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Background: Hepatocellular carcinoma (HCC) is the most common primary
liver malignancy with high morbidity and mortality worldwide. Tumor immune
microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC.
However, the effect of immune cell signatures (ICSs) representing the characteristics of
TIME on the prognosis and therapeutic benefit of HCC patients remains to be further
studied.

Materials and methods: In total, the gene expression profiles of 1,447 HCC patients
from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer
Genome Consortium, and Gene Expression Omnibus, were obtained and applied.
Based on a comprehensive collection of marker genes, 182 ICSs were evaluated
by single sample gene set enrichment analysis. Then, by performing univariate and
multivariate Cox analysis and random forest modeling, four significant signatures were
selected to fit an immune cell signature score (ICSscore).

Results: In this study, an ICSscore-based prognostic model was constructed to stratify
HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was
successfully validated in two independent cohorts. Moreover, the ICSscore values were
found to positively correlate with the current American Joint Committee on Cancer
staging system, indicating that ICSscore could act as a comparable biomarker for HCC
risk stratification. In addition, when setting the four ICSs and ICSscores as features,
the classifiers can significantly distinguish treatment-responding and non-responding
samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify
samples with therapeutic benefits.

Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can
be applied successfully for prognostic stratification and therapeutic evaluation in HCC.
This study provides an insight into the therapeutic predictive efficacy of prognostic ICS,
and a novel ICSscore was constructed to allow future expanded application.

Keywords: hepatocellular carcinoma, tumor immune microenvironment, immune cell signature, ICSscore,
prognostic stratification, therapeutic evaluation
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INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for 75 to 85% of
primary liver cancer, and is the sixth most common and fourth
fatal malignancy globally, with 1- and 3-year survival rates of
20 and 5%, respectively, and a median survival of 8 months
(Olsen et al., 2010; Bray et al., 2018). About two-thirds of patients
with HCC are frequently diagnosed at advanced stages, being
characterized by an aggressive clinical course (Llovet et al., 2016).
Although multiple clinical strategies can be applied for HCC
treatment, including surgical resection, liver transplantation,
radiofrequency ablation, and chemotherapy, the efficacy is
limited by high recurrence rate (Bruix and Sherman, 2011;
Kuhlmann and Blum, 2013; Heimbach et al., 2018). Currently, the
tumor–node–metastasis (TNM) system is still the gold standard
for risk stratification of HCC patients (Liu et al., 2016). However,
the recurrence and survival for HCC patients vary widely within
each stage grouping (Park et al., 2020).

Emerging evidences showed that the tumor immune
microenvironment (TIME) plays a key role in the tumor
progression, recurrence, and metastasis (Nishida and Kudo, 2017;
Kurebayashi et al., 2018). The differences in the composition and
abundance of tumor-infiltrating lymphocytes (TILs), such as T
cells, macrophages, dendritic cells, and associated fibroblasts,
have been reported to influence the prognosis of HCC patients
in different ways (Tang et al., 2019). For example, CD45RO+
memory T lymphocyte infiltration leads to a favorable clinical
outcome in solid tumors, such as colorectal, gastric, and
esophageal cancer, implicating that it is a valuable biomarker for
prognostic prediction for human solid malignances (Gabrielson
et al., 2016; Hu and Wang, 2017). Further understanding of
TIME would provide more advanced prognostic and therapeutic
biomarkers for HCC patients (Fu et al., 2019; Zhang et al., 2019).
However, only a small number of TILs can be assessed, and the
accuracy of applying TILs in predicting prognosis and treatment
responding was still limited (Garnelo et al., 2017).

In this study, based on a comprehensive collection of
marker genes attached to immune cell signatures (ICSs) from
literatures, several HCC transcriptomic datasets were applied
to quantify the ICS by single sample gene set enrichment
analysis (ssGSEA). Subsequently, after performing univariate and
multivariate Cox analysis and random forest modeling, four
significant ICSs associated with prognosis were identified to
construct an immune cell signature score (ICSscore). In several
independent cohorts, the ICSscore was successfully validated to
be associated with risk stratification of HCC patients, including
tumor vs. normal samples, early- vs. advanced-staging samples,
and treatment-responding vs. non-responding samples. Also, the
unified ICSscore was validated successfully in other solid tumors,
e.g., melanoma and breast cancer.

