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Simple Summary: The Kuril Islands are a part of the Circum-Pacific Belt of volcanoes and have many
hot springs. Nonetheless, due to the border regime, these islands are difficult to access, and microbial
communities of the geothermal springs of these islands have hardly been studied microbiologically
and have not been studied metagenomically at all. Here we conducted the first metagenomic study
on two thermophilic microbial communities of Kunashir Island. Faust Lake is hot (48 ◦C) and highly
acidic (pH 2.0), whereas the Tretyakovsky Thermal Spring is also hot (52 ◦C) but weakly acidic
(pH 6.0). We demonstrated that water pH affects the composition of the microbial communities.

Abstract: The Kuril Archipelago is a part of the Circum-Pacific Belt (Ring of Fire). These islands have
numerous thermal springs. There are very few studies on these microbial communities, and none of
them have been conducted by modern molecular biological methods. Here we performed the first
metagenomic study on two thermophilic microbial communities of Kunashir Island. Faust Lake is
hot (48 ◦C) and highly acidic (pH 2.0). We constructed 28 metagenome-assembled genomes as well
as 17 16S ribosomal RNA sequences. We found that bottom sediments of Faust Lake are dominated
by a single species of red algae belonging to the Cyanidiaceae family. Archaeans in Faust Lake are
more diverse than bacteria but less abundant. The Tretyakovsky Thermal Spring is also hot (52 ◦C)
but only weakly acidic (pH 6.0). It has much higher microbial diversity (233 metagenome-assembled
genomes; 93 16S ribosomal RNAs) and is dominated by bacteria, with only several archaeans and
one fungus. Despite their geographic proximity, these two thermal springs were found to not share
any species. A comparison of these two lakes with other thermal springs of the Circum-Pacific Belt
revealed that only a few members of the communities are shared among different locations.

Keywords: metagenome; hot spring; microbial community; genome; Kuril Islands

1. Introduction

Microorganisms, especially prokaryotes, are capable of living in diverse environ-
ments, which may strongly differ from those present on the surface of the Earth in such
parameters as temperature, pH, redox potential, and availability of organic matter and
light. Extremophiles living at high temperatures have turned out to be some of the most
promising as sources of new enzymatic activities for molecular biology and biotechnology.
Their taxonomic diversity is the second most important parameter: these communities
are reported to contain not only new species but also phyla that have not been found at
mesophilic sites. Microbial communities of hydrothermal springs include representatives
of extremely diverse taxa belonging to all three domains of life.

Life in extreme environments, including hot springs, was discovered as early as
1903 [1,2], but only the advent of molecular biology has provided us with the methods to
uncover the whole diversity of extremophiles. Metagenomics allows one to investigate
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taxonomic diversity and metabolic properties of communities without their cultivation.
This is particularly relevant for thermophiles, which are notoriously resilient to cultivation
in the laboratory. Many of those are known only by their DNA sequences [3]. They
are intensively studied due to their peculiar chemical composition and high value for
applied research [4].

Sites of terrestrial hydrothermal outlets are scattered throughout the world in volcan-
ism zones. Hydrothermal vents stand out not only in terms of temperature and pH but also
in terms of chemical composition of the water. These factors contribute to the formation of
unique combinations of microbial communities.

The Circum-Pacific Belt (also known as the Ring of Fire) is the world’s largest stretch
of a seismically active zone with many sites of hydrothermal outlets. The Circum-Pacific
Belt includes vast territories of the West coasts of both Americas, the East coast of Eura-
sia, and Oceania. There are many studies on microbial communities of terrestrial hot
springs in various parts of the Circum-Pacific Belt: the USA [5,6], South America [7,8], New
Zealand [9], Indonesia [10], the Philippines [11], Japan [12], and Russia (the Kamchatka
Peninsula: [13–15]). The Kuril Archipelago is a long chain of islands ca. 1200 km long,
located between Kamchatka and the Japanese Islands. Many of the Kuril Islands harbor
volcanic activity and outlets of thermal water. There is little research on the prokaryotes
inhabiting the hot springs of the Kuril Islands [16,17], and none of their microbial com-
munities have ever been characterized by metagenomic methods. Kunashir is one of the
most interesting islands in terms of volcanic activity: the diversity of chemical elements
in its thermal springs is among the highest in the world [18]. For this reason, one of the
volcanoes has been named after D.I. Mendeleev, the discoverer of the periodic table of
elements. This diversity makes the island a unique sanctuary for the conservation of a
wide variety of thermal microbial communities.

Here we conducted the first metagenomic study of extremophilic microbial communi-
ties of Kunashir Island. We also compared them to communities of other thermal springs
via data available in NCBI databases.

