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Objective: Inactivity results in a marked loss of muscle function, especially in movements

requiring high power, force, and rate of force development. The aim of the present

study was to evaluate if jump training can prevent these deteriorating effects of physical

inactivity.

Methods: Performance and muscle activity during several types of jumps was assessed

directly before and after 60 days of bed rest as well as during follow-up visits in 23 male

participants. Participants in the jump training group (JUMP, 12 participants) trained 5–6x

per week during the bed rest period in a sledge jump system that allows jumps in a

horizontal position, whereas the control group (CTRL, 11 participants) did not train.

Results: Performance and muscle activity considerably decreased after bed rest in the

control group but not in the training group, neither for countermovement jumps (peak

power CTRL −31%, JUMP +0%, group × time interaction effect p < 0.001), nor for

squat jumps (peak power CTRL −35%, JUMP +1%, p < 0.001) and repetitive hops

(peak force CTRL −35%, JUMP −2%, p < 0.001; rate of force development CTRL

−53%, JUMP +4%, p < 0.001). The control group’s performance had returned to

baseline 3 months after bed rest.

Conclusion: Despite the short exercise duration, the jump training successfully

prevented power and strength losses throughout 2 months of bed rest.Thus, plyometrics

can be recommended as an effective and efficient type of exercise for sedentary

populations, preventing the deterioration of neuromuscular performance during physical

inactivity.
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INTRODUCTION

Physical performance decreases with age (Ali and Garcia, 2014)
and disuse, for example during bed rest (Pavy-Le Traon et al.,
2007) or exposure to weightlessness (Adams et al., 2003). Many
aspects of physical performance are affected— such as strength
and aerobic capacity—but peak power seems to be affected to
a higher extent than for example maximal voluntary strength
(Skelton et al., 1994; Alkner and Tesch, 2004).

To test potential countermeasures for the decline of
neuromuscular performance, several bed rest studies enforcing
strict physical inactivity have been conducted. Exercise and
nutrition interventions that have been tested include protein
supplementation, vibration training, and resistance strength
training. However, none of these countermeasures could
completely prevent the loss of peak power (Rittweger et al.,
2007; Buehring et al., 2011; Gast et al., 2012). This is true
even for countermeasures that were successful in maintaining
maximal leg muscle strength, prompting the authors to conclude
that preserving muscle mass and strength does not necessarily
preserve muscle power, and that there is a need for training
methods that maintain both strength and power (Buehring et al.,
2011).

Moreover, muscle power and rate of force development
correlate better with quality of life and activities of daily living
than muscle mass or strength (Katula et al., 2008; Reid and
Fielding, 2012), and seem to be key factors in preventing falls
(Skelton et al., 2002; Bento et al., 2010; Tschopp et al., 2011).
Consequently, sedentary and elderly populations would greatly
benefit from an intervention that can effectively prevent the
pronounced decline of power and rate of force development.

One type of exercise that has the potential to do so is jumping:
it is the exercise mode with the highest power output (Davies,
1971), a high rate of force development, and has repeatedly been
shown to increase leg muscle strength and power in healthy
participants not subjected to bed rest (Saez-Saez de Villarreal
et al., 2010; Marián et al., 2016). The aim of the present study
was to assess if jump training can counteract the pronounced
decline in leg muscle power, maximal force, and rate of force
development during jumps caused by 2 months of strict bed rest.
To render jumps in a supine position possible, a sledge jump
system (SJS) was used that had already been successfully tested
in previous studies (Kramer et al., 2010, 2012a,b). As results from
a 90-day bed rest study showed that performance improvements
can be specific to the device used during the training andmay not
transfer to standardized tests such as vertical jumps (Rittweger
et al., 2007), a secondary goal of the present study was to
examine if the training effects in the SJS transferred to normal
jumps on the ground, and whether potential differences would
be reflected in muscle activity. Previous studies have shown that
reactive jumps such as drop jumps and hops require a high
preactivation of the leg extensors (Gollhofer and Kyröläinen,
1991; Kramer et al., 2012b), whereas countermovement jumps
exhibit low muscle activity during the eccentric phase and high
activity during the concentric phase (Finni et al., 2000).

We hypothesized that the jump training would prevent the
decline in power, force, and rate of force development caused by

2 months of bed rest, with significant group × time interaction
effects, and that these group differences in neuromuscular
performance would also be reflected in the muscle activity.

