organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(E)-1-(Benzyloxyimino)ethyl]-7-(3methylbut-2-enyloxy)-2H-chromen-2one

Hui Wang,^a* Li-juan He,^a Wei-hua Zheng^a and Hua-can Song^b

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: huiwang@scnu.edu.cn

Received 7 May 2011; accepted 19 May 2011

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.155; data-to-parameter ratio = 15.2.

In the title compound, $C_{23}H_{23}NO_4$, the dihedral angle beween the chromen-2-one ring system and the benzene ring is 69.73 (10)° and the molecule adopts an E conformation with respect to the C=N double bond. In the crystal, inversion dimers linked by pairs of $C-H \cdots O$ hydrogen bonds occur, generating $R_2^2(12)$ loops.

Related literature

For background to the use of Schiff bases as chemosensors, see: Li et al. (2009).

Experimental

Crystal data C23H23NO4

 $M_r = 377.42$

Triclinic, $P\overline{1}$	$V = 995.0 (5) \text{ Å}^3$
a = 7.3038 (19) Å	Z = 2
b = 11.467 (3) Å	Mo $K\alpha$ radiation
c = 12.184 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 92.368 \ (3)^{\circ}$	T = 273 K
$\beta = 92.067 \ (3)^{\circ}$	$0.26 \times 0.18 \times 0.16 \text{ mm}$
$\gamma = 102.340 \ (3)^{\circ}$	
Data collection	

Bruker APEXII CCD	5604 measured reflections
diffractometer	3912 independent reflections
Absorption correction: multi-scan	2341 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.032$
$T_{\min} = 0.978, T_{\max} = 0.986$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	257 parameters
$wR(F^2) = 0.155$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
3912 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8\cdots O2^i$	0.93	2.43	3.338 (3)	167
Summatry and a (i)	× v = 1			

Symmetry code: (i) -x, -y, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We are grateful to the Science and Technology Plan Project of Guangdong Province (No. 2008B010600008) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5875).

References

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, H. Y., Gao, S. & Xi, Z. (2009). Inorg. Chem. Commun. 12, 300-303. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o1516 [doi:10.1107/S1600536811019015]

3-[(E)-1-(Benzyloxyimino)ethyl]-7-(3-methylbut-2-enyloxy)-2H-chromen-2-one

H. Wang, L. He, W. Zheng and H. Song

Comment

Coumarin-derived Schiff bases have attracted attention as colorimetric chemosensors (Li *et al.*, 2009). Herein, we report the crystal structure of the title compound, (I), Fig. 1, obtained by the reaction of 3-acetyl-7-(3-methylbut-2-enyloxy)-2*H*-chromen-2-one with benzyloxy-amine. Inversion dimers occur in the crystal, being linked by pairs of C—H···O hydrogen bonds (Table 1).

Experimental

A mixture of 3-acetyl-7-(3-methylbut-2-enyloxy)-2*H*-chromen-2-one (1 mmol) and benzyloxy- amine hydrochloride (1.2 mmol) in ethanol (15 ml) was heated at 313 K for 0.5 h, the solution pH was then maintained at a value of 7 by the addition of sodium carbonate(0.5 mmol). The reaction mixture was refluxed for 10 h at 333 K (monitored by TLC). After completion of the reaction, the solvent was removed under a vacuum. The crude product was purified by chromatography (ethyl acetate: petroleum ether = 3:1). The eluate was evaporated to give the title compound as colourless blocks (279 mg, 74%; m. p. 372–374 K). ESI-MS (m / z): [(M+Na)+] 400, [(M+H)+] 378; IR (KBr, cm-1) 3065, 2971, 2877, 1722, 1603, 1491, 1458, 1357, 1259, 1216, 1129, 981, 923, 772; 1H NMR(400 MHz, CDCl3, TMS) delta 7.79 (s, 1H), 7.40 (d, 1H, J = 8.4 Hz), 7.31–7.36 (m, 5H), 6.83 (dd, 1H, J = 2.8, 8.4 Hz), 6.79(d 1H, J = 2.8 Hz), 5.45–5.50 (m, 1H), 5.23 (s, 2H), 4.56(d, 2H, J = 6.8 Hz), 2.27 (s, 3H), 1.80 (s, 3H), 1.76 (s, 3H); 13 C NMR (100 MHz, CDCl3) delta 162.45, 160.08, 155.90, 154.33, 141.40, 137.72, 129.49, 128.96, 128.41, 128.33, 127.97, 127.84,127.42, 121.30, 118.59, 113.57, 112.43, 101.08, 76.21, 65.46, 25.83,18.30,14.61.