MATERIALS AND METHODS

Dataset Acquisition and Preprocessing
In this study, several gene expression datasets and the available
clinical information of HCC were collected from several

databases, including The Cancer Genome Atlas (TCGA),
Gene Expression Omnibus, and International Cancer Genome
Consortium (ICGC). Therein, in the microarray datasets
(GSE14520, GSE96792, GSE109211, and GSE104580), we
extracted the probe expression (log2 intensity) and probe
annotation, respectively. When a gene was mapped by multiple
probes, the expression of the gene was represented by the
median of the multiple probes. In the RNA-seq datasets
(TCGA-LIHC and ICGC LIRI-JP), we took the read counts to
log2-transformation for normalization (Lian et al., 2018). In
order to make the gene expression profiling comparable between
different platforms, we then normalized with the scale method
by using the limma package in R (Wang et al., 2021). Patients
with follow-up time 0 or without follow-up were excluded from
datasets. The available clinical characteristics of these samples
are summarized in Supplementary Table S1.

The HCC datasets (GSE96792 and GSE109211) that received
sorafenib treatment were obtained to assess the risk score in
treatment-responding or non-responding patients. The HCC
dataset (GSE104580) was used to predict therapeutic efficacy of
transcatheter arterial chemoembolization (TACE). In addition,
the breast cancer and malignant melanoma datasets (GSE20181
and GSE91061) were also downloaded to evaluate risk score and
therapeutic effect (Riaz et al., 2017).

Immune Cell Signatures and Normalized
Enrichment Score
In this study, a comprehensive collection of marker genes marked
to 184 ICSs was referred from a literature (Wang S. et al.,
2020), in which these ICSs and the corresponding marker genes
were collected from diverse resources, including previous studies
and database. To be specific, 25 signatures were collected from
Bindea et al. (2013), 68 signatures were collected from the
study of Wolf et al. (2014), 17 signatures were downloaded
from the ImmPort database (Bhattacharya et al., 2014), 24 cell
signatures were collected from the study of Miao et al. (2020),
and 22, 10, and 10 signatures were collected from CIBERSORT
(Newman et al., 2015), MCPcounter (Becht et al., 2016; R
package, version 1.2.0) and imsig (Nirmal et al., 2018; Rpackage,
version 1.1.3), respectively.

To quantify the 184 ICSs in each sample by a normalized
enrichment analysis, the ssGSEA was implemented based on
the gene expression matrix by using R package GSVA (version
1.36.3; Hänzelmann et al., 2013). Based on the expression of
those given genes marked to each ICS, the ssGSEA produces an
enrichment fraction, which represents the absolute enrichment
degree in each sample. More detailed marked gene sets are listed
in Supplementary Table S2. In this study, due to the lack of some
marker genes in the transcriptomic profiles, only 182 ICSs were
evaluated for subsequent analysis.

Construction of Immune Cell Signature
Score
Since some ICSs with low variance may harm the convergence
of hazard ratio (HR), and HR can be adjusted by magnifying
the variance of some ICSs, we tried to increase the variance
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by scaling up ICS 10-fold or 100-fold for subsequent analysis.
Based on the quantitative enrichment matrix of the ICS
above, we first performed the univariable Cox proportional
hazards regression analysis. 26 ICSs were selected with a
significance of less than 0.01. Subsequently, a random forest
algorithm (R package randomForestSRC, version 2.10.1) was
used to narrow down feature selection (Breiman, 2001), in
which we set the number of the nsplit as 100 in the variable
hunting function (Ishwaran, 2015). The variable importance
(VIMP) was used to measure the variation of the random
forest model’s prediction error rate. We selected the ICS with
the VIMP of higher than 0.01. Here, only four ICSs were
retained for subsequent analysis, i.e., CSR_Activated_15701700,
CHANG_CORE_SERUM_RESPONSE_UP,
Type_1_T_helper_cell, and TREM1_data.

On the basis of the four selected ICSs, multivariable Cox
proportional hazards regression analysis was performed, and an
ICSscore was constructed based on the quantitative enrichment
matrix of the ICS and the corresponding regression coefficients
as follows:

ICSscore =
4∑

i=1

βi ∗ ICSi

Where ICSi denotes the ith ICS and βi represents
the coefficient of ICSi obtained from multivariate Cox
regression analysis.

In this study, the ICSscore of each sample was calculated by the
above formula. In each dataset, those patients were divided into
high-risk or low-risk groups based on the median ICSscores in
their respective datasets, in order to avoid the batch effect among
the different datasets, especially RNA sequencing and microarray.