METHODS

Study Design
This single-center, parallel-group randomized controlled training
study with balanced randomization was conducted at the
German Aerospace Center (DLR) in Cologne. It consisted of 15
days of baseline data collection (BDC-15 through BDC-1), 60
days of strict 6◦ head-down tilt bed rest (HDT1 through HDT60)
and 15 days of recovery (R+0 through R+14), see Figure 1.
Details about the study can be found in Kramer et al. (2017b) and
(Kramer et al., 2017a). During the bed rest period the subjects
maintained the 6◦ HDT for 24 h/day. During the adaptation and
recovery phases (BDC and R), physical activity was restricted to
free movement within the ward and reeducation training during
recovery. During the entire study, the subjects received a strictly
controlled diet. After being released from the bed rest facility on
day R+14, subjects returned on day R+28, R+90, and R+360 for
follow-up measurements. Jump performance of all subjects was
tested1 day after arrival at the facility (BDC-14), directly before
(BDC-1), and after bed rest (R+0), as well as during recovery
(R+7 and R+13) and follow-up (R+28, R+90, and R+360). In
addition, the training group’s jump performance was assessed on
days HDT20 and HDT40 at the beginning of that day’s training
session. The primary endpoint with respect to the efficacy of the
training intervention was peak power of the lower limbs, assessed
during vertical jumps at R+0 compared to baseline at BDC-1.
The study was registered with the German Clinical Trial Registry
(DRKS, registration number DRKS00012946, 18th of September
2017).

Subjects
Of the 24 healthy male subjects that were enrolled in the study,
one subject discontinued the study on BDC-4 formedical reasons
unrelated to the study. In the morning of the first bed rest
day (HDT1), subjects were randomly allocated to either the
jump training group (JUMP, 12 participants, age 30 ± 7 years,
height 181 ± 7 cm and body mass 77 ± 7 kg) or the control
group (CTRL, 11 participants, age 28 ± 6 years, height 181
± 5 cm, and weight 76 ± 8 kg). Two of the 23 subjects that
completed the study (one CTRL, one JUMP) were re-ambulated
after, respectively, 49 and 50 instead of 60 days of HDT due
to medical reasons, and completed the recovery and follow-
up phase with the scheduled measurements. This study was
carried out in accordance with the recommendations of the
Ärztekammer Nordrhein. The protocol was approved by the
ethics committee of the Northern Rhine Medical Association
(Ärztekammer Nordrhein) in Duesseldorf, Germany, as well
as the Federal Office for Radiation Protection (Bundesamt für
Strahlenschutz). All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Inclusion criteria were as follows: male, age between 20 and
45 years, body mass index between 20 and 26 kg/m2, non-
smoking, no medication, no competitive athlete, and no history
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FIGURE 1 | Study overview. Prior to the bed rest phase, participants spent 14 days in the bed rest facility for familiarization and baseline data collection (BDC-14

through BDC-1). In the morning of the first head-down tilt bed rest day (HDT1), participants were randomly assigned to either the training group (JUMP, total of 48

training sessions during the 60 days of bed rest) or the control group (CTRL). After the 60 days of HDT bed rest, participants were re-ambulated and stayed for an

additional 15 days in the bed rest facility for measurements and recovery (R+0 through R+14). They returned to the bed rest facility on several occasions (R+28,

R+90, and R+360) for follow-up measurements.

of bone fractures. Exclusion criteria were chronic hypertension,
diabetes, obesity, arthritis, hyperlipidaemia, hepatic disease (A,
C), disorder of calcium or bone metabolism, or heritable
blood clotting disorders. Volunteers that were medically eligible
for the study subsequently underwent psychological screening,
involving questionnaires, and interviews. The recruitment
process was concluded by a dual energy X-ray absorptiometry
(DXA) screening of the bone mineral density of the femur and
the lumbar vertebra column.

Training Device and Familiarization
The sledge jump system (SJS, see Figure 2) was developed by
Novotec Medical GmbH (Pforzheim, Germany). In brief, the
subject can jump in the system with hardly any restrictions
concerning the joint movements, allowing almost natural jumps
(Kramer et al., 2010, 2012a) with different acceleration levels
(Kramer et al., 2012b). Since the movement direction is along
a horizontal axis, the forces generated by the two low-pressure
cylinders substitute the gravitational force. One cylinder can
generate 450N at full capacity, i.e., any force between zero and
1800N can be set by altering the pressure of the cylinders.
Ground reaction forces (GRF) were recorded via two force plates,
and the position of the sledge as recorded via an incremental
encoder. During nine 30-min sessions during BDC, all subjects
were familiarized with the correct jumping technique in the
SJS. Each familiarization session consisted of a warm-up (see
training) and then six countermovement jumps (CMJ) and four
series of 10 hops each. The force in the SJS was gradually
increased from 50% body weight in the first session up to 100%
body weight in the last session. Participants were shown the
correct jumping technique and received verbal feedback about
their technique after each series of jumps. In addition, visual
feedback about the target parameters (peak force for the hops and
jump height for the CMJs) was provided for each jump on the SJS
feedback monitor.

