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Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted 
drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these 
effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These 
attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) 
and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of 
primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal 
cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction 
of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic 
factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
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Abbreviations
3-AP  3-Aminopropanal
AD  Alzheimer’s disease
ADAM-10  A disintegrin and metalloproteinase domain-

containing protein 10; α-secretase
AP-2  Adaptor protein complex-2
APP/PS1  Amyloid precursor protein/presenilin 1
ATP  Adenosine triphosphate
BACE  β-Secretase
CCI-TBI  Controlled cortical impact traumatic brain 

injury
CSF  Cerebrospinal fluid
DOPAL  3,4-Dihydroxphenylacetaldehyde

DOPEGAL  3,4-Dihydroxyphenylglycolaldehyde
EAE  Experimental autoimmune 

encephalomyelitis
FADD  Fas-associated drug domain
GABA  γ-Aminobutyric acid
GABA-T  GABA transaminase
H2O2  Hydrogen peroxide
HIAL  5-Hydroxyindoleacetaldehyde
HNE  4-Hydroxy-2-nonenal
L1  Neuronal cell adhesion molecule
MAO  Monoamine oxidase
MPP+  1-Methyl-4-phenylpyridinium
MPTP  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine
PD  Parkinson’s disease
PEH  β-Phenylethylidenehydrazine
PLZ  Phenelzine
PrAO  Primary amine oxidase
ROS  Reactive oxygen species
SCI  Spinal cord injury
SSAO  Semicarbazide-sensitive amine oxidase
TBI  Traumatic brain injury
TRKB  Tropomyosin-related kinase B
TRPA1  Transient receptor potential ankyrin 1
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VAP-1  Vascular adhesion protein
VGLUT  Vesicular glutamate transporter

Introduction

In the last 25 years, numerous exciting research reports have 
demonstrated that many antidepressants and antipsychotics 
have neuroprotective and/or neurorescue properties (Baker 
et al. 2012; Chen and Nasrallah 2019; Hunsberger et al. 
2009; Li and Xu 2007; Lieberman et al. 2008; Shadfar et al. 
2018; Song et al. 2013; Sowa et al. 2004; Tatton et al. 2003; 
Xu et al. 2003; Youdim and Bakhle 2006; Young 2002). 
With regard to monoamine oxidase inhibitors (MAOIs), 
much of this research has focused on the selective irreversi-
ble MAO-B inhibitors l-deprenyl and rasagaline, which have 
demonstrated neuroprotective properties in a wide variety of 
models in vitro and in vivo (Gerlach et al. 1996; Hill et al. 
2020; Magyar and Szende 2004; Sowa et al. 2004; Szökő 
et al. 2018; Tatton et al. 2003; Youdim et al. 2006). How-
ever, there is also extensive research demonstrating multiple 
actions of the MAOI phenelzine (PLZ) that may contribute 
to neuroprotection/neurorescue, and the focus of the current 
review paper is on PLZ and its numerous properties in that 
regard.

PLZ (Fig. 1) is a non-selective (inhibits both MAO-A and 
-B) irreversible MAOI marketed as an antidepressant, but it 
has also been reported in clinical studies to be effective in 
treatment of anxiety disorders such as panic disorder and 
social anxiety disorder (Aarre 2003; Buigues and Vallejo 
1987; Davidson et al. 1987; Liebowitz et al. 1988; McGrath 
et al. 1986; Sheehan et al. 1980; Williams et al. 2020; Zhang 
and Davidson 2007). As with other irreversible non-sub-
type-selective MAO inhibitors, some dietary restrictions 
are recommended for patients on PLZ to avoid a potential 
hypertensive crisis when certain foods are ingested, although 
effects on blood pressure appear to be less problematic than 
originally proposed in the literature (see Gillman 2018 for 
discussion of this aspect). PLZ is a multifaceted drug that 
acts on several enzymes and other factors proposed to be 

involved in neuroprotection and in the etiology of a variety 
of psychiatric and neurological disorders (Al-Nuaimi et al. 
2012; Baker et al. 1991, 2019; Hill et al. 2020; Holt et al. 
2004; Jarrahi et al. 2020; MacKenzie et al. 2010; Popov 
and Matthies 1969; Ribaudo et al. 2020; Song et al. 2010; 
Wood et al. 2006b). The following aspects which appear to 
be contributing to the neuroprotective effects of PLZ will be 
discussed in detail in this review: contribution of an active 
metabolite; inhibition of MAO; inhibition of γ-aminobutyric 
acid transaminase (GABA-T) and elevation of brain GABA 
levels; elevation of brain levels of the amino acid ornith-
ine and N-acetylamino acids; sequestration of toxic reactive 
aldehydes such as formaldehyde, acrolein, 3-aminopropa-
nal, malondialdehyde, and 4-hydroxy-2-nonenal (4-HNE); 
and inhibition of primary amine oxidase [PrAO, also known 
as semicarbazide-sensitive amine oxidase (SSAO)]. Some 
recent findings on additional factors that may be involved in 
its neuroprotective actions will also be discussed.

In preparation for this review paper, the Web of Science 
databases and PubMed were reviewed for papers from the 
years 1995 to 2020. The following search headings were 
used: phenelzine and neuroprotection; phenelzine and oxida-
tive stress; reactive aldehydes in psychiatric disorders; reac-
tive aldehydes in neurological disorders; acrolein in disease 
states; semicarbazide-sensitive amine oxidase in disease 
states; semicarbazide-sensitive amine oxidase in Alzhei-
mer’s disease; and primary amine oxidase in Alzheimer’s 
disease. The reference lists in a number of papers on the 
above topics were also searched for additional appropriate 
references, and we have also included results from our own 
investigations on PLZ.