Comparison of Immune Cell Signature
Score-Based Prognostic Model
Three published prognostic models (Wang Y. et al., 2020; Zhang
et al., 2020; Liu P. et al., 2021) regarding HCC were taken to
compare our model constructed in this study. The risk scores
were calculated for each model, respectively. The differences
in continuous score p-values and concordance index (C-index)
from the univariate Cox analysis were compared, respectively.

Identification of Differentially Expressed
Genes
According to the list of marker genes attached to the 184 ICS, we
selected those genes attached to the four selected ICS. Here, a total
of 435 unique genes were extracted. Subsequently, by using the
R package limma (version 3.44.3), those genes with differential
abundance were identified, which met the thresholds of absolute
value of log2 fold change greater than 1 and the p-value less than
0.05 (Ritchie et al., 2015).

Machine Learning Classifier Algorithm
XGBoost is an optimization algorithm of gradient boosting
decision tree, which is to gather many classification and
regression tree models together to form a strong classifier (Jiang
et al., 2021). To construct the classifier that could predict

responders and non-responders in sorafenib treatment and
TACE treatment, we applied the XGBoost algorithm (Python
3.8.3, package XGBoost version 1.3.0).

Statistical Analysis
In this study, all statistical analyses were implemented in
R software (version 4.0.3). The Kaplan–Meier survival curve
was visualized by using gsurvplot function implemented in
the R package survminer (version 0.4.8) and log-rank test
was used to compare the overall survival (OS), progression-
free interval (PFI), disease-free interval (DFI), and disease-
specific survival (DSS) between the different groups. Univariate
Cox regression analysis was used to determine the significant
features associated with OS, PFI, DFI, and DSS by calculating
HR, 95% confidence interval (CI), and p-value between the
different groups. Multivariate Cox regression analysis was used to
assess the confounding risk score by several significant features.
Receiver operating characteristic (ROC) analysis was used to
evaluate the accuracy of prognostic model by using the R package
survivalROC (version 1.0.3). The boxplot was visualized by using
the R package ggpubr (version 0.4.0) and the nomogram and
calibration plots were visualized by using the R package rms
(version 6.0-1). Subgroup analysis was performed by the coxph
function implemented in the R package survival (version 3.2-
7) and the forest plot was generated by using the R package
forestplot (version 1.10.1).

RESULTS

An Immune Cell Signature Score Was
Constructed to Significantly Stratify
Hepatocellular Carcinoma Patients
Here, 347 HCC samples with OS information in the TCGA-
LIHC cohort were used as training dataset for prognostic
model construction. First, based on the gene expression profiles
and a list of genes marked to ICSs, only 182 ICS were
able to be quantitatively evaluated. Subsequently, the evaluated
ICSs were used to perform univariate Cox regression analysis,
and 26 ICSs were selected with a p-value of less than 0.01
(Supplementary Table S3). To further narrow down features, we
carried out dimension reduction analysis by using random forest
algorithm, and four ICSs were identified with the VIMP of larger
than 0.01, including CHANG_CORE_SERUM_RESPONSE_UP,
CSR_Activated_15701700, TREM1_data, and Type_1_T_helper_
cell (Supplementary Figure S1A). Eventually, the four selected
ICSs were applied to construct a multivariate Cox prognostic
model, in which an ICSscore was formulated based on the
quantitative ICSs and their corresponding coefficients. The
associations between the four ICSs and OS are illustrated in
Supplementary Figure S1B, and the C-index of the prognostic
model reached 0.70.

In order to examine whether ICSscore was an independent
prognostic factor in each subgroup, ICSscore was applied to
separately perform univariate Cox analysis in different subgroups
of the TCGA-LIGC cohort, such as age, gender, American Joint
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FIGURE 1 | Prognostic stratification of ICSscore in the TCGA-LIHC cohort. Patients were assigned to high-level and low-level groups by setting the median
ICSscore as the cutoff. (A) The overall survival probability of high-level and low-level groups was evaluated (log-rank test, p = 3E-06). (B) The survival AUCs of 1-, 3-,
and 5-year overall survival rate, respectively, were 0.778, 0.727, and 0.784. (C) The progression-free interval probability of high-level and low-level groups was
evaluated (log-rank test, p = 6E-05). (D) The survival AUCs of 1-, 3-, and 5-year progression-free interval rate, respectively, were 0.715, 0.698, and 0.684. (E) The
disease-free interval probability of high-level and low-level groups was evaluated (log-rank test, p = 0.000216). (F) The survival AUCs of 1-, 3-, and 5-year
disease-free interval rate, respectively, were 0.738, 0.672, and 0.679. (G) The disease-specific survival probability of high-level and low-level groups was evaluated
(log-rank test, p = 0.00102). (H) The survival AUCs of 1-, 3-, and 5-year disease-specific survival rate, respectively, were 0.827, 0.774, and 0.826.