2. Materials and Methods
2.1. Description of the Study Area

Faust Lake (FAU) is a small pool approximately 4 m in diameter located near the
Pacific shore of Kunashir. Temperature at the sampling site (near the shore) was 48 ◦C
and as high as 66 ◦C at the outlet. Faust Lake (Figure 1a,b) is very acidic with pH below
2.0. The Tretyakovsky Spring (TRT) (Figure 1a,c) is hot (52 ◦C) and weakly acidic (pH 6.0).
We investigated the composition of microbial communities of these two lakes by next-
generation sequencing. We collected samples of bottom sediments and extracted and
sequenced total DNA. The obtained data were assembled into partial genomes and small
subunit (SSU) ribosomal RNA (rRNA) sequences. To compare different hot springs of
the Circum-Pacific Belt (Figure 1a), we compiled a dataset of metagenomic data from
different locations.

2.2. Sample Collection and DNA Extraction

Sediment samples from FAU and TRT were collected into 50 mL Falcon tubes and
fixed with an equal volume of distilled ethanol.

DNA isolation was performed with the NucleoSpin® Soil kit (Macherey-Nagel Inc.,
Düren, Germany) according to the manufacturer’s protocol. Lysis was carried out using
SL2 buffer in combination with the Enhancer SX additive.

2.3. Library Preparation and Sequencing

Sequencing libraries were prepared at the Genomic Research Center of the ICG SB
RAS using the Nextera™ DNA Flex Library Prep Kit (Illumina, Inc., San Diego, CA, USA)
according to the manufacturer’s instructions. The libraries were analyzed by means of
2100 Bioanalyzer. Sequencing was performed by the Center for Genetics and Reproductive
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Medicine GENETICO in Moscow on the Illumina NovaSeq 6000 platform (paired reads
100 bp long). The raw reads were deposited in the NCBI Sequence Read Archive (SRA)
database under accession numbers SRR7903764 and SRR7903765.
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2.4. Sequence Processing and Metagenomic Assembly

The sequence processing was carried out in the FastQC v.0.11.7 software [18] and
Trimmomatic v.0.36 [19] with the following parameters: CROP, 97, and MINLEN, 40. The
sequencing data extracted from the NCBI SRA were cleared of over-represented sequences
(if present) and low-quality bases (options ILLUMINACLIP:<adapters.fa>:2:30:10 (if neces-
sary), SLIDINGWINDOW: 6:15, TRAILING: 18, MINLEN: 40).

Adapter sequences for C17 data:
>TruSeq_Adapter_Index18
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGTCCGCACATCTCGTATGCC

GTCTTCTGCTTG
>PCR_Primer1_rc
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGT

ATCATT
The samples were employed to assemble two metagenomes (one for FAU and one for

TRT) using SPAdes v.3.11.1 [20] with the “—meta” option; other parameters were at their
default values. Assembly quality was assessed in metaQUAST v.4.6.2 [21].

2.5. Metagenomic Binning

Extraction of draft metagenome-assembled genomes (MAGs) from metagenomic data was
performed using MetaWRAP pipeline v.1.2.2 [22]. Clustering was performed by metaWRAP-
binning and metaWRAP-bin_refinement modules that use metaBAT v.2.12.1 [23], CONCOCT
v.1.0 [24] (both with default parameters), and MaxBin v.2.2.4 [25] (by means of a set of universal
marker genes, option “-markerset 40”) for clustering and CheckM v.1.0.12 [26] for evaluating
the quality of bins. These bins were then reassembled by the metaWRAP-reassemble_bins
module (uses SPAdes version 3.13.0). Information on the size of the extracted genomes, GC
composition, and N50 was obtained by means of QUAST v.5.0.2. Genome completeness and
contamination levels were assessed in CheckM. The information on the abundance of genomes
was calculated in the Salmon software v.1.0 [27] in copies of the genome per 1 million reads.
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2.6. Taxonomic Analysis of MAGs

For this purpose, ribosomal protein sequences were extracted from each bin using
FragGenScan v.1.30 [28] and HMMer v.3.1b1 [29], which were then utilized to search for
matches in the “NCBI nr” database via blastp.

Phylogenetic trees of MAGs were built in PhyloPhlAn v.3.0.55 [30,31], using the
standard phylophlan database with 400 universal marker genes, a supermatrix_aa.cfg
configuration file, the “–accurate” option on, and the option “–diversity” set to “high.”
Visualization was performed in GraPhlAn v.1.1.3 [32]. To construct the tree of life, 1003
reference genomes of bacterial and archaeal isolates were used [33].

2.7. Reconstruction of Full-Length 16S rRNA Sequences

To reconstruct the 16/18S rRNA sequences from the original reads, we employed
PhyloFlash v.3.3b1 [34]. Phylogenetic trees were constructed by the maximum likelihood
method in MEGA v.10.0.5 [35]. The substitutions model was selected via MEGA’s built-in
best model search tool. A total of 500 bootstrap repetitions were performed. Bootstap
values are given for branches with support greater than 70%.