β‑Phenylethylidenehydrazine (PEH), 
an Active Metabolite of PLZ

PLZ is metabolized extensively, with metabolites including 
β-phenylethylamine, phenylacetic acid, p-hydroxypheny-
lacetic acid, β-phenylethylidenehydrazine (PEH), and phe-
nylethyldiazene (Clineschmidt and Horita 1969a, 1969b; 

Fig. 1  Chemical structures of PLZ and PEH
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Kennedy et al. 2009; Kumpula et al. 2010; Robinson et al. 
1985; Tipton 1972; Tipton and Spires 1972). Of these, PEH 
(Fig. 1) appears to contribute markedly to the neuroprotec-
tive effects of the parent drug. In addition to being inhib-
ited by PLZ, MAO also catalyzes the catabolism of PLZ 
(Clineschmidt and Horita 1969a, 1969b; Horita 1965; Popov 
and Matthies 1969; Tipton 1971, 1972), with PEH being a 
prominent metabolite (Patek and Hellerman 1974; Tipton 
and Spires 1972). Although PEH is only a weak inhibitor 
of MAO (MacKenzie et al. 2008a; Matveychuk 2015; Mat-
veychuk et al. 2013; Paslawski et al. 2001), it has several 
actions, including effects on brain levels of GABA, seques-
tration of reactive aldehydes, and inhibition of PrAO that 
may contribute to the neuroprotective/neurorescue proper-
ties of PLZ, and these actions will be described in the appro-
priate sections below.

Inhibition of MAO‑A and MAO‑B

By inhibiting MAO, PLZ elevates brain levels of the mono-
amine neurotransmitters 5-hydroxytryptamine (5-HT, sero-
tonin), noradrenaline, and dopamine which have been pro-
posed to be functionally deficient in depression (reviews: 
Baker and Dewhurst 1985; Blier 2016). However, the inhi-
bition of MAO may also be associated with some of the 
neuroprotective properties of PLZ. The catalytic cycle of 
MAO results in the production of  H2O2, an aldehyde (via an 
imine) and ammonia (for primary amines) or an alkyl-sub-
stituted amine (for secondary and tertiary amines). Ammo-
nia,  H2O2, and some of the aldehyde metabolites formed 
are potentially neurotoxic (Marchitti et al. 2007; Wang et al. 
2004; Wood et al. 2007a; Yang 2004; Yang et al. 2003), and 
their production is reduced by MAOIs. The MAO-catalyzed 
oxidation of catecholamines and 5-HT results in formation 
of 3,4-dihydroxyphenylacetaldehyde (DOPAL) from dopa-
mine, 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) 
from noradrenaline and adrenaline, and 5-hydroxyindoleac-
etaldehyde (5-HIAL) from 5-HT. These three aldehydes 
have been reported to produce toxicity in a variety of in vitro 
and in vivo experiments (Cagle et al. 2019; Eisenhofer et al. 
2004; Marchitti et al. 2007) and have been implicated in 
the etiology of Alzheimer’s disease (AD) and Parkinson’s 
disease (PD) (Burke et al. 2003, 2004; Grünblatt et al. 2004; 
Masato et al. 2019; Panneton et al. 2010).

It has been reported that with aging in humans there 
is increased brain activity of MAO-B, but not of MAO-A 
(Fowler et al. 1997, 2002; Shemyakov 2001; Volchegor-
skii et al. 2001). The activity of MAO-B is also increased 
in brains of AD patients relative to age-matched controls, 
while MAO-A activity has been reported to be unchanged 
or increased depending on the brain regions under investiga-
tion (Adolfsson et al. 1980; Jossan et al. 1991; Oreland and 

Gottfries 1986; Quartey et al. 2018; Reinikainen et al. 1988; 
Saura et al. 1994; Sherif et al. 1992; Sparks et al. 1991). 
The increased MAO-B activity in aging and AD may be the 
result of age- and neurodegeneration-related proliferation 
of glial cells since MAO-B is expressed in glia (Beach et al. 
1989; Liu et al. 1996; Riederer et al. 1987). This increase in 
MAO-B activity has been proposed to contribute to destruc-
tion of cholinergic neurons, cognitive dysfunction, and 
formation of amyloid plaques and neurofilbrillary tangles 
(Cai 2014; Manzoor and Hoda 2020; Schedin-Weiss et al. 
2017). The mechanism of the effect of MAO-B on cholin-
ergic neurons is unclear, but may be the result of the excess 
MAO-B producing increased levels of hydrogen peroxide, 
subsequently leading to formation of reactive oxygen spe-
cies such as the hydroxyl radical (Practico 2008; Quartey 
et al., 2018; Riederer et al. 2004; Sturm et al. 2017; Sa et al. 
2019). Interestingly, Jossan et al (1989), in a study with a 
cholinergic neurotoxin in rats reported that degeneration of 
cholinergic neurons also results in an increase in activity of 
MAO-B, but not of MAO-A, in hippocampus, striatum, and 
cortex. These authors suggested that the increase was due 
to increased gliosis after cholinergic neuronal degeneration 
and that increased MAO-B activity may reflect degenera-
tion of the cholinergic system. It has also been proposed 
that MAO-B may increase neurodegeneration via regula-
tion of β-amyloid levels by activating γ-secretase in neurons 
(Schedin-Weiss et al. 2017). An interaction of MAO-B with 
GABA may also contribute to the cognitive dysfunction seen 
in AD. MAO-B has been reported to catalyze formation of 
GABA from the polyamine putrescine in glia, and the GABA 
thus formed is released to mediate tonic inhibition (Yoon 
et al. 2014). The presence of reactive astrocytes in close 
proximity to amyloid plaques has been observed in AD, and 
it has been proposed that aberrant levels of GABA formed 
by the action of MAO-B in such astrocytes impair memory 
in mouse models of AD (Jo et al. 2014).