Committee on Cancer (AJCC) stage, and vascular tumor cell
type. As illustrated in Supplementary Figure S2, except for the
AJCC stage IV, ICSscore could stratify HCC patients in the other
subgroups significantly. However, in HCC patients of AJCC stage
IV, the insignificance of ICSscore to stratify HCC patients may be
due to the small sample size.

According to the median ICSscore in the TCGA-LIHC cohort,
the patients can be divided into high-risk and low-risk groups.
As shown in Figure 1A, the patients in the high-risk group
showed significantly poorer OS than those in the low-risk group,
indicating that high-level ICSscore is associated with worse
outcomes. Furthermore, to assess the sensitivity and specificity
of the ICSscore-based prognostic model, we performed ROC
analysis. The area under curve (AUC) achieved 0.778, 0.727, and
0.764, respectively, at the 1-, 3-, and 5-year OS rate (Figure 1B),
suggesting that the ICSscore-based prognostic model has a good
prediction performance.

Moreover, the differences in PFI, DFI, and DSS between the
high-risk and low-risk groups in the TCGA-LIHC cohort were
also compared, respectively. Consistently, the patients in the
high-risk group all showed obviously poorer PFI (Figure 1C),
DFI (Figure 1E), and DSS (Figure 1G). Meanwhile, through
performing the ROC analysis on PFI, DFI, and DSS, the

comparable AUCs are shown in Figures 1D,F,H. These implied
that the ICSscore constructed by the four significant ICS can
significantly stratify HCC patients.

To provide a clinically applicable risk assessment model for
predicting the prognosis of HCC patients, a nomogram that
integrated ICSscore and AJCC staging was constructed in the
TCGA-LIHC cohort (Supplementary Figure S3A). According
to the nomogram illustrated in this study, a combination of
ICSscore and AJCC stage of a HCC patient can be calculated to
predict the 1-, 3-, and 5-year OS for an individual. In addition,
as illustrated in Supplementary Figures S3B–D, the calibration
curves at the 1-, 3- and 5-year OS for an individual all fit well
to the ideal curves. Noteworthy, we found that the ICSscore
contributed to the most risk points when compared with the
AJCC staging, suggesting that ICSscore would make a greater
predictive contribution.

The Validation of the Immune Cell
Signature Score-Based Prognostic
Model
In order to validate the robustness of the ICSscore-based
prognostic model trained in the TCGA-LIHC cohort, two
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FIGURE 2 | Prognostic stratification of ICSscore in the ICGC LIRI-JP and GSE14520 HCC cohort. Patients were assigned to high-level and low-level groups by
setting the respective median ICSscore as the cutoff. (A) The overall survival probability of high-level and low-level groups was evaluated in the ICGC LIRI-JP cohort
(log-rank test, p = 6E-06). (B) The survival AUCs of 1-, 3-, and 5-year overall survival rate, respectively, were 0.638, 0.754, and 0.658. (C) The overall survival
probability of high-level and low-level groups was evaluated in the GSE14520 HCC cohort (log-rank test, p = 4.9E-05). (D) The survival AUCs of 1-, 3-, and 5-year
overall survival rate, respectively, were 0.607, 0.669, and 0.64.

independent datasets (i.e., ICGC LIRI-JP and GSE14520 HCC)
were applied, respectively. Similarly, in the two validation
cohorts, according to their individual median ICSscore, we
divided patients into two groups, i.e., high-ICSscore and low-
ICSscore groups. Consistent with the findings above, the high-
level ICSscore group showed significantly poorer prognostic
outcomes (Figures 2A,C). Meanwhile, the ROCs were also
analyzed in the two validation cohorts. The AUC of the
prognostic model was 0.638, 0.754, and 0.658, respectively,
at 1-, 3-, and 5-year survival rates in the IGCG LIRI-JP
cohort (Figure 2B), and the AUC was 0.607, 0.669, and
0.640, respectively, at 1-, 3-, and 5-year survival rates in the
GSE14520 HCC cohort (Figure 2D). These results demonstrated
that the ICSscore can be used to stratify HCC patients and
predict prognosis.