2.8. Data on Microbial Communities of the Circum-Pacific Belt

To compare them with the microbial communities of the FAU and TRT geothermal
springs, metagenomic data on the microbial communities of hot springs located in the
Circum-Pacific Belt were extracted from the NCBI SRA database. The data were retrieved
by location according to the following criteria: organism, hot springs metagenome; library
strategy, WGS; library source, METAGENOMIC, and library layout, PAIRED. Four datasets
were obtained from Kamchatka (C01–C04), 10 from Japan (C05–C14), one from Taiwan
(C15), and four from New Zealand (C16–C19). The location of the hot springs included in
the analysis is presented in Figure 1, and detailed information about the data is given in
Tables 1 and 2. The sequences of SSU rRNA and ribosomal proteins were obtained in the
same way as the FAU and TRT data.

Table 1. Information about hot springs.

Sample ID Hot Spring Name Location Coordinates (N, E) t, ◦C pH

C01 Arkashin Schurf Russia: Kamchatka, Uzon Caldera 54.5, 160.005556 26–99 3.7–7.0
C02 - Russia: Kamchatka, Uzon Caldera 54.5, 159.967 81 7.2–7.4
C03 Zavarzin Russia: Kamchatka, Uzon Caldera 54.498056, 160.014444 26–74 5.5–7.5
C04 - Russia: Kamchatka, Mutnovsky volcano 52.453, 158.195 70 3.5–4.0

C05 Jinata Onsen Pool Japan: Tokyo Prefecture,
Shikinejima Island 34.318, 139.216 37.3–46 6.7

C06 Miyama Japan: Kagoshima Prefecture, Kirishima 31.57, 130.46 96.8 8.8
C07 Ginyu Japan: Kagoshima Prefecture, Kirishima 31.55, 130.48 85.5 2.9
C08 Kurinodake Japan: Kagoshima Prefecture, Kirishima 31.55, 130.47 94.7 1.9
C09 Nonoykoya Japan: Kagoshima Prefecture, Kirishima 31.55, 130.47 68 6.9
C10 Kinyu Japan: Kagoshima Prefecture, Kirishima 31.55, 130.47 84.5 6.6
C11 Nonoyufunki Japan: Kagoshima Prefecture, Kirishima 31.54, 130.49 89.1 2.8
C12 Torigigoku Japan: Kagoshima Prefecture, Kirishima 31.54, 130.49 84 2.4
C13 Ioudani Japan: Kagoshima Prefecture, Kirishima 31.53, 130.5 88 2.9
C14 Yamanoshiro Japan: Kagoshima Prefecture, Kirishima 31.53, 130.49 90.4 4.8
C15 Shi-Huang-Ping Taiwan: New Taipei City 25.19544, 121.60245 50–85 2.5
C16 Marker Bay Pool New Zealand: Raoul Island −29.26238, −177.92085 29.9 5.9
C17 Eastern Pool New Zealand: Raoul Island −29.26238, −177.919075 27.2 5.43
C18 Green Lake New Zealand: Raoul Island −29.263502, −177.920697 34.5 6.96

C19 Cub Bath New Zealand: Northland, Tiger Springs
area of Ngawha Springs −35.407515, 173.8554755 24.5–33.4 3.2–3.6
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Table 2. Metagenomic data extracted from the NCBI SRA and information on the number of extracted reads and assembled
SSU sequences.

Sample ID SRA Accession
Number Read Length # of Reads SSU rRNA

Read Pairs
Fraction

Assembled
# of Assembled

SSU

C01 SRR6344961 84 26,454,313 12,113 8.586% 8
C02 SRR6311222 112 12,749,852 10,060 20.101% 9
C03 SRR6344962 84 29,167,348 18,223 5.743% 10
C04 SRR6311221 112 7,127,384 992 0.0% 0
C05 SRR7905025 101 34,244,964 30,374 33.900% 22
C06 DRR163688 201 4,991,937 3856 0.0% 0
C07 DRR163692 251 16,806,151 8678 29.454% 4
C08 DRR163689 101 58,832,615 16,668 0.0% 0
C09 DRR163687 101 59,857,660 55,170 19.073% 20
C10 DRR163685 101 59,915,181 45,654 28.130% 6
C11 DRR163693 201 19,757,761 15,274 10.355% 5
C12 DRR163691 251 5,922,448 3063 6.468% 1
C13 DRR163690 101 59,217,452 17,955 0.0% 0
C14 DRR163686 101 55,210,615 111,457 28.017% 1
C15 SRR1297203 101 23,280,105 35,097 36.431% 8
C16 SRR10063241 150 48,525,851 22,116 28.861% 55
C17 SRR10063242 150 43,957,771 22,466 28.272% 46
C18 SRR10063240 150 49,791,620 33,157 36.758% 54
C19 SRR11457942 100 23,179,480 26,340 33.101% 17

