial role in the early stages of the
T6SS baseplate assembly, specifically, the two small unfolded TssG domains interacting
with the N-terminal region of TssK (50, 51). Using BACTH experiments, previous studies
demonstrated the total loss of interaction between TssK and TssG variants mutated in
either the foot 1 or foot 2 domain, suggesting that TssG requires two functional feet to
bind to TssK (51). In our study, we demonstrated that deletion of either TssG foot 1 or
foot 2 abrogates the formation of the TssKFGE wedge complex and is associated with
a loss of T6SS activity (Fig. 1), which revealed early-stage T6SS baseplate assembly as a
promising target. Overall, we provide strong evidence that TssG foot domains are
essential for T6SS activity and bind to key hydrophobic residues representing a dock-
ing surface on the TssK NTD. Interfering with this recognition step can be envisaged to
inhibit T6SS functioning through a peptide mimicking one of the two TssG feet with
hydrophobic characteristics required for TssK cavity binding.

The role of unstructured loops in macromolecular complex stability was reported
previously. For instance, the T4 phage TssG homolog gp7 protein connects the tail
fibers (gp9, gp10, and gp11) to the baseplate, allowing the communication of impor-
tant structural transitions. During contraction, a loop formed by residues 841 to 862 of
gp7 performs a “jump-rope”-type motion transferring the signal received from the
fibers to the gp25-(gp6)2-gp7-like wedge module responsible for the conformational
switch (49). In our T6SS model, TssG harbors two unfolded domains. The TssG foot 1
domain is a loop that is structurally independent from the rest of the protein. In con-
trast, TssG foot 2 is a partially folded region characterized by less structural autonomy.
Multiple-sequence alignments of TssG in EAEC and other T6SS-harboring pathogens
indicated a higher conservation level of the TssG foot 1 than TssG foot 2. Besides these
differences, both TssG feet impact T6SS activity to the same extent, which suggests
that they are good candidates for inhibition strategies.

While a number of studies have targeted a-helix and b-strand epitopes to block
specific protein-protein interaction interfaces (PP2I) (52, 61), loop-mimicking PP2I
inhibitors represent an enormous challenge, and very few bioinformatics tools have
been designed to help in this quest (62). The inhibition of a protein-protein interaction
is challenging. It requires either a robust and costly methodology to screen thousands
of compounds from a library or the rational design of interfering molecules guided by

FIG 6 Legend (Continued)
TssK was tested for the interaction with A.b, B.f, or P.a2 TssG. A positive interaction is reported with a plus sign, whereas a negative
interaction is reported with a minus sign. T6SS subtypes are indicated in the right column for each pair. (C to F) Hierarchical clustering of
TssK, TssG, and corresponding interacting domains using the closeness metric (see Materials and Methods). Diagonal values represent
the conservation level of a protein or a domain for a given pathogen, while out-of-diagonal values represent the similarity of a protein
or a domain calculated between two different pathogens. Gene cluster nomenclature is fully reported in Table S1A. For example, EAEC1
represents the first T6SS gene cluster found in the EAEC genome, while EAEC3 is the third. Clusters of pathogens that follow the
standard subtype classification for T6SS are indicated by the color of the matching square.
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the molecular description of the target (63). Usually, targeting the interaction between
TssK and TssG through a suitably designed molecule would have required the system-
atic screening of ligands able to bind to the target TssK, hence competing with TssG
foot docking (64–66). Instead, we decided to base our rational design on the structure
of the TssKFG wedge complex that we have obtained recently (50). We decided to
design a peptide interfering with the T6SS activity by targeting the crucial TssK-TssG
interaction. The TssK NTD is structured, has cavities, and is well conserved, revealing a
hot spot-interacting region. Remarkably, the TssK NTD can interact with the two differ-
ent TssG LG repeat domains, which vary in length and composition. This observation,
reflected by the lower conservation level of the TssG foot domains across EAEC var-
iants, suggests that TssK can accommodate different partners as long as they harbor a
hydrophobic motif with a triangular fold. Based on these criteria, we designed a circu-
lar peptide inhibitor inspired by the EAEC TssG foot 1 domain. The biomimetic cyclic
peptide binds to TssK and interferes with wedge protein TssFGE recruitment, which
consequently impairs baseplate biogenesis in permeabilized EAEC cells (Fig. 5C).