MAOIs would attenuate the effects of increased MAO-B, 
although they have not been utilized extensively in treat-
ment of AD; such studies have been conducted mainly with 
irreversible MAO-B inhibitors such as selegiline and rasagil-
ine, and the results in long-term studies have been generally 
disappointing (Park et al., 2019; Schneider et al. 2014; Tabi 
et al. 2020). Park et al. (2019) proposed that the MAO-B/
GABA interaction may account for why the irreversible 
MAO-B-selective inhibitor l-deprenyl (selegiline) has been 
found to improve cognitive deficits in AD after short-term, 
but not long-term, administration. In studies on the amyloid 
precursor, protein/presenilin 1 (APP/PS1) mouse model of 
AD, these researchers found that selegiline reduced the aber-
rant levels of GABA initially by inhibiting MAO-B but that 
increased activity of the compensatory GABA-synthesiz-
ing enzyme diamine oxidase after longer administration of 
selegiline resulted in increased levels of GABA again; they 
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found that a highly selective, reversible MAO-B inhibitor 
(KDS2010) did not have this effect and reversed learning 
and memory impairment in this mouse model (Park et al 
2019). Because of their effects on reactive oxygen species, 
toxic aldehydes, and PrAO (see the following discussions in 
this review), PLZ and PEH might be useful adjunctive drugs 
to study in AD, although their GABA-enhancing effects (see 
next section) may contribute to memory impairment (Park 
et al. 2019).

Elevation of Brain Levels of GABA by PLZ 
and PEH

Although it was developed as an MAOI, it is well docu-
mented that PLZ also causes an elevation of brain levels 
of GABA in rats (Baker et al. 1991; McKenna et al. 1994; 
Paslawski et al. 1995; Popov and Matthies 1969; Todd and 
Baker 1995; Fig. 2). In 1969 Popov and Matthies reported 
that the treatment of rats with another MAOI before admin-
istering PLZ attenuated the ability of PLZ to elevate brain 
levels of GABA, suggesting that a metabolite formed by the 
action of MAO on PLZ was responsible for the observed 
effects. Since PEH had been reported as a metabolite of PLZ 
(Patek and Hellerman 1974; Tipton and Spires 1972), we 
synthesized PEH, which differs structurally from PLZ in the 
presence of a double bond. We found that PEH, like PLZ, 
caused a rapid, marked, and relatively long-lasting elevation 
of brain GABA after a single intraperitoneal (ip) injection to 
rats (MacKenzie et al. 2010; Paslawski et al. 2001). While 
PEH is a weak MAO inhibitor (MacKenzie et al. 2010; Mat-
veychuk et al. 2013; Paslawski et al. 2001), this metabolite 
inhibits GABA transaminase (GABA-T) (Paslawski et al. 
2001; MacKenzie et al. 2008a), presumably contributing to 
the GABA-elevating action of PLZ.

Our interest in possible neuroprotective/neurorescue 
actions of PLZ and PEH was stimulated by reports that 
various GABAergic drugs decreased neuronal cell loss 
in animal models of stroke (global and focal ischemia) 
(Chen Xu et al. 2000; Leker and Neufeld 2003; Shuaib 
et al. 1992, 1997; Shuaib and Kanthan 1997; Sydserff et al. 
2000) and by suggestions that such agents were effective 
by counteracting the deleterious excitotoxic effects of the 
increased glutamate release that occurs in stroke (Green 
et al. 2000; Schwartz-Bloom and Sah 2001; Shuaib and 
Kanthan 1997; Stumm et al. 2001). Indeed, there is now 
a large body of literature indicating the importance of 
maintaining the exquisite balance between GABA and 
glutamate in the brain and suggesting that a disruption of 
that balance is a feature of several psychiatric and neuro-
logical disorders, including depression, mania, epilepsy, 
amyotrophic lateral sclerosis, schizophrenia, multiple scle-
rosis, and stroke (Cohen et al. 2015; Foerster et al. 2013; 
Green et al. 2000; Ketter and Wang 2003; Kim and Yoon 
2017; Luscher et al. 2011; Naylor 2010; Potter et al. 2016; 
Wassef et al. 2003). We tested PLZ and PEH in a global 
ischemia model in the gerbil (the animal model that is used 
primarily in such studies) and found marked neurorescue 
effects with each of these drugs at doses which caused 
pronounced increases in brain levels of GABA (Sowa 
et al. 2003, Sowa et al. 2005; Tanay et al. 2002; Todd 
et al. 1999; Wood et al. 2006b and Fig. 3).

Fig. 2  Effects of PLZ (15  mg/kg ip) on rat whole brain levels of 
GABA (from Baker et al. 1991 with permission from Elsevier). Val-
ues represent mean % of controls ± SEM (N = 5). Control GABA val-
ues = 234 ± 8 μg/g (N = 30). *p < 0.05 compared to control values

Fig. 3  Attenuation by PLZ and PEH of neuronal loss in a global 
ischemia model of stroke (carotid ligation for 5 min followed by rep-
erfusion). PLZ (15 mg/kg ip) or PEH (30 mg/kg ip) were started 3 h 
post reperfusion. Gerbils were treated once daily at the same dose 
for 6 days and were euthanized 24 h after the last dose. Neuronal cell 
counts were obtained in the hippocampal CA1 region. *p < 0.05 com-
pared to values in the ischemia-vehicle gerbils. N = 6 for drug-treated 
gerbils and N = 12 for SHAM and ISCH/VEH gerbils
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Sequestration of Reactive Aldehydes by PLZ 
and PEH

Another important concept which is of considerable inter-
est with regard to possible neuroprotective mechanisms of 
action of PLZ, PEH, and structurally related drugs is their 
attenuation of “aldehyde overload”, i.e., excessive levels of 
toxic reactive aldehydes (Wood 2006; Wood et al. 2006b). 
Through Michael addition and/or formation of a Schiff 
base, aldehydes can form adducts with and cross-link pro-
teins, nucleic acids, and aminophospholipids (Esterbauer 
et al. 1991), leading to a variety of adverse effects. This 
may result in inhibition of DNA, RNA, and protein syn-
thesis, disruption of protein and cell membrane function, 
dysfunction of calcium homeostasis, and interference with 
pathways regulating cell respiration and glycolysis (Dang 
et al. 2010; Esterbauer et al. 1991; Lovell et al. 2001; 
Wood et al. 2006b).