3. Results
3.1. Quality Filtering and Assembly

We obtained 206,089,215 reads for FAU and 421,795,959 for TRT. The reads had high
quality (average of 36–38 on the phred-33 scale); however, abnormal-nucleotide occurrence
was noted at the last positions of all reads. Furthermore, there was a small number of
sequences of 35–39 bp in length among the reads. Therefore, three nucleotides at the end
were deleted, and only sequences longer than 40 bp were kept. As a result of the processing,
1,235,736 (0.6% of the initial number of reads) and 148,563 (0.035% of the initial number
of reads) reads were lost in the FAU and TRT datasets, respectively. Assembly by SPAdes
yielded 20,806 contigs >1000 bp long for FAU and 279,624 contigs >1000 bp long for TRT.
Details are given in Supplementary Table S1.

3.2. MAGs

We utilized MetaWRAP to assemble 26 draft MAGs for FAU and 233 for TRT with
completeness >75% and contamination <5% (17 and 157 of those, respectively, are high-
quality MAGs [36] with >90% completeness and <5% contamination) (Supplementary
Tables S2 and S3). Two high-coverage genomes affiliated with a red alga and its chloroplast
were separately extracted from the FAU assembly using MaxBin v.2.2.4. For FAU, these
26 + 2 MAGs include 65.7% of the nucleotides present in the total assembly; for TRT,
the 233 MAGs make up 56% of the assembly. Information about the obtained MAGs is
provided in the Supplements (Supplementary Tables S2 and S3).

The majority of the assembled genomes from FAU belong to Archaea (a total of 14):
11 to Euryarchaeota; one each to Candidatus Korarchaeota and Candidatus Parvarchaeota,
and one could not be classified. Twelve of the genomes were bacterial: eight from Acti-
nobacteria, three from Proteobacteria, and one from Firmicutes. We also assembled a
nuclear and a plastid genome for one red alga.

The majority of MAGs from TRT (231 out of 233) were found to belong to Bacteria
(Table 3). Proteobacteria were the dominant group, with 73 assembled genomes (Alphapro-
teobacteria: 27; Betaproteobacteria: 19; Gammaproteobacteria: 5; Deltaproteobacteria: 12;
Epsilonproteobacteria: 2; Hydrogenophilalia: 2; Oligoflexia: 1, and Unclassified: 5). The
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second most abundant type was Bacteroidetes with 20 MAGs, followed by Planctomycetes
with 13 MAGs. The details on the detected MAGs are listed in Table 3.

Table 3. The number of MAGs with completeness > 75%, contamination < 5%, assembled 16S rRNAs >1 kbp long, and with
identity >90% obtained for FAU and TRT.

Phylum FAU MAGs FAU SSU rRNA TRT MAGs TRT SSU rRNA

Acidobacteria 0 0 13 4
Actinobacteria 8 1 3 1

Amorphea 0 0 0 2
Aquificae 0 0 2 2

Armatimonadetes 0 0 11 2
Bacteroidetes 0 0 20 10

Calditrichaeota 0 0 1 1
Chloroflexi 0 0 19 10
Chloroplast 1 1 0 0

Cyanobacteria 0 0 9 4
Deferribacteres 0 0 1 1

Deinococcus–Thermus 0 0 6 3
Elusimicrobia 0 0 1 1
Euryarchaeota 11 5 1 1

Firmicutes 1 1 13 9
Gemmatimonadetes 0 0 3 0

Ignavibacteriae 0 0 8 0
Mitochondria 0 1 0 1
Nitrospinae 0 0 1 0
Nitrospirae 0 0 2 1

Planctomycetes 0 0 13 3
Proteobacteria 3 2 73 19
Rhodophyta 1 1 0 0
Spirochaetes 0 0 7 5
Synergistetes 0 0 2 2

Thaumarchaeota 0 0 0 1
Thermotogae 0 1 1 1

Verrucomicrobia 0 0 13 2
Candidate division WOR-3 0 0 1 0
Candidatus Bipolaricaulota 0 0 2 1
Candidatus Hydrothermae 0 0 0 1
Candidatus Korarchaeota 1 0 0 0

Candidatus Margulisbacteria 0 0 0 1
Cyanobacteria/Melainabacteria group
(phylum Candidatus Melainabacteria) 0 0 1 1