We evaluated the potential spectrum of our peptide through TssK and TssG sequence
analysis. The analysis of T6SS bacterial sequences revealed that our model EAEC with other
i2 subtypes encoded in Y. pestis, Y. pseudotuberculosis, K. pneumoniae and B. cenocepacia
and provided a first hypothetical picture of the spectrum of BCP activity. However, LG
repeats and the conserved hydrophobic cavity can be found beyond the i2 subtype, and
they are a general property of the TssG-TssK interaction, including that in A. baumannii and
B. fragilis, which has been confirmed by biochemical cross-species interaction experiments.
The human microbiota member B. fragilis encodes T6SS clusters with a significant role in
gut homeostasis and colonization resistance (67–69). The potential BCP interfering activity
on B. fragilis T6SS needs to be carefully considered to limit any collateral damage ensuing
from antivirulence treatment. However, enterotoxigenic B. fragilis (ETBF) is involved in colo-
rectal cancer (CRC) development (70), and more broadly, B. fragilis is found in a number of
antibiotic-resistant bacterial infections (71). Consequently, targeting the B. fragilis T6SS
might represent an alternative way to fight this pathogen. The bioinformatics analysis pre-
dicting the presence of LG repeats and hydrophobic cavities in the P. aeruginosa H2 TssK-
TssG interface contrasted with our biochemical experiments. This unexpected observation
indicates that molecular properties different from the LG repeats could additionally drive
TssK-TssG specificity and highlights the need to experimentally explore and validate inter-
face conservation across bacteria.

Several improvements can be considered for the BCP, for instance, its limited mo-
lecular diffusion in cell membranes. The BCP has a molecular weight exceeding 600Da,
which is the porin-mediated diffusion limit (72). To overcome this obstacle, we could
consider fusing our BCP with either siderophores (73) or cell-penetrating peptides
(CPPs). Examples of CPP-aided delivery include an inhibitor of bacterial FtsZ altering
the growth of S. aureus (74). Implementation of permeation rules increasing drug spec-
trum activity toward Gram-negative bacteria can be an alternative to rationally modify-
ing BCP diffusion properties (75). In addition to its low diffusion property, the inhibitory
effect of the peptide has been tested with a relatively high working concentration
(1mM). This, coupled with our observation that the BCP effect is maximum within the
first hour after peptide entry, suggests that both its low affinity and stability are impor-
tant to consider in the framework of future improvements. In spite of these limitations,
we think that the BCP can be used as a scaffold to design a class of clinically relevant
inhibitors with increased diffusion properties, better affinity for TssK, and improved ac-
tivity against T6SS function.

In general, this work provides an in-depth understanding of the EAEC TssK-TssG
interface, which has been proven to be a promising target for T6SS inhibition. We highlighted
molecular determinants required for the TssK-TssG interference that guided the rational design
of a biomimetic peptide for which the activity against EAEC validated the feasibility of our
approach. Bioinformatics analysis of the TssK and TssG proteins over 17 pathogens and corre-
sponding sequence variants (2,482 for TssK and 3,712 for TssG) revealed the high conservation
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level of the TssK target as well as the preserved triangular hydrophobic core binding motifs,
suggesting a broad inhibitory potential. We propose that our peptide could serve as a scaffold
to design large-spectrum antivirulence molecules and hence pave the way for the develop-
ment of anti-T6SS inhibitors.