Training
The training protocol for the JUMP group during the 60 days of
HDT comprised a total of 48 training sessions. On average, each

session consisted of 4 × 12 countermovement jumps and 2 × 15
repetitive hops, preceded by a warm-up that consisted of 6 squats
and heel raises, 3 submaximal countermovement jumps and 1 ×
10 submaximal repetitive hops. All sessions were supervised and
documented, and the average time spent exercising during one
session was∼3min. Peak forces during the training amounted to
3.6 ± 0.4 kN and peak power to 3.4 ± 0.3 kW. Further details
about the training can be found in Kramer et al. (2017b).

Jump Tests
Each test consisted of jumps on a force plate (Leonardo GRFP,
Novotec medical GmbH, Pforzheim, Germany)—two CMJs, one
squat jump and two series of 10 bilateral hops—and jumps
in the training device (two CMJs, two series of 10 hops), in
counterbalanced order. Prior to the first test, all participants
were shown and practiced the correct execution of all jumps:
hands were placed on the hips—or held on to the straps in the
SJS—and subjects were instructed to jump with maximal effort.
For the CMJs, the instruction was to “Quickly drop to a squat
and then immediately jump as high as possible,” for the hops
it was “Jump as stiff as possible, i.e., flex the ankle, knee and
hip joint as little as possible while still jumping as high as the
high stiffness allows; do not let the heels touch the plate during
landing, keep the contact time as short as possible and jump as
constant as possible.” The squat jumps were always performed
with an initial knee angle of 90◦ with the instruction to “Jump as
high as possible without countermovement prior to the jump.”
After warm-up—consisting of 10 s of tapping, 10 submaximal
hops, and three submaximal countermovement jumps–the jumps
were performed in counterbalanced order, with a break of 1min
between each jump or series of hops. The GRF perpendicular to
the force plates were recorded separately for the right and the left
foot and synchronized to the EMG signals via a data acquisition
unit (Power1401-3, CED, Cambridge, United Kingdom).

Electromyography
Wireless surface electrodes (Trigno, Delsys, USA) were placed
over M. soleus (SOL), M. gastrocnemius medialis (GM), M.
tibialis anterior (TA), M. rectus femoris (RF), M. vastus lateralis
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FIGURE 2 | The training device (sledge jump system, SJS). The participant is fixed to the wooden sledge with shoulder straps, and his thighs rest on additional

straps. The straps are attached to the rails and can slide in the direction of the rails with minimal friction. The forces generated by the two low-pressure cylinders

substitute the gravitational force. Any force between zero and 1800N can be set by altering the pressure of the cylinders. The participant stands on two force plates

(separated, one for each foot). The figure was first published in Kramer et al. (2017b).

(VL), and M. biceps femoris (BF) of the left leg. The longitudinal
axes of the electrodes were in line with the presumed direction
of the underlying muscle fibers. Interelectrode resistance was
reduced by means of shaving and light abrasion of the skin.
The EMG signals were wirelessly transmitted to the base station
(band-pass filter 20–450Hz, effective signal gain of 909) and
sampled with 2 kHz using the data acquisition unit (Power1401-
3, CED, Cambridge, United Kingdom).

Data Availability
The data that support the findings of this study are available
from the authors upon reasonable request. The data are to be
made available in the Erasmus Experiment Archive (http://eea.
spaceflight.esa.int/portal/).

Data Processing
For the CMJs and SJs on the ground, the jump height was
calculated based on the velocity at takeoff [antiderivative of the
GRF; jump height = (velocity at takeoff)2/2 g], and power was
calculated as the product of GRF and velocity. The higher one
of the two CMJs was included in the further analyses. The jump
height and power of the CMJs in the SJS was calculated similarly,
except that the velocity was determined as the derivative of the
position signal acquired by the incremental encoder. For the

repetitive hops on the ground and in the SJS, the first two hops
of each series as well as hops performed with heel contact were
discarded; peak force, rate of force development and ground
contact time for each of the remaining hops in the two series
of 10 hops was determined and then averaged. Rate of force
development was calculated as the peak force divided by the time
from touchdown until the force signal reached its peak.