Cyanobacteria/Melainabacteria group
(class Candidatus Sericytochromatia) 0 0 0 1

Candidatus Parvarchaeota 1 0 0 0
Candidatus Riflebacteria 0 0 1 0

Candidatus Roizmanbacteria 0 0 0 1
Candidatus Woesearchaeota 0 0 1 0
Candidatus Saccharibacteria 0 1 0 0

unclassified Bacteria 0 0 4 0
unclassified Archaea 1 3 0 1

Only two MAGs are affiliated with Archaea, one each with Euryarchaeota and Candi-
datus Woesearchaeota. In contrast to FAU, no eukaryotes were detected. On the other hand,
13 of the obtained metagenomes belong to photosynthetic bacteria: nine to Cyanobacteria,
and four to Chloroflexi (Table 3). Cyanobacteria were represented by (Supplementary
Table S2: MAG IDs TRT-7, TRT-8, TRT-16, TRT-74, TRT-131, TRT-183, TRT-205, TRT-209,
and TRT-242): Gloeocapsa sp. PCC 7428, Stanieria sp. NIES-3757, and seven unclassified;
Chloroflexi were represented by (Supplementary Table S2: MAG IDs TRT-27, TRT-45,
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TRT-132, and TRT-144): Chloroflexus islandicus, Roseiflexus sp. RS-1, an Oscillochloridaceae
bacterium, and a Chloroflexales bacterium.

The phylogenetic position of the obtained MAGs on the tree of life is shown in Figure 2.
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We also constructed a separate phylogenetic tree for archaeal MAGs (Figure 3).
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3.3. SSU rRNA Sequences

The assembly made by SPAdes yielded few SSU rRNA gene sequences. To obtain
more information on rRNA sequences, we ran a search by means of PhyloFlash. In the FAU
dataset, 426,217 (~0.208% of the total) paired reads related to 16/18S rRNA were identified;
46.2% of them were assembled into 17 sequences >1 kbp long: five from Euryarchaeota;
two from Proteobacteria; one each from Actinobacteria, Firmicutes, Thermotogae, and
Candidatus Saccharibacteria, and three unclassified archaeal sequences. We also found the
18S rRNA sequence for the red algae and 16S rRNA genes for its plastid and mitochondria.

In the TRT dataset, 276,374 paired reads (~0.066% of the total) were identified as 16/18S
rRNA gene sequences. Of these, 26.3% were assembled into 93 sequences over 1 kbp long:
19 from Proteobacteria; 10 from Chloroflexi; 10 from Bacteroidetes; 9 from Firmicutes;
4 from Cyanobacteria; 3 from Planctomycetes; 4 from Acidobacteria; 2 from Verrucomi-
crobia; 5 from Spirochaetes; 3 from Deinococcus–Thermus; 2 from Synergistetes; 2 from
Amorphea; 2 from Armatimonadetes; 2 from Aquificae; 1 from Actinobacteria; 1 from
Euryarchaeota; 1 from Thermotogae; 1 from Patescibacteria; 1 from Nitrospirae; 1 from
Nanoarchaeota; 1 from Elusimicrobia; 1 from Deferribacteres; 1 from Crenarchaeota; 1 from
Sercytochromatia; 1 from Sumercytochromatia; 1 from Candidatus Melainabacteria; 1 from
Candidatus Hydrothermae; 1 from Candidatus Bipolaricaulota; 1 from Calditrichaeota,
as well as a eukaryotic 18S sequence from Rotifera and a mitochondrial 18S sequence of
Acanthamoeba sp.

The taxonomic data compared with the Silva database and SSU rRNA gene sequences
are shown in Supplementary Table S3.

A phylogenetic tree of prokaryotic SSU rRNA sequences is depicted in Figure 4. Most
of the SSU rRNA gene sequences from the FAU microbial community are phylogenetically
distant from known species.
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Because photosynthetic microorganisms are of particular interest as the basis of the
food chain, we built a separate tree using sequences of photosynthetic bacteria from the
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TRT microbial community (Figure 5). A tree was also constructed for the red algae from
FAU (Figure 6).
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and other representatives of Rhodophyta from the NCBI nt database (The Tamura–Nei substitution
model with gamma distribution and invariant sites (TN93 + G + I)).

A phylogenetic tree of archaeal SSU rRNA sequences is depicted in Figure 7.
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3.4. Taxonomic Composition of Microbial Communities According to SSU rRNA Data

In the PhyloFlash software, the reads mapped to the SSU rRNA gene were extracted,
and their taxonomic position was determined. A comparison of abundance levels of phyla
and classes of Proteobacteria between the studied communities according to the analysis of
reads related to SSU rRNA is presented in Figure 8.

Most of the SSU rRNA reads from FAU were assigned to chloroplast and mitochondrial
genomes; in total, they constituted 86% of all rRNA sequences. These reads were excluded
from the analysis of taxonomic diversity.