MATERIALS ANDMETHODS
Data gathering. TssK, TssG, and TssB EAEC sequences were obtained from the genome of EAEC strain

55989 (Table S1C). Importantly, a single species might have more than one T6SS gene cluster. Using KEGG
(76) together with SecReT6 (77) annotations, we selected TssK, TssG, and TssB sequences from the 3 differ-
ent T6SS gene clusters on the EAEC genome (53, 78, 79). The first gene cluster (EAEC1) belongs to subtype
i1, the second (EAEC2) to subtype i4b, and the third (EAEC3) to subtype i2. In the present study, we used
EAEC3 as our T6SS model thanks to the available structural data of the TssK-TssG interface (wedge complex
cryo-electron microscopy [EM] atomic structures; PDB IDs 6GIY and 6N38). TssK, TssG, and TssB sequences
for other pathogenic T6SSs examined were also classified into their corresponding T6SS subtypes following
the information retrieved from KEGG and SecreT6 databases (Table S1B and C). Uniref90 (80) was down-
loaded and converted into a BLAST database using the makeblastdb application (81). We also downloaded
all bacterial genomes contained in the SGB collection metagenomic database (82). Using ORFM (83), we
identified all possible genes and translated their open reading frames from which putative protein sequen-
ces were converted into a BLAST database, using makeblastdb.

Homologous search. The search of homologous sequences for TssK, TssG, and TssB was conducted
using BLASTp (81) on the Uniref90 (80) and SGB databases (82). We queried the TssK, TssG, and TssB
sequences from T6SS EAEC1, EAEC2, and EAEC3 gene clusters, as well as all the gene clusters from a
selected list of pathogenic T6SSs (Table S1C). All these sequences, belonging to different gene clusters and
pathogens, are referred as to the query sequences here. Homologous sequences whose length was less
than 50% or more than 150% of the query sequence length were discarded. All the sequences resulting
from the multiple BLASTp searches were merged and clustered by 0.9 sequence identity using cd-hit (84).

Multiple sequence alignment. TssK, TssG, and TssB multiple-sequence alignments (MSAs) were gener-
ated by multiple rounds of (i) homologous sequence alignment performed by MUSCLE (85) and (ii) removal
of outliers by EvalMSA (86). After the last iteration, we manually curated the MSAs using JalView (87).

Clusters of variants. Each sequence from the MSA of a given protein was assigned to the most simi-
lar query sequence, using blosum62 as a similarity score (88). The assignment allowed us to cluster all
the sequences, where each cluster is a set of closely homologous variants of the corresponding query.
Clusters of variants were not overlapping, i.e., they did not have any sequence in common. For each
cluster, we removed the outlier sequences of the cluster by removing the lowest-scoring 25% of sequen-
ces. Similarly, we generated the cluster of variants also for the interacting domains, i.e., TssG foot 1 and
2 and the TssK NTD, by extracting the sequence of the domains from the corresponding MSA.

Closeness metric, conservation, and similarity level between clusters of variants. To quantita-
tively measure the conservation level of a cluster of variants and also the similarity level between different clus-
ters of variants, we defined a closeness metric between two clusters. Given two clusters of aligned sequences,
X = {si} and Y = {sj} with n andm aligned sequences, respectively, we can compute their closeness as

cðX;YÞ ¼ scoreðX;YÞ2 randscoreðX;YÞ
idenscoreðX;YÞ2 scoreðX;YÞ

where the score between X and Y is

scoreðX;YÞ ¼

Xn

i¼1

Xm

j¼1

sb62ðsi; sjÞ

n:m

and sb62 is the blosum62 score between the aligned sequences si and sj. Randscore is the minimum
score that one can get between two clusters of sequences:

randscoreðX;YÞ ¼

Xn

i¼1

Xm

j¼1

sb62 rðsiÞ; rðsjÞ
� �

n:m

where the function r(si) randomizes the sequence si, keeping the same length and amino acid composition.
Idenscore is the score obtained using identical sequences; thus, it is the highest score one can get:

idenscoreðX;YÞ ¼

Xn

i¼1

sb62ðsi; siÞ1
Xm

j¼1

sb62ðsj; sjÞ

n1m

Note that the closeness c(X,Y) is a normalized quantity, i.e., it ranges between 0 (as far as random
clusters) and 1 (as close as identical clusters). Furthermore, the metric is independent of the length of
the aligned sequences. This metric computes the similarity level between clusters of sequences when
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X is not equal to Y, and it computes the conservation level of a cluster when X is equal to Y. The conser-
vation level of a cluster of,5 variants is set to 0.