There has been a great deal of research in the last two 
decades focusing on the role of toxic reactive aldehydes 
in neurodegeneration (Chen et  al. 2016a; Matveychuk 
et al. 2011; Moghe et al. 2015; Ng et al. 2008; Perluigi 
et al. 2012; Romano et al. 2017; Sultana et al. 2013; Taso 
et al. 2019; Xiao et al. 2017). Potential sources of these 
aldehydes include lipid peroxidation as a result of oxi-
dative stress, carbohydrate autoxidation and metabolism, 
cytochrome P450-mediated oxidation of alcohols, myelop-
eroxidase-mediated oxidation of amino acids, and catalytic 
activity of amine oxidases (O’Brien et al. 2005; Wood 
et al. 2006a). Production of acrolein, malondialdehyde 
and 4-hydroxy-2-nonenal (4-HNE) may result from lipid 
peroxidation (Esterbauer et al. 1991; Lee and Park 2013; 
Ou et al. 2002; Reed 2011; Uchida et al. 1998; Yadav and 
Ramana 2013). As mentioned above, DOPAL, DOPEGAL 
and 5-HIAL result from the oxidation of catecholamines 
and 5-HT by MAO (Eisenhofer et al. 2004; Marchitti et al. 
2007). Several possible enzymes may oxidize polyamines, 
resulting in generation of 3-aminopropanal (3-AP) and acr-
olein (Agostinelli et al. 2010; Houen et al. 1994; Wood 
et al. 2006b, 2007a), and formaldehyde and methylglyoxal 
are generated by oxidation of methylamine and aminoac-
etone, respectively, by PrAO (Lyles and Chalmers 1992; 
Lyles et al. 1990). Accumulation of reactive aldehydes and 
resultant toxicity can occur because of reduced catabolism 
by enzymes such as glutathione-S-transferase, aldehyde 
dehydrogenase, and aldo–keto reductase (Ivanova et al. 
1998; Wood et al. 2007b). Accumulation of reactive alde-
hydes also results in depletion of intracellular thiols that 
sequester the aldehydes, particularly the major intracel-
lular antioxidants glutathione and cysteine (Wood et al. 
2007b). Clinically, this reduction in cellular thiols has 
been reported in schizophrenia (Wood and Wood 2013).

There have been reports of elevated levels of malondi-
aldehyde and acrolein in the plasma, serum, erythrocytes, 
and brains of AD patients (Casado et al. 2008; Greilberger 
et al. 2008; Gustaw-Rothenberg et al. 2010; Lovell et al. 
2001; Marcus et al. 1998; Martin-Aragon et al. 2009; Nam 
et al. 2010; Padurariu et al. 2010; Sinem et al. 2010). Levels 
of 4-HNE have been reported to be increased in brain tis-
sue and cerebrospinal fluid (CSF) of AD patients, and this 
aldehyde has been found to be present in the neurofibrillary 
tangles and senile plaques of AD (Zarkovic 2003). Increases 
in levels of reactive aldehydes including acrolein and 4-HNE 
have also been reported in the central nervous system of 
individuals showing early signs of AD (Bradley et al. 2010; 
Moghe et al. 2015; Williams et al. 2006), suggesting that 
perhaps an early event in the development of AD could be 
accumulation of reactive aldehydes. Such aldehydes have 
been found to play a potential role in prominent aspects of 
AD. Malondialdehyde, formaldehyde, and methylglyoxal 
have been reported to increase the rate of amyloid-β (Aβ) 
oligomer and protofibril formation and to increase the size 
of the aggregates (Chen et al. 2006). Chronic exposure of 
rats to acrolein has been reported to result in mild cognitive 
decline with neuronal loss and activation of astrocytes in 
the hippocampus; these researchers also observed upregula-
tion of cortical levels of β-secretase (BACE-1, the enzyme 
catalyzing formation of Aβ from APP) and downregulation 
of levels of α-secretase [A disintegrin and metalloproteinase 
domain-containing protein 10; (ADAM-10), responsible for 
production of a non-amyloidogenic peptide fragments from 
APP] in the hippocampus and cortex (Huang et al. 2013). 
Khoramjouy et al. (2020) reported that chronic oral admin-
istration of acrolein to rats resulted in impaired learning and 
memory and that there was a direct correlation between that 
impairment and the CSF levels of acrolein. Hyperphospho-
rylation of tau protein and acceleration of tau aggregation 
into fibrils have been reported to be induced by acrolein 
and methylglyoxal (Gomez-Ramos et al. 2003; Kuhla et al. 
2007; Li et al. 2012). In late stage AD, when oxidative stress 
is very advanced, increases in levels of malondialdehyde, 
acrolein and 4-HNE are very evident (Bradley et al. 2010; 
Casado et al. 2008).

Elevated malondialdehyde levels have been observed in 
plasma and cerebrospinal fluid of PD patients (Baillet et al. 
2010; Chen et al. 2009; Ilic et al. 1999; Serra et al. 2009), 
and 4-HNE and malondialdehyde adducts have been found 
in Lewy bodies in neocortical and brain stem neurons in 
PD (Zarkovic 2003). Increased malondialdehyde and acr-
olein content in the substantia nigra has also been reported 
in PD (Dexter et al. 1989; Shamoto-Nagai et al. 2007). 
Reactive aldehyde accumulation may be an early step in 
disease development in PD since increased levels of malon-
dialdehyde adducts in several brain regions of individuals 
with early stages of PD neuropathology have been reported 
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(Dalfo et al. 2005). Acrolein was found to be colocalized 
with α-synuclein in substantia nigra neurons of PD patients; 
the acrolein was shown to enhance α-synuclein oligomeri-
zation in vitro in dopaminergic neurons, which can result 
in mitochondrial dysfunction (Shamoto-Nagai et al. 2007). 
In addition, Dalfo and Ferrer (2008) discovered malondi-
aldehyde-modified α-synuclein in the substantia nigra and 
frontal cortex of PD patients, and of individuals with pre-
clinical PD.