In addition, in light of the ICSscore in different subgroups of
the ICGC LIRI-JP cohort, we separately carried out univariate
Cox analysis, such as age, gender, TNM stage, virus, and vein
invasion. Except for those subgroups with small sample sizes,

ICSscore did stratify significantly HCC patients (Supplementary
Figure S4), suggesting that ICSscore was a robust biomarker to
stratify patients in the different subgroups.

Furthermore, in the ICGC LIRI-JP cohort, a nomogram that
integrated ICSscore and TNM staging was constructed as well
(Supplementary Figure S5A). Compared with TNM staging,
we also observed that the ICSscore contributed to the most
risk points, demonstrating that the ICSscore can make a greater
predictive contribution. Meanwhile, the calibration curves at the
1-, 3- and 5-year OS were all found to be close to the ideal curves
(Supplementary Figures S5B–D).

The Comparison of Risk Stratification
and Predictive Ability of Immune Cell
Signature Score as a Feature
To compare the risk stratification and predictive ability of
ICSscore, we calculated the continuous prognostic risk scores
and concordance index (C-index) by performing univariate Cox
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analysis. Compared with age, gender, AJCC stage, and invasion
(Tables 1, 2), the C-index of the ICSscore was higher and the
p-value of the ICSscore was lower, indicating ICSscore to be
a good predictor.

In addition, three published prognostic models (Wang Y.
et al., 2020; Zhang et al., 2020; Liu P. et al., 2021) regarding HCC
were used to compare our ICSscore-based prognostic model
constructed in this study. The continuous prognostic risk scores
were calculated for each model by performing univariate Cox
analysis, respectively, in TCGA-LIHC and ICGC-JP cohorts. As
shown in Tables 1, 2, these differences in p-values and C-index
were compared, suggesting that our ICSscore-based prognostic
model has a preferrable predictive ability.

Differential Marker Genes in the Four
Immune Cell Signatures Formulating
Immune Cell Signature Score
To explore the underlying reason of ICSscore in risk assessment
and prognostic prediction, 435 marker genes attached to the
four significant ICS formulating ICSscore were investigated.
In the TCGA-LIHC cohort, the gene expression matrix from
347 tumor samples and 49 normal samples was used for
subsequent differential analysis. First, between the tumor and
normal samples, a total of 97 differentially expressed genes
(DEGs) were identified, including 36 up-regulated genes and
61 down-regulated genes (Figure 3A). Similarly, between the
high-risk and low-risk samples as distinguished above, we
obtained 21 DEGs, including 11 up-regulated genes and 10
down-regulated genes (Figure 3B), which were speculated to
make more contribution to differential ICSscore evaluation.

TABLE 1 | Comparison of the p-value and C-index derived from the univariate
Cox model in the TCGA-LIHC cohort.

Signatures p-value C-index

ICSscore 1.82E-13 0.700

Baohui_Zhang_2020 8.89E-10 0.694

Yu_Wang_2020 3.08E-13 0.690

Peng_Liu_2021 9.56E-09 0.640

Age 0.1881 0.508

Gender 0.2614 0.507

AJCC_STAGE 1.52E-05 0.609

Vascular_tumor_cell_type 0.123 0.533

TABLE 2 | Comparison of the p-value and C-index derived from the univariate
Cox model in the ICGC-JP cohort.

Signatures p-value C-index

ICSscore 9.44E-05 0.711

Baohui_Zhang_2020 7.75E-5 0.707

Yu_Wang_2020 0.0001582 0.680

Peng_Liu_2021 0.00285 0.671

Age 0.3973 0.536

Gender 0.07557 0.566

TNM_STAGE 0.0001536 0.704

VEIN_INVASION 0.004346 0.615

Thus, we performed GO enrichment and several significant
biological processes were obtained (Supplementary Figure S6),
such as activated T-cell proliferation, positive regulation of
wound healing, and regulation of activated T-cell proliferation.
In addition, of these 21 genes, 15 were found to be the same
as those between tumor and normal samples (Figure 3C).
Notably, sequentially comparing the normal samples, the
low-risk samples, and the high-risk samples, we found that
the abundance of genes FLNC, HAVCR1, PLK4, WDHD1,
CENPW, MYBL2, and SKA1 increased, while genes IGF2, SELP,
GREM2, HSD11B1, CFHR3, GPLD1, F12, and PLG decreased.
Furthermore, univariate analysis of these genes showed that the
upregulated genes were detrimental to HCC prognosis, while the
down-regulated genes were beneficial (Figure 3C). Indeed, most
of these genes have been reported as prognostic biomarkers or
suggested as novel therapeutic targets for HCC. For example, the
overexpression of genes CENPW, MYBL2, and SKA1 is associated
with poor prognosis in HCC, while the loss of gene HSD11B1
indicates poor prognosis in HCC (Frau et al., 2011; Chen et al.,
2018; Zhou et al., 2020). Moreover, we focused on the correlations
between the ICSscore value and expression levels of 15 genes. As
illustrated in Figure 3D, the up-regulated genes were positively
correlated with the ICSscore, while the down-regulated genes
were negatively correlated. Moreover, in the ICGC-JP cohort,
as shown in Figure 3E, the abundance alteration of the above
15 genes and their association with prognosis were observed
to be consistent.