Data analysis, visualization, and storage. Residue conservation was computed with JalView (87)
and mapped onto the wedge complex structure (PDB ID 6N38) using Chimera (89) (Fig. 2A and B).
Residue frequencies (Fig. 2C and D and Fig. S6E) were mapped on the alignment using the WebLogo
(90) server. MSA figures (Fig. S8) were generated with JalView. Hierarchical clustering figures (Fig. 6 and
Fig. S7) were generated with seaborn (open-source Python package for statistical data visualization)
(91). All molecular visualizations were rendered by UCSF Chimera (89) All Python and shell scripts specifi-
cally developed for this work are available together with the initial genomic data (TssK, TssB, and TssG
sequences) and the resulting MSA (TssK, TssK NTD, TssB, TssG, TssG foot 1, and TssG foot 2) at https://
gitlab.pasteur.fr/ifilella/closeness-metric.

Peptide design. We started by selecting a six-residue sequence based on the EAEC3 foot 1
sequence (Fig. 2D). We selected the sequence residues of the second variable region (SRPV) together
with the third hydrophobic repeat (MG): SRPVMG (positions 238 to 243). Then, we used this sequence to
create a cyclic peptide, as follows. The structure of the chosen sequence was cloned twice, applying C3
symmetry about the trimeric TssK axis of symmetry. The three resulting peptide structures were linked
through the backbone, introducing N-C bonding restraints (bond, angle, and dihedral restraints intro-
duced by the PATCH command of CHARMM). We included an N-to-C-terminus bonding restraint, result-
ing in a head-to-tail cyclization of the peptide. Finally, the cyclic peptide was relaxed during a short mo-
lecular dynamics (MD) simulation to ensure its stability (Fig. 4).

Control peptide design. Two different control peptides were rationally designed: a mutated BCP
and a randomized BCP. The mutated BCP was obtained by simply mutating the three Met residues in
the 5th position of each BCP repeat to Ala. The randomized peptide was selected from a pool of 13,824
candidates. This pool of candidates was generated by independently permuting the four central resi-
dues of each BCP repeat (RPVM), while keeping the Gly and Ser in their original positions to conserve
their propensity to form a turn (like the one observed in the foot 1 TssK structure). To design a negative-
control peptide, we selected a sequence which we predicted to poorly bind to the trimeric TssK NTD.
We ran short MD simulations of all candidates and ranked them according to their total energy after a
final minimization. Finally, to avoid any functional redundancy with the original BCP peptide, we
selected the peptide that ranked the worst and at the same time did not have any residue at the same
position in the BCP sequence (except for the GS residues). The MD simulations of the peptide bound to
the TssK NTD were done with CHARMM (92), using the CHARMM22 force field. The initial backbone
structure was built from the original TssG foot 1-TssK cryo-EM model, by symmetrizing on the TssG 238-
to-243 backbone and the corresponding interacting TssK residues. The modeled TssK NTD sequence
was starting from Leu7 and truncated at Phe19. To increase the efficiency of the simulations, we used a
distance-dependent dielectric that mimicked the presence of the solvent. To stabilize the structure of
the TssK NTD, we applied an N-terminal acetylation and a C-terminal amidation and restrained the heavy
atoms of their terminal residues (residues 7 and 8 and residues 17 to 19) with a harmonic potential cen-
tered on their initial positions. The simulations, which ran for 200 ps for each candidate, generated a
total of 100 snapshots per sequence. The snapshots were subsequently minimized, and the median of
the 100 final total energies was used to rank the peptides (Fig. S8).