In the remaining set of reads, the SSU rRNA gene of the red alga Cyanidium accounted
for 45.7 and 47.6% of reads that belonged to bacteria. This group was the most diverse:
among bacteria, most reads were from Proteobacteria (17.2%), mostly Alphaproteobacteria
(7.0%), Gammaproteobacteria (5.0%), and unassigned proteobacteria (5.0%). Actinobac-
teria were the second most abundant phylum, represented mostly by Mycobacterium
(9.7%) and Acidimicrobiia (1.2%). Firmicutes (mostly Clostridia) accounted for 5.5%, and
Bacteroidetes for 5.0%. Finally, 1.7% of reads were assigned to Caldiserica, and 1.4% to
Candidatus Poribacteria.

Archeal SSU reads constituted 4.1% of the FAU data. They were mainly represented
by Euryarchaeota (3.4%), Micrarchaeota (0.3%), and Crenarchaeota (0.3%).

The complete list of taxa according to the SSU analysis is given in Supplementary
Table S4.

In the TRT dataset, Archaea account only for 0.27% of reads, and eukaryotes for 0.15%.
Among the bacterial phyla, the most abundant ones were Betaproteobacteria (19.5%),
Alphaproteobacteria (12.2%), Firmicutes (12.2%), Cyanobacteria (8.8%), Bacteroidota (8.8%),
Deinococcus–Thermus (6.1%), Chloroflexi (4.2%), Spirochaetes (2.1%), Deltaproteobacteria
(1.9%), Acidobacteria (1.3%), and Planctomycetes (1.0%) (See Supplementary Table S4 for a
complete list).
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3.5. Analysis of Geothermal Microbial Communities of the Circum-Pacific Belt

For the analysis of the strains, we recovered SSU rRNA sequences from metagenomic
data in open repositories (Table 2). Extraction of SSU rRNA was performed as described
in Section 2.7.

According to the SSU rRNA data (Supplementary Table S7), one strain from FAU
shared 99% sequence similarity with a strain from Cub Bath (C19; New Zealand); two
strains >97%, and another two >95%. Cub Bath is somewhat colder (24.5–33.4 ◦C) and less
acidic (pH 3.2–3.6) as compared to FAU. One strain from Arkashin Schurf (C01; Russia,
Kamchatka) and one from Shi-Huang-Ping (C15; Taiwan) also proved to be relatively
closely related to strains from FAU but with low coverage. We should point out that we
failed to detect any rRNAs in four out of the 19 assembled metagenomes, and in the other
two, we found only one rRNA sequence. Therefore, we also compared ribosomal proteins
from these metagenomes, from FAU, and from TRT (Supplementary Table S8). Strains from
FAU have relatives at Mutnovsky volcano (C04; Russia, Kamchatka) and Ioudani (C13;
Japan). Both C04 and C13 are hot (70–88 ◦C) and acidic (pH 3–4).

SSU rRNA sequences >99% similar to strains from TRT were found in Zavarzin (C03; Rus-
sia, Kamchatka), Nonoykoya (C09; Japan), and Kinyu (C10; Japan) (Supplementary Table S7).
An analysis of ribosomal proteins revealed related strains in Kamchatka [Arkashin Schurf
(C01) and Mutnovsky (C04)] and Japan [Jinata Onsen Pool (C05), Nonoykoya (C09), Kinyu
(C10), Eastern Pool (C17), and Green Lake (C18)].

To compare the taxonomic diversity at the phylum level, we constructed an abundance
chart for different springs along the Circum-Pacific Belt taking into account their pH and
temperature (Figure 9).
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4. Discussion

In this work, we obtained the first metagenomic data on thermal springs of the Kuril
Islands. The two analyzed springs were found to have different chemical characteristics,
which are probably the reason for the observed differences between their microbial com-
munities. TRT has weakly acidic pH and is characterized by high diversity (Shannon index
4.4). In contrast, the highly acidic pH of FAU is probably the cause of its low diversity
(Shannon index 1.7).

In the course of analyzing metagenomic data, we obtained 259 prokaryotic MAGs
(26 for FAU and 233 for TRT). The extracted TRT MAGs belong to a wide range of phyla,
while FAU was found to have significantly lower phylogenetic diversity. Most of the MAGs
have close relatives among the known bacteria and archaea. Nevertheless, some of the
genomes from FAU differ significantly from the currently known sequences.

Moreover, FAU has lower species diversity: the algal genome represents 45.7% of
all sequences, and another 9.7% are affiliated with a Mycobacterium. Most of the species
diversity in FAU is represented by extremophilic Archaea from recently discovered phyla.
It is noteworthy that most of them proved to be only remotely related to congeneric species.