A key feature of several psychiatric (Buckley 2019; Trou-
bat et al. 2020; Zuliani et al. 2007) and neurodegenerative 
(Phani et al. 2012; Schain and Kreisl 2017; Wood et al. 1993; 
Wood 2003) diseases is sustained neuroinflammation that is 
hypothesized to lead to neuronal dysfunction. It remains to 
be determined if reactive aldehydes are initiators of these 
inflammatory cascades or are stimulated by the cascades 
and thereby contribute to the activated immune response.

Hydroxylamines and mercapto compounds are known to 
“mop up” or sequester reactive aldehydes through a chemical 
reaction (Wood et al. 2006a), but several of these compounds 
are toxic in their own right. Hydrazines with an unsubsti-
tuted  NH2 group are also known to react with aldehydes 
(Fig. 4) to produce non-toxic hydrazones. PLZ and PEH are 
such hydrazines and would be expected to be useful drugs 
for reducing levels and toxicity of such aldehydes.

We conducted a study on the effects of PLZ on the toxic 
actions of 3-AP and acrolein in retinal ganglion cell cultures 
and found it to be a potent neuroprotective agent and we 
have demonstrated, using mass spectrometry, that it does 
sequester 3-AP under the incubation conditions used (Wood 
et al. 2007a; Fig. 5). In other studies, we found that PLZ and 
PEH attenuate the reduction in viability of cultured mouse 
cortical neurons produced by acrolein (Baker et al. 2019) 

and sequester several reactive aldehydes in vitro including 
formaldehyde, acrolein, malondialdehyde, and 4-HNE (Mac-
Kenzie 2009; Matveychuk 2015; Fig. 6).

Song et al. (2010) conducted a comprehensive study on 
the effects of PLZ on formaldehyde-induced toxicity to pri-
mary cortical neurons and cortical astrocytes in vitro. For-
maldehyde inhibited glutamate uptake by decreasing expres-
sion of glutamate transporters in astrocytes and activated the 
second messenger p38 mitogen-activated protein kinase (p38 
MAPK), which participates in a signaling cascade modu-
lating cellular responses to cytokines and stress, and these 
effects were attenuated by PLZ. In neurons, formaldehyde 
activated p38MAPK and decreased activation of AKT (a 

Fig. 4  General scheme for reaction of PLZ and PEH with aldehydes

Fig. 5  Results from a concentration–response study on effects of PLZ 
on 3-AP-induced toxicity in rat retinal ganglia cells (from Wood et al. 
2006a with permission from Elsevier). PLZ was added as a cotreat-
ment with 3-AP; media were assayed for LDH 24 h later
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marker of neuronal survival), and PLZ reversed these effects 
(Song et al. 2010). PLZ has also been reported to attenuate 
4-HNE-induced mitochondrial dysfunction in a rat model 
of traumatic brain injury (Singh et al. 2013) and to miti-
gate 4-HNE-induced damage to proteins and lipids in blood 
plasma (Mustafa et al. 2018b).

Inhibition of Primary Amine Oxidase (PrAO) 
by PLZ and PEH

PrAO is a copper-containing transmembrane glycoprotein, 
and the extracellular domain may be cleaved off, result-
ing in a circulating form in plasma (Shanahan et al. 2019; 
Stolen et al. 2004). In some tissues, the membrane form 
is synonymous with Vascular Adhesion Protein (VAP-1) 
involved in migration of leukocytes at sites of inflamma-
tion (Pannecoeck et al. 2015; Salmi and Jalkanen 2001; 
Shanahan et al. 2019). The aldehydes formaldehyde and 
methylglyoxal are formed by deamination of methylamine 
and aminoacetone catalyzed, respectively, by the circulat-
ing plasma form and the membrane-associated form of 
PrAO (Lyles 1996; Shanahan et al. 2019). These aldehydes 
have been shown to increase the formation of β-amyloid 
(Aβ) β-sheets and fibrillogenesis (Chen et al. 2006), both 
of which are proposed to be major contributing factors to 

the pathology of AD (Selkoe 2001; Tanzi and Bertram 
2005). Increased serum PrAO activity has been reported in 
AD patients (Chen et al. 2006; del Mar et al. 2005; Ferrer 
et al. 2002; Gubisne-Haberle et al. 2004; Pannecoeck et al. 
2015; Unzeta et al. 2007; Valente et al. 2012; Yu et al. 
2003), and Jiang et al. (2008) reported a strong expression 
of PrAO colocalized with Aβ deposits on blood vessels 
of postmortem brain samples from AD patients. Elevated 
PrAO plasma levels have also been reported in patients 
with active relapsing multiple sclerosis (Airas et al. 2008), 
diabetes, and inflammation (Pannecoeck et al. 2015), and 
inhibition of PrAO has been reported to be of benefit in 
the relapsing experimental autoimmune encephalomyeli-
tis (EAE) animal model of multiple sclerosis (O’Rourke 
et al. 2007) and to have anti-inflammatory actions that 
are beneficial to vascular health (Jarnicki et al. 2016). 
Ischemia–reperfusion injury in a mouse model of stroke 
is attenuated in PrAO-deficient mice and by PrAO inhibi-
tors (Kiss et al. 2008). Additionally, inhibition of PrAO 
has been reported to provide anti-inflammatory protection 
in a mouse model of intracerebral hemorrhagic stroke (Ma 
et al. 2011). Horváth et al. (2017) reported that an inhibitor 
of PrAO had analgesic and anti-inflammatory effects in a 
mouse model of chronic arthritis. It is of interest that PLZ 
has also been shown to be a strong inhibitor of PrAO (Liz-
cano et al. 1996; Lyles 1996); it has been demonstrated in 
our group that PEH is also a potent inhibitor in vitro of 
PrAO from human sources (MacKenzie 2009; Fig. 7) and 
that ip injection of PLZ or PEH increases rat brain levels 
of methylamine, an indirect indicator of reduction of for-
maldehyde levels (Matveychuk et al. 2013). These findings 
and the observations regarding the other actions of PEH 