After removing DC offsets, the EMG signals were rectified.
Then, the mean amplitude voltage (MAV) was calculated for
every jump, in case of the hops for the preactivity phase (50ms
before touchdown until touchdown, see Figure 3), and in case of
the countermovement jumps and squat jumps for the concentric
phase of the jumps (low point of the jump, velocity = 0, until
takeoff). Just like for force and power, the MAV was then
averaged for all valid hops of the 2 × 10 hops, and for the CMJs
only the MAV of the highest jump was further analyzed.

Statistics
After verifying distribution normality with Kolmogorov-
Smirnov tests, changes in response to bed rest were assessed
with repeated measures analyses of variance (ANOVA), using
time (BDC-1 and R+0) as repeated measure and group (JUMP,
CTRL) as inter-subject factor. In case Mauchly’s test of sphericity
produced significant results, the Greenhouse-Geisser correction
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FIGURE 3 | Exemplary data of one reactive hop: ground reaction force (GRF)

and rectified EMG signals of soleus (SOL), gastrocnemius medialis (GM),

tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF), and biceps

femoris (BF). The preactivity phase (50ms before touchdown (TD) until

touchdown) is marked in gray, the take-off (TO) is marked with a vertical line.

was applied. Alpha level was set to 0.05 when testing for
statistical differences. To test agreement with baseline values,
non-inferiority statistics were used (Walker and Nowacki,

2011): the 90% confidence intervals were calculated for the
differences to baseline values (BDC-1). The acceptable bounds
were determined for each parameter separately, based on the
differences observed between single jumps during BDC-1
(Kramer et al., 2010). If the results were statistically non-inferior
to baseline (i.e., if the confidence interval lay above the lower
bound), the respective parameter is marked with a ≥ symbol.
Effect sizes for interaction effects for the performance data
were calculated via Hedge’s g (mean pre-post difference in the
control group minus mean pre-post difference in the training
group, divided by the pooled standard deviation). Sample size
estimations were based on the results of previous bed rest studies,
with an additional margin for potential dropouts (power of 0.9,
alpha of 0.05, effect size of 0.4). The analyses were executed with
SPSS 21.0 (SPSS, Inc., Chicago, IL). Group data are presented as
means± standard deviations (SD).

RESULTS

In the training group, all of the measured jump performance
parameters remained constant or increased after the 60 days of
bed rest, whereas in the control group they showed decreases
between 30 and 60%, see Table 1. This was true for all three
types of jumps (CMJ, SJ, repetitive hops), both on the ground
and in the SJS (see Figures 4, 5). The ANOVA comparing the
values directly before bed rest (BDC-1) to the values directly after
bed rest (R+0) all showed significant group∗time interaction
effects, with large between-group effect sizes (see Table 1). Non-
inferiority statistics showed that the performance parameters did
not differ significantly between R+0 and BDC-1 in the training
group, and that the pronounced decreases observed in the control
group were mostly recovered 3 months after the end of bed rest.

The results of the muscle activity analyses were in line with
the changes observed for the performance parameters, i.e., no
changes or increases in the training group and decreases in
the control group, with the most pronounced time ∗ group
interaction effects in m. vastus lateralis, see Figure 5 and Table 2.

DISCUSSION

The jump training was able to maintain peak power, peak force
and rate of force development of the lower limb muscles after
2 months of physical inactivity during bed rest, and this effect
was not limited to the training device. In the control group, the
pronounced decrease in performance due to physical inactivity
slowly recovered in the weeks following the end of bed rest and
had returned to baseline values after∼3 months.

Previous bed rest studies with different types of
countermeasures have shown that peak power is hard to
maintain over prolonged periods of physical inactivity, and
that peak power as well as jump height can decrease even
if the countermeasure is able to maintain maximal force
during isometric contractions. For example, nutritional
interventions such as protein supplementation were not
successful at all (Trappe et al., 2007), and the otherwise quite
effective countermeasure used in a previous study with similar
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TABLE 1 | Jump performance.