Coevolution analysis. Residue coevolution identified between TssG and the TssK NTD was detected
by combining RaptorX (93) complex contact prediction and Gremlin (94) monomer contact prediction.
First, we extracted the concatenated MSA generated by RaptorX when TssK and TssG EAEC sequences
were input. Second, we trimmed the TssK NTD and TssG foot 1 from the Raptor MSA and used the result-
ing concatenated MSA as input for a Gremlin monomer contact prediction search. Finally, we selected
the TssK-TssG pairs with a probability above a given threshold and a distance between their side chains
below 8Å on the atomic structure of the wedge structure (PDB ID 6N38).

Peptide synthesis. The biomimetic cyclic peptide was synthesized by GenicBio, Ltd.
Plasmid construction. PCRs were performed using Q5 high-fidelity DNA polymerase (New England

Biolabs). Restriction enzymes and T4 DNA polymerase were purchased from New England Biolabs and
used according to the manufacturer’s instructions. Custom oligonucleotides were synthetized by Sigma-
Aldrich and are listed in Table S1A. EAEC 17-2, Acinetobacter baumannii 17978, and P. aeruginosa PAO1
chromosomal DNA were used as templates for PCRs. E. coli DH5a was used for cloning procedures.
Apart from the pKO3-tssG-Cterm vector, plasmids were engineered by a two-fragments sequence- and li-
gation-independent cloning (SLIC) strategy (95, 96). Briefly, each DNA fragments were amplified by PCR
using two pairs of oligonucleotides (FWD1/REV1 and FWD2/REV2). PCR products were digested (DpnI),
cleaned (Macherey-Nagel PCR cleaning kit), and mixed together with the T4 DNA polymerase and its
buffer (NEBuffer r2.1) at room temperature. The reaction was stopped after 2min 45 s, and the mixture
was put on ice. The annealing product was transformed into competent E. coli DH5a, and recombinant
strains were selected on the appropriate antibiotic. Substitutions in pTRC-99A-TssKH and pRSF-TssKS

were introduced by site-directed mutagenesis using complementary pairs of oligonucleotides. All con-
structs were verified by DNA sequencing.

Protein production and purification. Plasmids expressing the gene combinations of interest were
cotransformed into E. coli BL21(DE3), as described in “Plasmid construction” above. Cells were grown at
37°C in lysogeny broth (LB) to an A600 of ;0.7, and gene expression was induced by the addition of
1mM IPTG (isopropyl-b-D-thiogalactopyranoside) for 16 h at 16°C. Cell pellets were suspended in 50mM
Tris-HCl (pH 8.0), 150mM NaCl, 1mM EDTA, 10mM MgCl2 supplemented with 10mg/ml of DNase I,
100mg/ml of lysozyme, and EDTA-free protease inhibitor (Roche) to an A600 of ;125. Cells were broken
using an Emulsiflex-C5 instrument (Avestin) and clarified by centrifugation for 30min at 20,000 � g. The
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supernatant was loaded onto a 5-ml StrepTrap HP (GE Healthcare) column on an Äkta Pure system (GE
Healthcare) equilibrated in affinity buffer (50mM Tris-HCl [pH 8.0], 150mM NaCl). The column was then
washed using the affinity buffer, and the proteins were eluted in the same buffer supplemented with
2.5mM desthiobiotin (IBA Technology). The lysate, flowthrough, wash, and elution fractions were col-
lected, suspended in Laemmli loading buffer supplemented with 1mM 2-mercaptoethanol, and heated
for 10min at 96°C prior to analyses by SDS-PAGE and immunoblotting. For the study of the interaction
between TssK and TssG variants, copurification was carried out by pulling down Strep-tagged TssK and
evaluating the presence of copurified TssG by Western blotting.