Evaluation and Prediction of Disease
Malignancy and Molecular Target
Therapy Benefit in Hepatocellular
Carcinoma by Immune Cell Signature
Score
In order to verify whether the ICSscore evaluation was consistent
with other risk stratification methods, several HCC cohorts were
compared. First, as illustrated in Figure 4A, in the three HCC
cohorts, tumor samples all exhibited strikingly higher ICSscore
values when compared with the paired normal samples. In the
GSE25097 HCC cohort, we also found that the tumor samples
showed the highest ICSscore values, while the normal samples
showed relatively low ICSscore values, although there was no
significant difference between the normal samples and cirrhotic
samples (Figure 4B). These results indicate a significant increase
in ICSscore when hepatocytes develop into tumors.

Recently, the eighth edition staging system of the AJCC was
released for HCC stratification (Park et al., 2020). In the TCGA-
LIHC cohort, after excluding three stage IV samples, the stage
III samples showed the highest ICSscore, followed by stage II
samples, and the stage I samples exhibited the lowest ICSscore,
indicating that the ICSscore was positively correlated with the
current risk stratification system (Figure 4C). As expected, we
found that most advanced-staging patients (stage III and stage
IV) were assigned into the high-risk group, while more early-
staging patients (stage I and II) were designated into the low-risk
group (Figure 4D), implying that the ICSscore could act as
a comparable marker for HCC risk stratification. At the same

Frontiers in Genetics | www.frontiersin.org 6 September 2021 | Volume 12 | Article 741226

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-741226 September 21, 2021 Time: 14:41 # 7

Xu et al. ICSscore-Based Evaluation for Prognosis and Therapeutic Efficacy

FIGURE 3 | Analysis of differential gene expression in the TCGA-LIHC and ICGC-JP cohort. (A) Volcano plot presents the differentially expressed genes (DEGs)
between the tumor and normal samples. (B) Volcano plot presents the DEGs between the high-risk and low-risk samples. (C) Left: heatmap shows the scaled
abundance of 15 DEGs among normal, low-risk, and high-risk samples. Right: forest plot denotes the association between the DEGs and overall survival. The HR,
95% CI, and p-value were determined by univariate Cox regression analysis in the TCGA-LIHC cohort. (D) Correlations between expression levels of 15 genes and
the ICSscore values. (E) Left: heatmap shows the scaled abundance of 15 DEGs among normal, low-risk, and high-risk samples. Right: forest plot denotes the
association between the DEGs and overall survival. The HR, 95% CI, and p-value were determined by univariate Cox regression analysis in the ICGC-JP cohort.
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FIGURE 4 | Evaluation and prediction of disease malignancy and molecular target therapy benefit in HCC by ICSscore. (A) Pairwise comparison of the ICSscore
between normal and tumor samples in three cohorts, i.e., TCGA-LIHC (t-test p = 1.5E-13), ICGC LIRI-JP (t-test p < 2.2E-13), and GSE14520 HCC (t-test
p < 2.2E-13). (B) Boxplot illustrates the differences of the ICSscore values among normal, cirrhotic, and tumor samples in the GSE25097 HCC cohort. (C) Boxplot
illustrates the differences of the ICSscore values among different AJCC staging of the TCGA-LIHC cohort. (D) Sankey plot shows the mapping between high or low
ICSscore and AJCC staging of the TCGA-LIHC cohort. (E) Boxplot shows the ICSscore values of Hep3B cell line treated with sorafenib or DMSO in the GSE96792
cohort. (F) Boxplot illustrates the ICSscore values of responded or non-responded HCC patients treated with sorafenib or placebo in the GSE109211 cohort.
(G) ROC curve of the XGBoost algorithm for predicting the responding and non-responding patients in the GSE109211 cohort. (H) Boxplot illustrates the ICSscore
values of responding or non-responding HCC patients treated with chemotherapy in the GSE104580 cohort. (I) ROC curve of the XGBoost algorithm for predicting
the responding and non-responding patients in the GSE104580 cohort.
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time, we also observed that some early-staging patients were
assigned to the high-risk group, while late-staging patients were
assigned to the low-risk group, suggesting that ICSscore may
be used as a supplement to compromise AJCC-staging risk
stratification errors. Indeed, studies have reported significant
differences in recurrence and survival for HCC patients within
each AJCC stage grouping.