JUMP BDC-1 JUMP R+0 CTRL BDC-1 CTRL R+0 Interaction group*time Hedge’s g

CMJ power abs. [kW] 3.4 ± 0.3 3.4 ± 0.3 ≥ +0 ± 10% 3.4 ± 0.5 2.4 ± 0.3 −31 ± 8% F1, 21 = 47.5 p < 0.001 3.42

CMJ power rel. [W/kg] 44 ± 5 45 ± 5≥ +2 ± 9% 45 ± 5 32 ± 5 −28 ± 8% F1, 21 = 61.6 p < 0.001 3.50

CMJ height [cm] 34 ± 5 34 ± 4 ≥ +1 ± 6% 34 ± 6 22 ± 5 36 ± 12% F1, 21 = 68.3 p < 0.001 3.87

SJ power abs. [kW] 3.3 ± 0.3 3.3 ± 0.2 ≥ +1 ± 7% 3.4 ± 5 2.1 ± 0.2 −35 ± 13% F1, 21 = 41.5 p < 0.001 3.53

SJ power rel. [W/kg] 42 ± 6 43 ± 4 ≥ +3 ± 7% 44 ± 6 29 ± 4 −33 ± 13% F1, 21 = 47.4 p < 0.001 3.42

SJ height [cm] 29 ± 4 30 ± 4 ≥ +4 ± 9% 31 ± 5 19 ± 4 −37 ± 18% F1, 21 = 37.4 p < 0.001 2.89

CMJ SJS power abs. [kW] 3.4 ± 0.3 3.5 ± 0.4 ≥ +5 ± 8% 3.5 ± 0.5 2.2 ± 0.4 −36 ± 9% F1, 21 = 86.2 p < 0.001 4.76

CMJ SJS power rel. [W/kg] 44 ± 5 47 ± 5 ≥ +8 ± 8% 46 ± 4 31 ± 5 −33 ± 10% F1, 21 = 102.8 p < 0.001 4.53

CMJ SJS height [cm] 28 ± 4 29 ± 4 ≥ +4 ± 10% 29 ± 3 19 ± 4 −34 ± 15% F1, 21 = 44.7 p < 0.001 3.10

Hop force abs. [kN] 4.2 ± 0.7 4.0 ± 0.5 ≥ −2 ± 9% 4.1 ± 0.4 2.7 ± 0.5 −35 ± 7% F1, 21 = 64.2 p < 0.001 3.85

Hop force rel. to BW [a.u.] 5.5 ± 1.0 5.4 ± 0.7 ≥ −1 ± 9% 5.5 ± 0.6 3.7 ± 0.6 −32 ± 8% F1, 21 = 63.6 p < 0.001 3.87

Hop GCT [ms] 178 ± 18 179 ± 18 ≥ +0 ± 5% 171 ± 20 219 ± 37 +28 ± 18% F1, 21 = 35.4 p < 0.001 −2.16

Hop RFD [kN/s] 53 ± 16 53 ± 13 ≥ +4 ± 21% 55 ± 10 26 ± 9 −53 ± 14% F1, 21 = 40.3 p < 0.001 3.15

Hop SJS force abs. [kN] 3.7 ± 0.5 3.7 ± 0.4 ≥ −1 ± 9% 3.7 ± 0.5 2.3 ± 0.4 −40 ± 7% F1, 21 = 87.2 p < 0.001 4.97

Hop SJS force rel. to BW [] 4.9 ± 0.7 4.9 ± 0.6 ≥ +1 ± 9% 4.9 ± 0.6 3.2 ± 0.7 −38 ± 6% F1, 21 = 154.3 p < 0.001 5.13

Hop SJS GCT [ms] 172 ± 25 166 ± 24 ≥ −3 ± 7% 176 ± 21 250 ± 47 +48 ± 18% F1, 21 = 61.2 p < 0.001 −3.81

Hop SJS RFD [kN/s] 55 ± 15 56 ± 14 ≥ +4 ± 23% 55 ± 15 22 ± 11 −64 ± 11% F1, 21 = 49.4 p < 0.001 3.74

Means and standard deviations of the jump performance tests, separately for the training group (JUMP) and the control group (CTRL), once directly before (BDC-1) and once directly

after bed rest (R+0). Five tests were conducted: countermovement jumps (CMJ) and squat jumps (SJ) on a force plate, countermovement jumps in the training device (sledge jump

system, SJS), and repetitive hops both on a force plate and in the training device. The percent values reflect the changes observed at R+0 compared to baseline (BDC-1). BW, body

weight; GCT, ground contact time; RFD, rate of force development. If the R+0 value is statistically non-inferior compared to baseline, it is marked with a ≥ symbol. Hedge’s g refers to

the mean changes in the training group vs. the mean changes in the control group.

duration—a combination of resistive exercise and whole body
vibration—still resulted in a decrease in the training group’s
power and jump height of 12 and 14%, respectively (Buehring
et al., 2011). In fact, the jump training used in the present study
is the first countermeasure that maintained peak power and
rate of force development during jumps after long-term bed
rest. This success is most probably due to the nature of the
training, as it consisted only of countermovement jumps and
reactive hops, i.e., movements with very high power and rate of
force development. It underpins the importance of including
high-power movements into training programs designed to
prevent the detrimental effects of inactivity.