Fig. 6  Reduction of acrolein levels in  vitro by PLZ and PEH (from 
Matveychuk 2015, with permission). Acrolein and PLZ or PEH were 
incubated in phosphate-buffered saline, pH 7.4, for 30 min. Follow-
ing incubation, 200  µl samples were adjusted to pH 4 and 50  µl of 
O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine HCl was added to 
give a concentration of 20 mM. After 60 min of incubation at room 
temperature, the samples were acidified and the derivatized aldehyde 
was extracted with 300 µl hexane. A portion of the hexane layer was 
used for GC–MS analysis. Data are normalized relative to controls 
and represent means ± SEM (N = 5). All values significantly differ 
from controls

Fig. 7  Inhibition by PLZ and PEH of PrAO from a human source 
(from MacKenzie 2009,  with permission). A. Holt (University 
of Alberta) purified soluble human PrAO from CHO cells over-
expressing the human enzyme. PrAO activity was measured using 
a modification of the spectrophotometric assay of Holt and Palcic 
(2006), with methylamine as the substrate for the enzyme. Values are 
expressed as % of control PrAO activity (means ± SEM, N = 3)
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mentioned above in this review paper suggest that studies 
on the effects of PLZ and PEH on animal models of AD 
are warranted.

Other Potential Applications of PLZ Based 
on Neuroprotection

PLZ and Traumatic Brain Injury and Spinal Cord 
Injury

Traumatic brain injury (TBI) has been reported to result in 
mitochondrial dysfunction and induction of lipid peroxida-
tion, the latter resulting in production of reactive aldehydes 
such as acrolein and 4-HNE, which probably accumulate 
because of their reduced clearance from damaged neurons 
(Hill et al. 2017, 2018, 2019). Singh et al. (2013) found 
that pretreatment with PLZ reduced the inhibitory effects of 
4-HNE on mitochondrial complex I and II respiration and 
also produced a reduction of 4-HNE levels in mitochondria. 
They also found that PLZ administered to rats 15 min after 
controlled cortical impact-TBI (CCI-TBI) prevented the 
decrease in respiratory control ratio produced by the CCI-
TBI. Further, they reported that PLZ increased the amount 
of spared cortical tissue from 86 to 97% and concluded that 
the neuroprotective actions of PLZ were the result of protec-
tion of mitochondria by scavenging 4-HNE. PLZ pretreat-
ment has been reported by Cebak et al. (2017) to prevent 
both mitochondrial dysfunction and oxidative modification 
of mitochondrial proteins produced in isolated non-injured 
rat brain cortical mitochondria by 4-HNE or acrolein. Par-
gyline, an MAOI which does not have a hydrazine moiety, 
had no protective effects in a similar study, and the authors 
concluded that the response to PLZ was related to carbonyl 
scavenging rather than to inhibition of MAO (Cebak et al. 
2017). In a parallel in vivo study, these researchers found 
that PLZ given 15 min after the CCI-TBI resulted in a 
reduction of mitochondrial respiratory dysfunction and an 
increase in cortical tissue sparing.

Kulbe et al. (2018) examined the effects of continuous 
infusion (for 72 h) of PLZ following severe CCI-TBI in rats 
and found that it attenuated mitochondrial levels of 4-HNE 
and acrolein and maintained the mitochondrial respiratory 
control ratio and cytoskeletal integrity. In a recent study, Hill 
et al. (2020) reported that administration of PLZ to young 
adult male rats after severe CCI-TBI resulted in a preserva-
tion of both synaptic and non-synaptic mitochondrial bio-
energetics observed 24 h later, and that the protection was 
partially maintained at 72 h.

Acrolein has been proposed to be involved in the propaga-
tion of neuropathic pain in spinal cord injury (SCI) by acti-
vation of the transient receptor potential ankyrin 1 (TRPA1) 
cation channel. Lin et al. (2018) reported that PLZ improved 

post-SCI hypersensitivity and motor neuron survival, 
decreased acrolein levels and suppressed TRPA1 upregula-
tion in a rat model of ischemia–reperfusion SCI. PLZ has 
also been reported to reduce the hyperalgesic effects of acr-
olein inhalation in a rat model of contusion SCI (Butler et al. 
2017). Chen et al. (2016b) found reduced neuropathic pain 
after injury in a rat model of SCI when PLZ was adminis-
tered by acute, delayed and chronic dosage schedules. It is 
relevant that hydralazine, another hydrazine drug that, like 
PLZ, scavenges acrolein, also reduces neuropathic pain and 
provides neuroprotection in SCI (Due et al. 2014; Liu-Sny-
der et al. 2006; Park et al. 2015). Chen et al. (2016b) found 
that PLZ and hydralazine each produced a dose-dependent 
reduction in levels of acrolein in vivo and that PLZ facili-
tated recovery of locomotor function and neuroprotection 
of spinal cord tissue when given for 2 weeks after injury.