SDS-PAGE, protein transfer, immunostaining, and antibodies. SDS-PAGE was performed on Bio-
Rad Mini-Protean systems using standard protocols with homemade 12.5% polyacrylamide gels. For im-
munostaining, proteins were transferred onto 0.2-mm nitrocellulose membranes (Amersham Protran)
with a Mini-Trans Blot cell (Bio-Rad). The membrane was then saturated in 5% milk and probed with pri-
mary antibodies. Mouse secondary antibody coupled to alkaline phosphatase was added and developed
in alkaline buffer in the presence of 5-bromo-4-chloro-3-indolylphosphate and nitroblue tetrazolium.
The antihemagglutinin (HA) (HA-7 clone; Sigma-Aldrich), anti-Flag (M2 clone; Sigma-Aldrich), anti-StrepII
(Sigma-Aldrich), anti-5His (Sigma-Aldrich) monoclonal antibodies, and mouse secondary antibodies
(Millipore) were purchased as indicated.

Fluorescence microscopy. Fluorescence microscopy experiments were performed as described else-
where (97, 98). Briefly, cells were grown overnight in LB and diluted to an A600 of;0.04 in SIM (sulfur, indole,
and motility) medium. Exponentially growing cells (A600 ; 0.8 to 1) were harvested, washed in phosphate-
buffered saline (PBS) buffer, resuspended in PBS to an A600 of ;50, spotted on a 2% agarose pad, and cov-
ered with a coverslip. Fluorescence and phase-contrast micrographs were captured using an AxioImager M2
microscope (Zeiss) equipped with an OrcaR2 digital camera (Hamamatsu). Fluorescence images were
acquired with a minimal exposure time to reduce bleaching and phototoxicity effects, typically 500ms for
TssK-sfGFP. Noise and background were reduced using the Subtract Background (20 pixels, rolling ball) and
Band plugins of ImageJ (National Institutes of Health). The sfGFP foci were automatically detected using the
MicrobeJ plugin (https://www.microbej.com/). Box plots representing the number of detected foci for each
strain were made using the Web tool BoxPlotR (http://shiny.chemgrid.org/boxplotr/). Microscopy analyses
were performed at least three times, each in technical triplicate, and results of a representative experiment
are shown.

Strain construction. Deletions of the TssG foot 1 and foot 2 domains were engineered at the native
locus on the chromosome by allelic replacement using the pKO3 suicide vector (99) in the enteroaggre-
gative E. coli 17-2 and E. coli 17-2 TssK-sfGFP strains. Briefly, the E. coli strains were transformed with a
pKO3 plasmid in which a portion of TssG harboring the domain deletion has been cloned (see below).
Insertion of the plasmid into the chromosome was selected on chloramphenicol plates at 42°C. The re-
moval of the plasmid fragment was then selected on 5% sucrose plates without antibiotic, and muta-
tions were screened by PCR and confirmed by DNA sequencing (Eurofins, MWG).

Native polyacrylamide gel electrophoresis. Plasmids expressing the gene combinations of interest
(pCDF-TssKH, TssKH-STssF-TssGDfoot1-F-HATssE, and TssKH-STssF-TssGDfoot2-F-HATssE) were cotransformed into
E. coli BL21(DE3) as described in “Plasmid construction” above. Cells were grown at 37°C in LB to an A600

of ;0.7, and expression of the target genes was induced by addition of 1mM IPTG for 16 h at 16°C. Cell
pellets were suspended in 50mM Tris-HCl (pH 8.0), 150mM NaCl, 1mM EDTA, 10mM MgCl2 supple-
mented with 100mg/ml of DNase I, 100mg/ml of lysozyme, and EDTA-free protease inhibitor (Roche) to
an A600 of ;125. Cells were broken using an Emulsiflex-C5 instrument (Avestin) and clarified by centrifu-
gation for 30min at 20,000 � g. After clarification, lysates were loaded on a native 4 to 16% gel (Mini-
Protean TGX; Bio-Rad). After migration, proteins and protein complexes were transferred onto a nitrocel-
lulose membrane and immunoblotted as described above.