The training effect was not restricted to jumps in the training
device, but transferred to “natural” jumps on the ground.
Even performance in the squat jump, which does not rely on
the stretch-shortening cycle and was not part of the training
program, was also maintained in the training group. This is
not a given, as training effects can be quite task- and device-
specific (Giboin et al., 2015). For instance, the concentric-
eccentric resistance training device used during a 90-day bed rest
study (flywheel) was successful in maintaining device-specific
peak power, but this did not transfer to other tasks (Alkner
and Tesch, 2004). Possibly, the advantage of the jump training
used in the present study was that jumps are a whole-body
movement, which have been shown to elicit larger performance
improvements than isolated single-joint movements, especially
regarding lower limb power (Blackburn and Morrissey, 1998;
Stone et al., 2000). Another contributing factor may have been
that the training consisted only of jumps, i.e., an exercise mode
where each repetition requires maximal effort. There is evidence

that maximal effort—either achieved by loads near the one-
repetition maximum or by high actual or intended velocity—is
an important factor in strength and power training (Behm and
Sale, 1993; Fry, 2004).

One could argue that it is not very surprising that a jump
training maintained jump performance, whether this is in the
training system or on the ground, but the training was also very
effective in maintaining isometric MVC, muscle mass, and even
aerobic capacity, although these parameters decreased by up to
40% in the control group (Kramer et al., 2017a,b). Thus, with
adequate programming, a high-power training is also effective for
strength and can act as a type of high-intensity interval training
for cardiovascular and aerobic effects.

The muscle activity during the jump performance tests
corresponded to the performance changes observed: there was
no change or even an increase in the training group, whereas
the control group exhibited a marked decrease in muscle activity
in the leg extensors, most pronounced in vastus lateralis and
the gastrocnemius medialis. These changes in muscle activity
were somewhat task-specific: for the hops all leg extensors were
affected, whereas for the countermovement jumps and the squat
jumps, the two groups differed mainly for the extensors of the
thigh, possibly due to the greater contribution of the thigh
muscles during CMJ and SJ (Fukashiro and Komi, 1987). In
the training group, the increase in muscle activity was most
pronounced for the repetitive hops in the training device,
pointing toward a task- and device-specific adaptation. The
progress during the bed rest phase (compare Figure 5) suggests
that despite the nine familiarization sessions before the start of
the bed rest phase, this adaptation was still ongoing after several
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FIGURE 4 | Means and standard deviations for power and jump height of all participants in the training group (JUMP, full circles) and the control group (CTRL, open

circles). CMJ: countermovement jump, CMJ SJS: countermovement jump in the sledge jump system. The bed rest phase is marked in gray. The timeline starts at the

beginning of the ambulatory phase (BDC-14) and ends with the last follow-up measurement (R+360, one year after the end of the bed rest phase). A * symbol denotes

a statistically significant group × time interaction effect for the BDC-1 and the R+0 measurements, and a ≥ symbol denotes statistical non-inferiority to baseline.

weeks of training during the bed rest phase. The effect of the
familiarization—in particular for the repetitive hops—is apparent
in the clear increase in performance and muscle-specific increase
of the preactivity when comparing the BDC-14 to the BDC-1
values, i.e., at the start of the 2-week ambulatory phase before
the nine familiarization sessions and just before bed rest, after
the familiarization. It is interesting to note that in the training
group, these adaptations partly persisted during the follow-up

measurements, just like the increase in performance during the
hops in the SJS.

Recovery of the Effects of Physical
Inactivity
The analysis of the follow-up performance measurements during
the recovery period showed that even though the decrease in
power and rate of force development was quite high in the control
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FIGURE 5 | Means and standard deviations for peak force normalized to body weight and muscle activity (mean amplitude voltage during preactivity, i.e., the 50ms

before ground contact) of all participants in the training group (JUMP, full circles) and the control group (CTRL, open circles). The EMG data were normalized to the

values directly before bed rest (BDC-1). Left: repetitive hops on the ground; right: repetitive hops in the sledge jump system (SJS). For the training group, two

additional measurements were taken during two training sessions in the bed rest phase (HDT20 and HDT40). The bed rest phase is marked in gray. A * symbol

denotes a statistically significant group × time interaction effect for the BDC-1 and the R+0 measurements, and a ≥ symbol denotes statistical non-inferiority to

baseline (performance measurements only).
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TABLE 2 | EMG data.