Shannon indices, which reflect the complexity of microbial communities, differ dra-
matically between the studied lakes. FAU has a Shannon index of ~1.4, which is very low
and typical for lithotrophic communities of extremely acidic springs of high or moderate
temperatures. In contrast, the Shannon index of TRT is 4.4. This is quite high and close to
the values of soil microbial communities. Thus, 50 ◦C is not a serious impediment for the
existence of complex prokaryotic communities, whereas pH < 2 is [37–39]. Low species
diversity under acidic conditions is due to basic physical principles. The hydrogen ion
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easily penetrates through the cell membrane into the cytoplasm, and it takes a lot of energy
to remove it. As a result, minimization of energy expenditure by the cell for other needs,
including the maintenance of the genome, becomes vital for survival.

4.1. Metabolism of Microbial Communities of FAU and TRT

Photosynthetic organisms are the basis of most communities, including those of
geothermal springs. Environmental pH is often critical for photosynthetic microorganisms.
Prokaryotes, especially photosynthesizing ones, are poorly adapted to life in low-pH
environments. Cyanobacteria thrive at pH levels close to neutral and especially well at
high pH: 8.0–11.0. Massive, complicatedly organized microbial communities up to several
tens of centimeters thick arise in the waters of springs having high pH [14]. No microbial
mats were seen in TRT because the spring had been cleaned shortly before the sampling.
Nevertheless, photosynthetic bacteria, both oxygenic (Cyanobacteria 8.8%) and anoxygenic
(Chloroflexi 1%), were identified in this community (Figure 5). The presence of these
species indicates high probability of the formation of microbial mats.

Photosynthetic microorganisms of FAU were found to be represented by a single
eukaryote, an alga closely related to Cyanidium caldarium (Figure 6). It is a small primitive
unicellular red alga that lives in sulfate-rich ultra-acidic hot springs. Eukaryotes have a
smaller surface-to-volume ratio as compared to prokaryotes, which makes it easier for
them to adapt to acidic conditions. According to the literature, this alga is an obligate
autotroph, has a nucleus, mitochondria, and a large single chloroplast but does not contain
vacuoles [37,40]. Due to unusual structure and ecological preferences, representatives of
the genus Cyanidium were assigned to different taxa: cryptomonads, Cyanobacteria, and
green algae. Currently, Cyanidium is considered the most primitive organism among red
algae [38]. The coverage of its chloroplast genome was ~15-fold greater than that of the
nuclear genome.

Our results are in good agreement with the available data on the presence of photo-
synthetic microorganisms in hot springs with different pH levels.

4.2. Archaeal Communities of FAU and TRT

Archaea constitute only 0.26% of the TRT microbial community, probably because the
local environment is more suitable for bacteria. Nevertheless, two MAGs were assembled
from the sequencing data: Euryarchaeota and Candidatus Woesearchaeota. On the contrary,
archaea make up a significant part of the FAU community. Although more reads in FAU
belong to Bacteria, archaea are more diverse in that spring. The majority of the detected
archaeal strains proved to be more or less closely related to other known thermoacidophilic
species. Eleven MAGs that together are the most abundant among archaeal sequences
belong to Euryarchaeota. Ten MAGs fall within various branches of Thermoplasmata. Ther-
moplasmata are ubiquitous in acidic thermal and mesophilic environments [39]. Several
MAGs were found to be affiliated with poorly studied archaeal phyla. For example, one of
them is closely related to the Candidatus Conexivisphaera calidus (Candidatus Geothermar-
chaeota phylum) that inhabits Iceland hot springs with temperatures over 70 ◦C. MAG No.
18 turned out to be a relative of Candidatus Parvarchaeum acidophilus from the Parvarcheota
group, and MAG No. 11 a relative of Candidatus Korarchaeota archaeon.

To assess the phylogenetic position of archaea, we constructed trees for MAGS
(Figure 7) and 16S rRNA (Figure 8).

Significant distances between the sequences of the obtained genomes and those re-
trieved from databases indicate that they belong to poorly studied phyla. On the other
hand, on the tree (Figure 8) constructed for the archaea SSU rRNA gene sequences, one can
see that they are quite close to known species or sequences from metagenomic data.