Figures

Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing in the title compound.

Fig. 3. Part of the crystal structure of the title compound showing weak C—H…O hydrogen bonds as dashed lines.

Fig. 4. The formation of the title compound.

3-[(*E*)-1-(Benzyloxyimino)ethyl]-7-(3-methylbut-2-enyloxy)- 2*H*-chromen-2-one

Crystal data	
C ₂₃ H ₂₃ NO ₄	Z = 2
$M_r = 377.42$	F(000) = 430.0
Triclinic, <i>P</i> T	$D_{\rm x} = 1.260 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.3038 (19) Å	Cell parameters from 1391 reflections
b = 11.467 (3) Å	$\theta = 2.4 - 24.9^{\circ}$
c = 12.184 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 92.368 \ (3)^{\circ}$	T = 273 K
$\beta = 92.067 \ (3)^{\circ}$	Block, colorless
$\gamma = 102.340 \ (3)^{\circ}$	$0.26 \times 0.18 \times 0.16 \text{ mm}$
$V = 995.0 (5) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	3912 independent reflections
Radiation source: fine-focus sealed tube	2341 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\text{max}} = 26.3^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -9 \rightarrow 8$
$T_{\min} = 0.978, T_{\max} = 0.986$	$k = -10 \rightarrow 14$
5604 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.155$	$w = 1/[\sigma^2(F_o^2) + (0.0644P)^2 + 0.1016P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.028$
3912 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
257 parameters	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.049 (5)

Р methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.4410 (2)	0.43803 (16)	0.26381 (14)	0.0548 (5)
O3	0.59306 (19)	0.46642 (13)	0.19438 (12)	0.0611 (4)
O2	0.3010 (2)	0.10766 (13)	0.38943 (12)	0.0622 (4)
01	0.04470 (18)	0.14660 (12)	0.45666 (10)	0.0492 (4)
O4	-0.50894 (19)	0.21552 (13)	0.61925 (11)	0.0558 (4)
C19	0.9868 (3)	0.6503 (2)	0.19649 (18)	0.0627 (6)
H19	0.9821	0.6483	0.2726	0.075*
C18	1.1555 (3)	0.6776 (2)	0.1505 (2)	0.0776 (8)
H18	1.2648	0.6934	0.1952	0.093*
C17	1.1667 (4)	0.6820 (3)	0.0413 (3)	0.0852 (9)
H17	1.2835	0.7011	0.0107	0.102*
C16	1.0072 (5)	0.6584 (3)	-0.0255 (2)	0.0898 (9)
H16	1.0149	0.6616	-0.1014	0.108*
C15	0.8327 (4)	0.6296 (2)	0.0215 (2)	0.0743 (7)
H15	0.7235	0.6132	-0.0232	0.089*
C14	0.8222 (3)	0.62545 (18)	0.13341 (18)	0.0539 (6)
C13	0.6388 (4)	0.5931 (2)	0.1861 (3)	0.0872 (9)
H13B	0.6471	0.6325	0.2587	0.105*
H13A	0.5422	0.6184	0.1423	0.105*
C11	0.3842 (3)	0.32488 (19)	0.26814 (16)	0.0485 (5)
C12	0.4680 (4)	0.2348 (2)	0.2070 (2)	0.0742 (7)
H12C	0.5063	0.2642	0.1369	0.111*
H12A	0.3765	0.1611	0.1961	0.111*
H12B	0.5750	0.2214	0.2486	0.111*
C3	0.2208 (3)	0.28938 (17)	0.33767 (15)	0.0449 (5)
C2	0.1984 (3)	0.17731 (18)	0.39329 (15)	0.0462 (5)
C9	-0.0825 (3)	0.21796 (17)	0.47168 (14)	0.0418 (5)
C4	0.0943 (3)	0.35857 (18)	0.35299 (15)	0.0481 (5)
H4	0.1091	0.4300	0.3175	0.058*
C10	-0.0610 (3)	0.32596 (17)	0.42160 (15)	0.0437 (5)
C5	-0.1943 (3)	0.39482 (19)	0.44254 (17)	0.0530 (5)
Н5	-0.1839	0.4680	0.4104	0.064*
C6	-0.3389 (3)	0.35666 (19)	0.50912 (17)	0.0529 (5)