JUMP BDC-1 JUMP R+0 CTRL BDC-1 CTRL R+0 Interaction group*time

CMJ RF [mV] 0.15 ± 0.07 0.13 ± 0.05≥ 0.15 ± 0.06 0.12 ± 0.05 F1, 21 = 0.4 p = 0.52

CMJ VL [mV] 0.23 ± 0.13 0.26 ± 0.12≥ 0.26 ± 0.11 0.14 ± 0.07 F1, 21 = 30.4 p<0.001

CMJ BF [mV] 0.05 ± 0.03 0.05 ± 0.02≥ 0.04 ± 0.01 0.04 ± 0.03≥ F1, 21 = 0.4 p = 0.55

CMJ GM [mV] 0.11 ± 0.04 0.12 ± 0.05≥ 0.13 ± 0.03 0.09 ± 0.03 F1, 21 = 6.4 p = 0.02

CMJ SOL [mV] 0.12 ± 0.03 0.11 ± 0.02≥ 0.13 ± 0.02 0.11 ± 0.05 F1, 21 = 0.3 p = 0.60

CMJ TA [mV] 0.05 ± 0.03 0.04 ± 0.02≥ 0.03 ± 0.01 0.03 ± 0.02≥ F1, 21 = 0.04 p = 0.85

SJ RF [mV] 0.14 ± 0.06 0.13 ± 0.05≥ 0.17 ± 0.10 0.11 ± 0.05 F1, 21 = 6.5 p = 0.02

SJ VL [mV] 0.21 ± 0.14 0.25 ± 0.11≥ 0.26 ± 0.09 0.14 ± 0.08 F1, 21 = 17.6 p < 0.001

SJ BF [mV] 0.04 ± 0.01 0.05 ± 0.02≥ 0.03 ± 0.01 0.03 ± 0.01≥ F1, 21 = 4.0 p = 0.06

SJ GM [mV] 0.10 ± 0.03 0.11 ± 0.05≥ 0.13 ± 0.05 0.08 ± 0.03 F1, 21 = 12.4 p = 0.002

SJ SOL [mV] 0.12 ± 0.04 0.12 ± 0.02≥ 0.12 ± 0.03 0.10 ± 0.04 F1, 21 = 1.1 p = 0.30

SJ TA [mV] 0.04 ± 0.01 0.03 ± 0.01≥ 0.04 ± 0.02 0.03 ± 0.02≥ F1, 21 = 0.1 p = 0.75

CMJSJS RF [mV] 0.12 ± 0.09 0.12 ± 0.05≥ 0.13 ± 0.04 0.10 ± 0.07 F1, 21 = 2.8 p = 0.11

CMJSJS VL [mV] 0.21 ± 0.17 0.25 ± 0.17≥ 0.22 ± 0.10 0.12 ± 0.06 F1, 21 = 17.7 p < 0.001

CMJSJS BF [mV] 0.03 ± 0.02 0.05 ± 0.02≥ 0.03 ± 0.02 0.03 ± 0.01≥ F1, 21 = 12.1 p = 0.002

CMJSJS GM [mV] 0.11 ± 0.04 0.11 ± 0.06≥ 0.13 ± 0.03 0.10 ± 0.03 F1, 21 = 2.3 p = 0.14

CMJSJS SOL [mV] 0.12 ± 0.05 0.11 ± 0.05≥ 0.11 ± 0.03 0.09 ± 0.04 F1, 21 = 0.1 p = 0.74

CMJSJS TA [mV] 0.03 ± 0.01 0.03 ± 0.02≥ 0.03 ± 0.01 0.04 ± 0.01≥ F1, 21 = 2.9 p = 0.10

Hop RF [mV] 0.05 ± 0.02 0.05 ± 0.03≥ 0.07 ± 0.05 0.04 ± 0.01 F1, 21 = 6.8 p = 0.02

Hop VL [mV] 0.11 ± 0.06 0.12 ± 0.09≥ 0.14 ± 0.10 0.06 ± 0.04 F1, 21 = 12.7 p = 0.002