PLZ and Multiple Sclerosis

As mentioned previously in this review, in relapsing multiple 
sclerosis elevated PrAO activity has been observed in patients 
(Airas et al. 2008), and improvement of symptoms has been 
reported in the EAE model after inhibition of PrAO (O’Rourke 
et al. 2007). Accumulation of toxic aldehydes in plasma, CSF 
and brain tissue from multiple sclerosis patients has been 
reported (Bizzozero et al. 2005; Calabrese et al. 1994; Hunter 
et al. 1985). Studies on the possible role of acrolein in multiple 
sclerosis have received considerable interest in more recent 
years (Leung et al. 2011; Tully et al. 2018). Acrolein induces 
damage to myelin in the spinal cord of mammals (Shi et al. 
2011, 2015), and there have been reports of elevated levels of 
acrolein in the EAE mouse model of multiple sclerosis (Leung 
et al. 2011; Tully et al. 2018). Hydralazine, which like PLZ is 
a carbonyl scavenger, has been reported to improve symptoms 
(Leung et al. 2011) and reduce spinal cord levels of acrolein 
in the EAE model (Tully et al. 2018). In studies on chronic 
administration of PLZ in this same model, Musgrave et al. 
(2011) found that daily injection of PLZ to female mice with 
EAE prior to onset of clinical signs delayed onset and sever-
ity of symptoms and resulted in enhanced exploratory activ-
ity, improved depression-like symptoms and a normalization 
of levels of 5-HT in the ventral horn of the spinal cord. The 
same research group later found that PLZ administration to 
the EAE mice even after the onset of clinical signs can reduce 
the severity of these signs and improve exploratory activity 
(Benson et al. 2013). Potter et al. (2016) found an antinocicep-
tive effect and normalization of primary somatosensory cortex 
neural ensemble responses, neuronal morphology and corti-
cal microglia numbers as well as attenuation of reactivity of 
the VGLUT1 glutamate transporter in EAE mice treated with 
PLZ. Antinociceptive effects have also been studied in models 
other than EAE. Mifflin et al. (2016) studied the effects of PLZ 
and PEH in the formalin model of tonic nociception and found 
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that both PEH and PLZ reduced nociceptive behaviors in the 
second phase of pain induction; interestingly, the reduction 
was similar in both sexes of mice in the case of PEH, but much 
more prominent in male mice in the case of PLZ. Potter et al. 
(2018) found that PLZ selectively inhibits ongoing inflamma-
tory pain but spares transient reflexive and acute nociception; 
these same researchers reported that PLZ reduced intracellu-
lar calcium responses to superfusion of glutamate ex vivo in 
lumbar spinal cord slices. As mentioned earlier in this review 
paper, PLZ has been reported to reduce pain in TBI and SCI, 
and sequestration of acrolein is thought to play a role in that 
action of PLZ. Similar effects of PEH and PLZ on acrolein in 
multiple sclerosis are certainly feasible, but, to our knowledge, 
this possibility has not been studied to date. Similarly, we are 
not aware of any direct comparisons of long-term administra-
tion of PLZ and PEH in animal models of multiple sclerosis. 
Such studies are warranted in this and other animal models of 
neurodegenerative disorders to determine whether the GABA 
levels gradually decrease over time in response to PLZ since 
less PEH may be formed as PLZ-induced inhibition of MAO 
increases, oxidation of PLZ to PEH decreases, and inhibition 
of GABA-T is consequently reduced.

PEH as an Anticonvulsant?

To our knowledge, PEH has not been tested as an anticon-
vulsant in vivo in animal models, but the literature on PEH 
suggests that such studies are warranted. In a physiological 
study, Duffy et al. (2004) applied solutions of PEH to rat hip-
pocampal slices and found a 60% increase in GABA levels 
in the slices. Further, they observed that hyper-excitation 
during epileptiform bursting induced by superfusion with 
 Mg2+-free or high-K+ artificial CSF was reduced, results 
suggesting a potential anticonvulsant action of PEH. The 
GABA-T-inhibiting/GABA-elevating action of PEH in rat 
brain ex vivo also suggests that PEH should be investigated 
as a potential anticonvulsant. Vigabatrin is a GABA-T 
inhibitor marketed as an anticonvulsant, but studies in rats 
ex vivo indicated that both PLZ and PEH are much more 
potent than vigabatrin at inhibiting GABA-T and elevating 
brain GABA levels in rats (MacKenzie et al. 2008a; Todd 
and Baker 2008). In addition, PLZ and PEH can sequester 
reactive aldehydes such as malondialdehyde, acrolein and 
4-HNE that have been implicated in the etiology of some 
types of epilepsy (Cardenas-Rodriguez et al. 2013; Hogard 
et al. 2017; Lorigados Pedre et al. 2018; Olowe et al. 2020).

Other Neurobiological Findings with PLZ 
that may Have Relevance to Neuroprotection

The reactive nitrogen species (RNS) peroxynitrite is pro-
duced by the fusion of the superoxide anion and nitric oxide. 
Peroxynitrite is thought to produce its adverse effects after 
decomposing to yield a nitrogen dioxide radical, a hydroxyl 
radical and a nitryl cation, all of which can cause damage to 
nerve cells (Bedard and Krause 2007; Mustafa et al. 2018a). 
Peroxynitrite has been linked to the etiology of disorders 
such as diabetes, hypertension and atherosclerosis and may 
contribute to aging (Finkel and Holbrook 2000; Niemann 
et al. 2017; Sugamura and Keaney 2011). Mustafa et al. 
(2018a) reported that PLZ protected against protein carbonyl 
formation, protein nitration and lipid peroxidation in per-
oxynitrite-treated plasma and platelet samples. The authors 
concluded that the ability of PLZ to scavenge reactive alde-
hydes was responsible for its protective effects in all three 
of these oxidative stress situations (Mustafa et al. 2018a).