Furthermore, we explored whether ICSscore could be used
as a marker to evaluate therapeutic efficacy. Sorafenib is the
only Food and Drug Administration-approved first-line targeted
agent for the treatment of advanced HCC, but its impact
on patient survival is limited depending on the pathogenetic
conditions (Bruix et al., 2017). Here, the gene expression profiles
(GSE96792) from the Hep3B cell line treated with sorafenib
or DMSO was obtained to evaluate the ICSscore, respectively.
As a result, we did observe lower ICSscore in those Hep3B
treated with sorafenib compared with those Hep3B treated with
DMSO (Figure 4E), suggesting that the ICSscore may be used
to reflect therapeutic efficacy. Subsequently, we further tested
the ICSscore in a clinical trial on sorafenib (GSE1090211), and
those patients who responded to sorafenib showed much lower
ICSscore than those who had no response to sorafenib (Figure
metricconverterProductID4F4F). Interestingly, in those patients
treated with placebo, we also observed that responding patients
exhibited much lower ICSscore than non-responding patients
(Figure metricconverterProductID4F4F). These results implied
that the ICSscore could be used to predict the therapeutic
benefit. Therefore, when setting the four ICSs and ICSscores as
features, two classification models were separately constructed
to predict responding and non-responding samples, in which
70% of the data in the GSE109211 cohort was taken as
the training set, and 30% as the validation set. The AUCs
for predicting treatment responding were achieved at 0.917
and 0.900, respectively, (Figure 4G). Similarly, those HCC
patients who received chemotherapy in GSE104580 cohorts
were examined as well. Consistently, compared with those HCC
patients who had no response to chemotherapy, much lower
ICSscores were observed in those patients who responded to
chemotherapy (Figure 4H). Also, when setting the four ICSs and
ICSscores as features to build classification models, the AUCs
for predicting treatment-responding patients were achieved at
0.758 and 0.733, respectively, (Figure 4I). These findings implied
that the ICSscore may be used as an indicator for prediction of
treatment responding in HCC.

Evaluation and Prediction of
Chemotherapy and Immunotherapy
Benefit in Other Tumors by Immune Cell
Signature Score
As most patients with a high-level ICSscore displayed poorer
prognosis and low therapeutic benefit than those with a low-
level ICSscore in HCC, we explored whether the ICSscore could
predict therapeutic benefit in other tumors. For this investigation,
a cohort of breast cancer patients with chemotherapy information
(GSE20181) were first applied to calculate the unified ICSscore
value for each patient on the basis of transcriptomic profiles and

marker genes. When comparing the pairwise ICSscore before
and after treatment with adjuvant chemotherapy, we found
that the patients’ ICSscore significantly decreased after 14-day
adjuvant chemotherapy (Figure 5A), and it decreased further
after 90-day adjuvant chemotherapy (Figure 5B). That is to
say, further adjuvant chemotherapy led to a gradual decrease of
ICSscore, suggesting a gradual therapeutic benefit. This suggests
that the ICSscore could be used to monitor therapeutic efficacy
in breast cancer.

More recently, the strategy for immune checkpoints, PD-1 and
PD-L1, has become an immune therapy with amazing survival
benefit (Liu C. et al., 2021). Unfortunately, the effectiveness
of immune checkpoint therapy is limited because only a
small number of patients respond to the therapy. Here, a
cohort of melanoma patients who received anti-PD1 and anti-
CTLA4 therapy (GSE91016) were also applied to evaluate the
ICSscore application. By setting the mean ICSscore value as
the cutoff, these patients were classified into high-ICSscore
and low-ICSscore groups. Similarly, the high-ICSscore group
exhibited significantly poorer OS (Figure 5C). In addition, by
pairwise comparing the ICSscore between patients before and
after immunotherapy, we observed that the patients’ ICSscore
was significantly decreased after receiving immunotherapy
(Figure 5D). The result implied that lower ICSscore values
can be used to distinguish those patients who benefit from
immunotherapy. Indeed, as shown in Figure 5E, the patients
with CR/PR presented lower ICSscore than those with PD/SD.
Subsequently, setting the four ICSs and ICSscores as features,
we constructed two classification models to predict whether the
patients received therapeutic benefit. The AUCs in the training set
were all achieved at 0.926 (Figure 5F). Thus, the ICSscore value
may be used as a predictive biomarker for immunotherapeutic
benefit in melanoma.