Hop BF [mV] 0.03 ± 0.02 0.03 ± 0.01≥ 0.05 ± 0.03 0.03 ± 0.02 F1, 21 = 8.1 p = 0.01

Hop GM [mV] 0.12 ± 0.04 0.12 ± 0.02≥ 0.14 ± 0.08 0.10 ± 0.03 F1, 21 = 4.9 p = 0.04

Hop SOL [mV] 0.06 ± 0.03 0.07 ± 0.04≥ 0.08 ± 0.03 0.05 ± 0.02 F1, 21 = 12.8 p = 0.002

Hop TA [mV] 0.05 ± 0.02 0.04 ± 0.02≥ 0.05 ± 0.03 0.02 ± 0.01 F1, 21 = 0.9 p = 0.36

HopSJS RF [mV] 0.07 ± 0.03 0.07 ± 0.03≥ 0.08 ± 0.06 0.05 ± 0.04 F1, 21 = 6.3 p = 0.02

HopSJS VL [mV] 0.10 ± 0.05 0.16 ± 0.08≥ 0.14 ± 0.11 0.06 ± 0.05 F1, 21 = 22.6 p < 0.001

HopSJS BF [mV] 0.04 ± 0.03 0.04 ± 0.01≥ 0.04 ± 0.04 0.03 ± 0.02≥ F1, 21 = 1.9 p = 0.2

HopSJS GM [mV] 0.10 ± 0.03 0.12 ± 0.04≥ 0.13 ± 0.08 0.10 ± 0.02 F1, 21 = 8.8 p = 0.01

HopSJS SOL [mV] 0.06 ± 0.03 0.09 ± 0.03≥ 0.08 ± 0.03 0.07 ± 0.03 F1, 21 = 14.0 p = 0.002

HopSJS TA [mV] 0.05 ± 0.03 0.04 ± 0.02≥ 0.05 ± 0.02 0.02 ± 0.01 F1, 21 = 2.1 p = 0.17

Means and standard deviations of the muscle activity during the jumps (CMJ, countermovement jump; SJ, squat jump; CMJSJS, countermovement jump in the sledge jump system;

Hop, reactive hops; HopSJS, reactive hops in the sledge jump system) for the training group (JUMP) and the control group (CTRL), once directly before (BDC-1) and once directly after

bed rest (R+0, percent values compared to BDC-1). For the CMJ and the SJ the values refer to the mean amplitude voltage during the concentric phase of the jump, for the hops they

refer to the preactivity during the 50ms before tochdown. If the R+0 value of the training group is statistically non-inferior to baseline, it is marked with a ≥ symbol.

Bold values indicate significant values (p < 0.05).

group, this performance was reversible and was recovered after
about 3 months. This is faster than previously reported recovery
times of 5 months (Rittweger et al., 2007), but in that study bed
rest duration was 90 days instead of 60 days, suggesting that the
recovery time depends on the bed rest duration.

The control group’s recovery of the muscle activity during
the jumps was mostly completed after 1 month, i.e., somewhat
faster than the recovery of jump performance, pointing toward a
relatively fast recovery of inter- and intramuscular coordination
and a slightly slower recovery of muscle mass and other structural
changes.

LIMITATIONS

It is important to remember that themuscle activity data were not
normalized. This means that in addition to the changes in muscle
activation in response to physical activity and jump training,

the EMG was potentially influenced for instance by a bed-rest
induced fluid shift, slight differences in electrode placement,
changes in skin impedance and changes in lean or fat mass.
However, most of these potential confounding factors would have
occurred in both groups, thus hardly influencing the group ×

time interaction effects of interest. We chose not to normalize the
EMG data (for example to the EMG during MVC) because this
would have masked most group differences: the training group
maintained their MVC after bed rest, whereas the control group
lost up to 40% (Kramer et al., 2017a). Thus, normalizing the EMG
data of the jumps to the EMG activity during MVC—which was
also maintained in the training group and reduced in the control
group—would eradicate the differences between the groups.
Therefore, not normalizing EMG data when groups are hardly
comparable—for instance patients vs. healthy populations—has
been suggested to facilitate adequate interpretation of the data
(Cholewicki et al., 2011).
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CONCLUSION

The short jump training successfully maintained the
neuromuscular system’s capability to perform complex
movements with high power output, high peak forces, high
RFD and the necessary muscle activation pattern, whereas the
control group exhibited a marked decline. This finding highlights
the effectiveness of including whole-body exercises requiring
high power and rate of force development into training programs
aimed at maintaining the full capabilities of the neuromuscular
system.
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