The dopamine system neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) is converted metaboli-
cally to its metabolite 1-methyl-4-phenylpyridinium  (MPP+) 
by MAO-B, and this metabolite has been proposed to cause 
cell death by opening the mitochondrial permeability transi-
tion pore (Cassarino et al. 1999; Lee et al. 2003). Lee et al. 
(2003) studied the effects of  MPP+ on differentiated PC12 
cells and reported that PLZ reduced  MMP+-induced conden-
sation and fragmentation of nuclei and also counteracted the 
decrease in mitochondrial membrane potential, as well as 
cytochrome c release, formation of reactive oxygen species, 
depletion of total glutathione levels, and cell death induced 
by  H2O2.

Actions of PLZ on brain-derived neurotrophic factor 
(BDNF) may also contribute to the neuroprotective prop-
erties of PLZ. Chronic, but not acute, administration of a 
number of antidepressants, including PLZ, has been reported 
to produce an increase in rat brain levels of BDNF (Balu 
et al. 2008; Nibuya et al. 1995). In a study in rats, Dwivedi 
et al. (2006) reported that chronic (21 days) administration 
of PLZ resulted in increased mRNA expression of BDNF 
in frontal cortex and hippocampus and reversed the corti-
costerone-induced decrease in the expression of BDNF in 
the same brain areas. In a study on mouse hippocampus, 
Fred et al. (2019) investigated the effects of ip injection of 
the antidepressants PLZ, fluoxetine, imipramine and keta-
mine on the coupling of the tropomyosin-related kinase B 
(TRKB) receptor and the adaptor protein complex-2 (AP-
2) involved in vesicular endocytosis and suggested a novel 
mechanism for all of these antidepressants in which they 
disrupt the TRKB:AP2M subunit interaction and thereby 
promote TRKB cell surface exposure and BDNF signaling.
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The neural cell adhesion molecule L1CAM (L1) plays a 
functional role in the developing and adult nervous system and 
is thought to be linked to several neurodegenerative diseases 
(Joseph et al. 2020). In the injured spinal cord, L1 can promote 
axonal regrowth and enhance survival of neurons, synaptic 
plasticity and remyelination (Li et al. 2018). In studies in a 
zebrafish SCI model, Li et al. (2018) found that addition of 
PLZ to the aquarium water resulted in an accelerated recov-
ery of the reduced locomotor activity produced by the spinal 
cord transection and promoted axonal regrowth and remyeli-
nation in both larval and adult zebrafish. In the same study, 
these researchers proposed that PLZ was a L1 mimetic since 
it upregulated expression and proteolysis of L1 and phospho-
rylation of extracellular-signal-regulated-kinase (Erk) caudal 
to the site of the lesion in the spinal cord. In another study in 
zebrafish, Joseph et al. (2020) reported that PLZ counteracted 
the toxicity induced by the environmental neurotoxin para-
quat—they found that PLZ prevented the reduction in tyrosine 
hydroxylase activity and dopamine levels, reduced generation 
of reactive oxygen species, protected against impairment of 
mitochondrial viability, enhanced the antioxidant system 
and prevented a decrease in levels of adenosine triphosphate 
(ATP).

Phosphorylation of Fas-associated death domain (FADD), 
an adaptor of death receptors, can result in induction of anti-
apoptotic actions (García-Fuster and García-Sevilla 2016). 
It has been reported that acute administration of PLZ to rats 
resulted in a marked increase in the ratio of phosphorylated to 
non-phosphorylated FADD in brain cortex, and the authors 
suggested that this potential anti-apoptotic action of PLZ may 
be related to its GABA-elevating action and subsequent activa-
tion of  GABAA receptors. However, the effect on the p-FADD/
FADD ratio was not evident after chronic administration 
(14 days) of PLZ, perhaps because MAO-mediated genera-
tion of PEH from PLZ cannot be maintained under conditions 
of substantial MAO inhibition.

In metabolomics studies, we also found that ip treatment 
of male rats with PLZ or PEH resulted in marked increases in 
brain cortex levels of ornithine (MacKenzie et al. 2008b) and 
a number of N-acetylated amino acids (Wood et al. 2020). We 
speculated that the increased ornithine levels may be an indi-
cator of decreased formation of glutamate and/or polyamines 
(resulting in decreased formation of reactive aldehydes such 
as acrolein and 3-AP), thus contributing to neuroprotection. 
The possible involvement of the effects on N-acetylamino 
acids in neuroprotection awaits a further knowledge of the role 
of these N-acetylamino acids in the central nervous system, 
although N-acetylasparate is present in millimolar concentra-
tions in brain and is a marker for viable neurons (Demougeot 
et al. 2001), N-acetylglutamate is a modulator of the urea 
cycle, N-acetyl-leucine is a modulator of vestibulocerebellar 
and posterolateral thalamic circuits related to vestibular func-
tion (Günther et al. 2015) and N-acetylglutamine has been 

proposed to be involved in the sleep–wake cycle (Bourdon 
et al. 2018).

Conclusion

Although marketed initially as an antidepressant because of 
its ability to inhibit MAO, PLZ is a multifaceted drug with a 
multitude of actions that may be relevant to neuroprotection 
and the pharmacotherapy of several psychiatric and neuro-
logical disorders. Its anxiolytic effects have been demonstrated 
clinically, and results from animal models suggest that PLZ 
and/or its metabolite PEH could be considered for studies as 
adjunctive agents in disorders such as stroke, AD, PD, SCI, 
TBI, epilepsy, and multiple sclerosis. PLZ and PEH share 
abilities to inhibit GABA-T and PrAO and sequester reactive 
aldehydes. They differ from each other in their ability to inhibit 
MAO, with PLZ being a very strong irreversible of MAO-A 
and -B, while PEH is only a weak inhibitor of both of these 
isoforms of MAO.

This difference in inhibition of MAO suggests that PEH 
is unlikely to have antidepressant efficacy, but that it is worth 
investigating in some of the other disorders mentioned above 
because of its other neuroprotective properties and the fact that 
the dietary caution recommended with non-selective, irrevers-
ible MAOIs would not be required.
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