Interbacterial competition assay. The antibacterial growth competition assay was performed as
previously described (100). Wild-type E. coli K-12 strain W3110 bearing the pUA66-rrnB plasmid (confer-
ring kanamycin resistance and constitutive GFP fluorescence, with the gfp gene under the control of the
ribosomal rrnB promoter) (101) was used as the recipient. Attacker and recipient cells were grown for 16
h in LB medium, diluted in SIM medium to allow maximal expression of the sci-1 gene cluster. Once the
culture reached an A600 of ;0.8, cells were harvested and normalized, and drops of the mixture were
spotted in triplicate onto a prewarmed dry SIM agar plate with or without the addition of 0.5mg ml21

arabinose. After incubation for 4 h at 37°C, the bacterial spots were resuspended in LB, and bacterial sus-
pensions were normalized to an A600 of 0.5. For the enumeration of viable prey cells, bacterial suspen-
sions were serially diluted and spotted onto kanamycin LB plates. The assays were performed from at
least three independent cultures, with technical triplicates, and results of a representative technical trip-
licate are shown.

Biolayer interferometry experiment. Streptavidin-tagged TssK was purified as described above.
The TssK trimer was further polished by size exclusion chromatography using a Superose 6 10/300 GL
(GE Healthcare) in 50mM HEPES (pH 7.0), 150mM NaCl at 0.25ml/min. For biolayer interferometry (BLI)
experiments, we used high-precision Strep (SAX) biosensors from Forté Bio (number 18-5117) on the
BLItz machine (Forté Bio). The trimeric ligand TssK was biotinylated using equimolar N-hydroxysuccini-
mide (NHS)–polyethylene glycol 4 (PEG4)–biotin (Pierce EZ-Link; 21330) in 50mM HEPES (pH 7.0), NaCl
150mM for 1 h at room temperature before buffer exchange in CentriPure P2 (Generon; IRL) columns
against 50mM HEPES (pH 7.0), NaCl 150mM to remove the excess biotin. BL21(DE3) cells were used to
express the interacting analytes TssG-TssF-TssE. In addition, cells containing an empty plasmid were
used as a control. Cells were broken as described above, and the clarified supernatants after centrifuga-
tion for 30min at 20,000 � g contained the control and TssFGE lysate. Streptavidin biosensors were
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hydrated for 10 min in HEPES buffer before binding of the biotinylated TssK. Biotinylated TssK was
loaded at 1.2mM onto the SAX biosensors for 120 s, and then the excess TssK was dissociated in HEPES
buffer for 120 s. For the remaining kinetic assays, we used kinetic buffer (PBS [pH 7.3] plus 0.02% Tween
20, 0.1% bovine serum albumin [BSA], 0.05% sodium azide) (Forté Bio number 18-5032) with orbital
shaking at 2,200 rpm. Kinetic buffer (KB) was used to dilute the lysates and the peptide to decrease non-
specific signals. The unbound Strep sites were blocked with 2mM control lysate for 120 s and washed
with KB for 120 s. The kinetic assays were performed using three steps with different times: baseline,
30 s; association, 120 s; and dissociation, 120 s. All the following assays were performed in triplicate. Four
independent assays were performed to demonstrate the specific binding of TssK with its natural part-
ners TssF-TssG-TssE and the effect of the wild type biomimetic peptide to block or hinder the specific
binding of the analytes. In the first assay, we added 47 mM lysate expressing the analytes TssG, TssF, and
TssE to the bound TssK. In the second assay, we added 1 mM wild-type (WT) BCP to the bound TssK
before adding 47mM TssF-TssG-TssE. In the third assay, to validate the specificity of the WT BCP we
added 1mM mutant BCP that lacks the binding residues to the bound TssK before adding 47mM TssF-
TssG-TssE. Last, to redemonstrate the specificity of the BCP-WT, we added 1 mM randomized BCP that
contains the binding residues but out of order to the bound TssK before adding 47mM TssF-TssG-TssE.