H6	-0.4246	0.4042	0.5231	0.064*
C8	-0.2289 (3)	0.17562 (18)	0.53828 (15)	0.0460 (5)
H8	-0.2400	0.1022	0.5699	0.055*
C7	-0.3581 (3)	0.24560 (18)	0.55642 (15)	0.0458 (5)
C20	-0.5503 (3)	0.0961 (2)	0.65844 (17)	0.0564 (6)
H20B	-0.4576	0.0878	0.7150	0.068*
H20A	-0.5481	0.0381	0.5985	0.068*
C21	-0.7401 (3)	0.07576 (19)	0.70411 (16)	0.0536 (5)
H21	-0.8390	0.0794	0.6550	0.064*
C22	-0.7839 (3)	0.05328 (19)	0.80605 (16)	0.0516 (5)
C24	-0.6452 (4)	0.0473 (3)	0.89720 (19)	0.0908 (9)
H24C	-0.5213	0.0617	0.8696	0.136*
H24A	-0.6738	-0.0304	0.9268	0.136*
H24B	-0.6510	0.1069	0.9539	0.136*
C23	-0.9843 (3)	0.0309 (2)	0.8392 (2)	0.0740 (7)
H23B	-1.0643	0.0390	0.7770	0.111*
H23C	-0.9965	0.0879	0.8969	0.111*
H23A	-1.0200	-0.0484	0.8648	0.111*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0458 (10)	0.0545 (12)	0.0642 (11)	0.0066 (9)	0.0195 (8)	0.0119 (9)
O3	0.0547 (9)	0.0495 (10)	0.0799 (10)	0.0063 (7)	0.0285 (8)	0.0151 (7)
02	0.0598 (9)	0.0552 (10)	0.0791 (10)	0.0235 (8)	0.0188 (8)	0.0198 (8)
01	0.0493 (8)	0.0467 (9)	0.0545 (8)	0.0125 (7)	0.0135 (6)	0.0161 (6)
O4	0.0584 (9)	0.0500 (9)	0.0602 (9)	0.0102 (7)	0.0212 (7)	0.0094 (7)
C19	0.0675 (15)	0.0652 (16)	0.0569 (13)	0.0157 (13)	0.0105 (11)	0.0086 (11)
C18	0.0535 (15)	0.089 (2)	0.0876 (19)	0.0105 (14)	0.0042 (13)	0.0007 (15)
C17	0.0681 (18)	0.089 (2)	0.096 (2)	0.0059 (15)	0.0369 (16)	0.0044 (16)
C16	0.122 (3)	0.093 (2)	0.0524 (15)	0.0134 (19)	0.0287 (17)	0.0138 (14)
C15	0.0760 (18)	0.0710 (18)	0.0716 (16)	0.0083 (14)	-0.0149 (13)	0.0084 (13)
C14	0.0487 (13)	0.0434 (13)	0.0715 (14)	0.0097 (10)	0.0176 (11)	0.0137 (10)
C13	0.0692 (17)	0.0507 (16)	0.150 (3)	0.0176 (13)	0.0500 (17)	0.0331 (16)
C11	0.0480 (12)	0.0480 (13)	0.0491 (11)	0.0080 (10)	0.0081 (9)	0.0058 (9)
C12	0.0839 (18)	0.0575 (16)	0.0832 (17)	0.0131 (13)	0.0391 (14)	0.0051 (13)
C3	0.0458 (11)	0.0430 (12)	0.0453 (10)	0.0064 (9)	0.0075 (8)	0.0072 (9)
C2	0.0449 (11)	0.0469 (13)	0.0467 (11)	0.0082 (10)	0.0057 (9)	0.0072 (9)
C9	0.0435 (11)	0.0416 (12)	0.0412 (10)	0.0108 (9)	0.0031 (8)	0.0047 (8)
C4	0.0508 (12)	0.0435 (12)	0.0489 (11)	0.0060 (10)	0.0046 (9)	0.0111 (9)
C10	0.0431 (11)	0.0433 (12)	0.0436 (10)	0.0059 (9)	0.0032 (8)	0.0075 (9)
C5	0.0536 (13)	0.0454 (13)	0.0616 (13)	0.0110 (10)	0.0085 (10)	0.0146 (10)
C6	0.0519 (12)	0.0448 (13)	0.0649 (13)	0.0144 (10)	0.0097 (10)	0.0085 (10)
C8	0.0511 (12)	0.0427 (12)	0.0436 (10)	0.0069 (10)	0.0064 (9)	0.0084 (9)
C7	0.0465 (11)	0.0465 (12)	0.0425 (10)	0.0042 (9)	0.0101 (8)	0.0046 (9)
C20	0.0637 (14)	0.0540 (14)	0.0522 (12)	0.0108 (11)	0.0156 (10)	0.0106 (10)
C21	0.0486 (12)	0.0603 (14)	0.0501 (12)	0.0054 (10)	0.0072 (9)	0.0111 (10)
C22	0.0539 (13)	0.0507 (13)	0.0490 (11)	0.0066 (10)	0.0091 (9)	0.0062 (9)