4.3. The Comparison with Other Thermal Springs along the Circum-Pacific Belt

Metagenomic data enable one to directly compare the composition of microbial com-
munities and relative abundance levels of individual microorganisms. This approach



Biology 2021, 10, 924 14 of 17

overcomes the biases introduced by cultivation-based and PCR-based methods and there-
fore can be currently considered the most accurate technique in this respect. Nonetheless,
there are still not many data on individual thermal springs. For this study, we assembled
a set of 19 metagenomes of terrestrial hot springs from various regions of the Old-World
part of the Circum-Pacific Belt: the Kamchatka Peninsula (Russia), the Japanese Islands,
Taiwan, and New Zealand (Table 1). Temperature and pH of these springs vary widely. We
noticed that FAU shares no strains with TRT, despite their close proximity, and very few
species with other thermal springs. Related strains were detectable in acidic (pH 2.5–4.0)
and warm to moderately hot springs. A group of acidic (pH 1.9–2.9) and very hot (>84 ◦C)
springs in Japan shares no species with FAU, probably indicating that extreme temperature
plays a prohibitive role in species composition.

As compared to FAU, TRT shares much more microbial species with other springs
in the above dataset. The most closely related water bodies are Jinata Onsen Pool 3
(Japan; 18 shared species), two thermal springs on Raoul Island (New Zealand; 11 and
10 shared species), and Nonoykoya (Japan; 10 shared species). As expected, the Jinata
Onsen pool has similar water parameters (pH 6.7 and 37.3–46.0 ◦C). Nevertheless, because
over 300 genomes were assembled from TRT, we can estimate that its overlap in microbial
composition is only ~5% at most.

Microbial diversity is generally thought to follow the principle of Baas Becking (1934):
“Everything is everywhere: but the environment selects,” although there are numerous
exceptions to this rule [41]. The comparison of microbial communities of various thermal
springs along the Circum-Pacific Belt suggests that certain microbial strains with identical
marker sequences are indeed found tens of thousands of kilometers apart. Nonetheless,
the composition of the communities appears to be highly specific despite close temperature
and pH parameters.

According to relative abundance of various phyla (Figure 9), TRT is most closely
related to a spring on Raoul island. FAU is close to these two springs too, as well as to
hydrothermal water bodies from America. Thus, the studied hot springs of Kunashir Island
are closer in their composition to geographically distant rather than closer water bodies.

5. Conclusions

In this work, we performed the first metagenomic analysis of thermal springs of
Kunashir Island. This is the first step in closing the gap in such studies on the Kuril
Islands. Microbial communities of thermal springs have been extensively studied for
several decades all over the world. Nonetheless, we find that most microorganisms in the
analyzed lakes are new to science. This observation suggests that we have only begun
to unveil the wealth of new microbial taxa living in hot springs and indicates potential
usefulness of the thermal lakes on the Kuril Islands as a source of new strains and enzymes
for biotechnology.

This paper presents the first metagenomic analysis of two hot springs located on
Kunashir Island. This work partially closes the gap in the knowledge about microbial
communities of geothermal springs on the Kuril Islands. The investigated springs are
characterized by a moderately high temperature of ~50 ◦C and are substantially different in
pH. The Tretyakovsky Spring has neutral pH, whereas Faust Lake features strongly acidic
pH, <2. The springs are located on the slopes of D.I. Mendeleev volcano, which is known
for the highest chemical diversity of geothermal waters, including the presence of rare
earth elements.

Our assessment of biological diversity revealed that the prokaryotic community of the
Tretyakovsky Spring is composed of a large number of bacterial species. The complexity of
its organization is close to that of the surface ecosystems that have moderate conditions.
The microbial community of Faust Lake turned out to be very poor, and the average genome
size is <2 mbp. The simplicity of this microbial community’s organization and the small
size of genomes are related to high consumption of energy needed for cell homeostasis
under acidic conditions.
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The obtained metagenomic data were compared with those available in open databases
documenting similar microbial communities of the Circum-Pacific Belt. We demonstrated
that the microbial communities of the springs under study are unique and significantly
different in taxonomic composition from microbial communities of other parts of the
Circum-Pacific Belt. FAU and TRT contain many microbes that can be classified as new
species. This finding may be explained by the exceptional chemical composition of waters
in the two springs. This is especially true for the microbial community of Faust Lake.
Accordingly, we hope that new enzymes can be found there whose unusual sequences may
be useful to the scientific community for solving biotechnological problems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10090924/s1: Table S1: Assembly statistics for FAU and TRT metagenomes; Table S2:
Assembly statistics and taxonomy for each MAG; Table S3: Statistics and taxonomy (SILVA) of the
recovered SSU rRNA gene sequences from FAU and TRT; Table S4: Statistics regarding the taxonomy
based on the analysis gene SSU rRNA reads; Table S5: Assembly statistics for C01–C19 metagenomes;
Table S6: Statistics and taxonomy (SILVA) of the recovered SSU rRNA gene sequences from C01–C19;
Table S7: Comparison of SSU rRNA sequences from FAU and TRT with SSU rRNA sequences from
C01–C19; Table S8: Comparison of sequences of genes—coding for ribosomal proteins extracted from
MAGs of FAU and TRT—with sequences of metagenomes from C01–C19.
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