ITC. Isothermal titration calorimetry (ITC) was performed to demonstrate the specific interaction of
TssK with WT BCP and the lack of interaction with TssK L14A. The working buffer for both proteins and
peptide was 50mM HEPES (pH 7.0), 150mM NaCl to avoid buffer mismatch. The experiments were per-
formed at 25°C using the MicroCal PEAQ-ITC instrument (Malvern Panalyticals, Malvern, UK) in duplicate
with 19 injections, first with an initial injection of 0.4 ml followed by 18 injections of 2 ml. Two assays
were performed. In the first, 25mM WT TssK ligand was in the cell and 1mM WT BCP analyte was in the
syringe. In the second, 25mM TssK L14A ligand was in the cell and 1mM WT BCP analyte was in the sy-
ringe. The reaction was performed with a constant stirring speed of 750 rpm; each injection lasted for 4 s
with a 150-s space between injections. A constant heat control (offset) was removed from the raw data
to account for heat dilution before integration. The data were fitted using the One Set of Sites model in
the PEAQ-ITC analysis software.

TssK focus in vivo inhibition. Fluorescence microscopy experiments were performed as previously
described (97, 98). An overnight culture in LB of EAEC strain with a chromosomal GFP fusion to TssK was
diluted 1/200 in SIM medium and grown at 37°C until the culture reached an A600 of;0.8. Ten optical den-
sity units (ODU) was pelleted for 10min at 3,500 � g, resuspended at 1 ODU/ml in the same SIM medium
supplemented with 0.8 M NaCl, and equilibrated for 1 h at room temperature. Cells were pelleted for
10min at 3,500 � g, resuspended in 100 ml of classical SIM without NaCl supplemented with 1 mM pep-
tide of buffer, and incubated for 20min at room temperature. Cells were diluted in classical SIM medium
at 0.4 ODU/ml and incubated at 37°C 160 rpm until the absorbance again reached;0.8. Ten ODU was har-
vested and resuspended in fresh SIM medium. Cell mixtures were spotted on a thin pad of SIM medium
supplemented with 2% agarose, covered with a coverslip, and incubated for 20 to 30min at room temper-
ature before microscopy acquisition. Fluorescence microscopy was performed with a Nikon Eclipse Ti2
microscope equipped with a 100� objective (numerical aperture, 1.45), an Orca-Fusion digital camera
(Hamamatsu), and a perfect focus system (PFS) to automatically maintain focus so that the point of interest
within a specimen is kept in sharp focus at all times despite mechanical or thermal perturbations. All fluo-
rescence images were acquired in Hilo mode using an Ilas2 TIRF module (Gataca Systems). Exposure times
were typically 100ms for phase contrast and 100ms using the GFP channel. For image treatment, noise
and background were reduced by filtering large structures down to 40 pixels in the FFT Bandpass Filter
function of ImageJ (102). The GFP foci were automatically detected using the MicrobeJ plugin (103).

NMR experiments. All NMR experiments were recorded at 300 K on a Bruker Avance-II 600MHz
spectrometer equipped with a cryoprobe at the IMM (Institut de Microbiologie de la Mediterranée) NMR
platform. The 450-ml peptide sample tube was prepared at 1.8mM in KPO4 buffer (50mM KPO4 [pH 6.9],
150mM NaCl) complemented with 30 ml D2O. 1D

1H-1H-TOCSY, 1H-NOESY, and 1H-15N HSQC spectra
(F2 = 2048; F1 = 128; NS= 384) (NS is the number of scans [accumulation] for the experiment; F2 is the
sweep width; F1 is the Fourier number that defines the 2D spectrum dimensions and its digital resolu-
tion) were recorded using default pulse sequences as provided by the manufacturer. For the peptide-
TssK interaction experiments, 200 ml of a 410mM stock of TssK was added to the same sample tube
(1.2mM peptide and 140mM TssK [final concentration]), and all NMR spectra were recorded with the
addition of longer 1H-15N HSQC spectrometry (NS = 1,024). All spectra were transformed and the figures
were generated using Bruker Topspin 4.0.9.
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