C24	0.0810 (19)	0.136 (3)	0.0548 (14)	0.0192 (18)	0.0014 (13)	0.0171 (15)
C23	0.0656 (16)	0.0839 (19)	0.0709 (16)	0.0066 (14)	0.0209 (12)	0.0184 (13)
Geometric para	meters (Å, °)					
N1-C11		1.279 (3)	C3—	C4	1.3	54 (3)
N1		1.4111 (19)	C3—	C2	1.4	59 (3)
O3—C13		1.428 (3)	С9—	C8	1.3	82 (2)
O2—C2		1.207 (2)	С9—	C10	1.3	85 (3)
O1—C9		1.375 (2)	C4—4	C10	1.42	28 (3)
O1—C2		1.377 (2)	C4—]	H4	0.93	300
O4—C7		1.356 (2)	C10–	-C5	1.4	02 (3)
O4—C20		1.443 (2)	C5—	С6	1.3	53 (3)
C19—C18		1.353 (3)	C5—1	H5	0.93	300
C19—C14		1.373 (3)	C6—	С7	1.40	01 (3)
С19—Н19		0.9300	C6—1	H6	0.9	300
C18—C17		1.338 (3)	C8—4	С7	1.3	31 (3)
C18—H18		0.9300	C8—1	H8	0.9	300
C17—C16		1.368 (4)	C20–	-C21	1.43	38 (3)
С17—Н17		0.9300	C20–	-H20B	0.9	700
C16—C15		1.396 (4)	C20–	-H20A	0.9	700
C16—H16		0.9300	C21-	-C22	1.3	16 (3)
C15—C14		1.371 (3)	C21-	-H21	0.9.	300
C15—H15		0.9300	C22–	-C24	1.4	90 (3)
C14—C13		1.488 (3)	C22–	-C23	1.5	04 (3)
C13—H13B		0.9700	C24—	-H24C	0.9	500
C13—H13A		0.9700	C24—	-H24A	0.9	500
C11—C3		1.483 (3)	C24—	-H24B	0.9	500
C11—C12		1.495 (3)	C23–	-H23B	0.9	500
C12—H12C		0.9600	C23–	-H23C	0.9	500
C12—H12A		0.9600	C23–	-H23A	0.9	500
C12—H12B		0.9600				
C11—N1—O3		111.18 (16)	01—	C9—C10	120	.44 (16)
N1-03-C13		108.13 (15)	C8—	C9—C10	123	.15 (18)
C9—O1—C2		123.03 (15)	C3—	C4—C10	122	.46 (18)
C7—O4—C20		117.49 (15)	C3—	C4—H4	118	.8
C18—C19—C14		121.5 (2)	C10–	-C4—H4	118	.8
C18—C19—H19	1	119.2	С9—	C10—C5	117	.12 (17)
C14—C19—H19	1	119.2	С9—	C10—C4	117	.73 (18)
C17—C18—C19		120.6 (3)	C5—	C10—C4	125	.15 (18)
C17—C18—H18		119.7	C6—	C5—C10	121	.29 (19)
C19—C18—H18		119.7	C6—	С5—Н5	119	.4
C18—C17—C16		120.4 (2)	C10–	-C5—H5	119	.4
C18—C17—H17		119.8	C5—	С6—С7	119	.89 (19)
С16—С17—Н17		119.8	C5—4	С6—Н6	120	.1
C17—C16—C15		119.2 (2)	C7—4	С6—Н6	120	.1
С17—С16—Н16		120.4	C7—	C8—C9	118	.06 (18)
C15—C16—H16		120.4	C7—4	С8—Н8	121	.0
C14—C15—C16		120.1 (2)	C9—	С8—Н8	121	.0

C14—C15—H15	119.9	O4—C7—C8	124.63 (18)
C16—C15—H15	119.9	O4—C7—C6	114.90 (17)
C15—C14—C19	118.1 (2)	C8—C7—C6	120.47 (18)
C15—C14—C13	121.5 (2)	O4—C20—C21	107.58 (17)
C19—C14—C13	120.3 (2)	O4—C20—H20B	110.2
O3—C13—C14	108.12 (18)	C21—C20—H20B	110.2
O3—C13—H13B	110.1	O4—C20—H20A	110.2
C14—C13—H13B	110.1	C21—C20—H20A	110.2
O3—C13—H13A	110.1	H20B—C20—H20A	108.5
C14—C13—H13A	110.1	C22—C21—C20	127.4 (2)
H13B-C13-H13A	108.4	C22—C21—H21	116.3
N1—C11—C3	113.69 (18)	C20—C21—H21	116.3
N1—C11—C12	124.18 (19)	C21—C22—C24	124.4 (2)
C3—C11—C12	122.1 (2)	C21—C22—C23	121.23 (19)
C11—C12—H12C	109.5	C24—C22—C23	114.42 (18)
C11—C12—H12A	109.5	C22—C24—H24C	109.5
H12C	109.5	C22—C24—H24A	109.5
C11—C12—H12B	109.5	H24C—C24—H24A	109.5
H12CC12H12B	109.5	C22—C24—H24B	109.5
H12A—C12—H12B	109.5	H24C—C24—H24B	109.5
C4—C3—C2	118.98 (17)	H24A—C24—H24B	109.5
C4—C3—C11	122.25 (18)	С22—С23—Н23В	109.5
C2—C3—C11	118.75 (17)	С22—С23—Н23С	109.5
O2—C2—O1	116.02 (17)	H23B—C23—H23C	109.5
O2—C2—C3	126.66 (18)	С22—С23—Н23А	109.5
O1—C2—C3	117.31 (17)	H23B—C23—H23A	109.5
O1—C9—C8	116.41 (16)	H23C—C23—H23A	109.5

Hydrogen-bond geometry (°)

D—H…A __…

Fig. 1

Fig. 3

Fig. 4