DISCUSSION

A large number of studies have demonstrated that the TILs
are associated with tumor progression and patient prognosis
(Zheng et al., 2017; Ding et al., 2018; Lu et al., 2019). In the
present study, on the basis of a comprehensive collection of
marker genes, 182 ICSs associated with TIME were evaluated
and applied. Here, an ICSscore formulated by the four-best
prognosis-related ICS was constructed, which was validated
successfully to predict prognosis and therapeutic benefit in
HCC. Indeed, the four ICSs have significant associations to the
tumor immune system, and a dozen marker genes attached to
the four signatures have been reported to predict prognosis.
For example, CHANG_CORE_SERUM_RESPONSE_UP was
reported to correlate with wound healing, with elevated
expression of angiogenic genes, a high proliferation rate, and
a Th2 cell bias to the adaptive immune infiltrate. TREM1_data
was marked by the only gene TREM1, which triggers phagocyte
secretion of pro-inflammatory chemokines and cytokines.
However, the specific biological roles of these ICSs remain to be
further explored. In particular, the fitted ICSscore was found to
be positively correlated with the risk level of HCC patients, but
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FIGURE 5 | Evaluation and prediction of chemotherapy and immunotherapy benefit in other tumors by ICSscore. (A,B) Pairwise comparison of the ICSscore in
patients before and after chemotherapy in the GSE20181 BRCA cohort. (C) Kaplan–Meier curves of overall survival according to low- and high-ICSscore groups in
the GSE91061 SKCM cohort. (D) Pairwise comparison of the ICSscore in patients before and after immunotherapy in the GSE91061 SKCM cohort. (E) Boxplot
illustrates the ICSscore of patients with immunotherapy response in the GSE91061 SKCM cohort. (F) ROC curve of the XGBoost algorithm for predicting the
therapeutic effects in the GSE91061 SKCM cohort.

negatively correlated with the therapeutic efficacy. That is to say,
the fitted ICSscore not only can be used to predict prognosis, but
also can be used as an effective biomarker to evaluate therapeutic
benefit and monitor treatment efficacy.

Sorafenib has been considered the standard of care for patients
with advanced unresectable HCC since 2007 (Abdelgalil et al.,
2019). It is an important step to detect patients who would
potentially benefit from sorafenib treatment. Here, we proved
that the ICSscores were significantly reduced in sorafenib-
responding HCC patients, indicating that the ICSscore may be
a biomarker for predicting the response to sorafenib in HCC
patients. Moreover, chemotherapy is one of the most important
treatment modalities for advanced HCC. Significantly decreased
ICSscores were observed in chemotherapy-responding HCC
patients, indicating that the ICSscore can also be used as a marker

for predicting the response to chemotherapy in HCC patients.
Even so, due to the limitations of therapeutic datasets with
regard to HCC, more real-world datasets are needed to further
verify our findings and improve the ICSscore, especially those
datasets using different treatments, such as immunotherapy.
Similarly, gradually decreased ICSscore values were observed in
breast cancer patients receiving chemotherapy for 14 days and
90 days, and significantly declined ICSscore values were found
in melanoma patients with partial or complete remission after
immunotherapy. These results imply that the ICSscore evaluation
may be applied in pan cancer therapy supervision.

In recent years, immunotherapy exhibited promising
therapeutic effects for advanced HCC, although only a few
patients benefited from immunotherapy (Johnston and Khakoo,
2019; Riley et al., 2019; Zongyi and Xiaowu, 2020). Further
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research is needed to select effective biomarkers for patients
who might benefit from immunotherapy. To our pleasure, the
ICSscore evaluation may be used as a biomarker to distinguish
patients who would respond to immunotherapy.

There were also some limitations in this study. Firstly, given
that the large number of HCC patients used in this study came
from different platforms, there may be significant batch effects
in our cohort. Secondly, a series of ICSs were marked here,
but only a few were used to construct the ICSscore. Thirdly,
due to the limitation of datasets with treatment information,
it is necessary to further testify and optimize ICSscore as
a marker for immunotherapy in HCC, and even a broad
spectrum of pan cancer.

CONCLUSION

Overall, we simplified the tedious ICSs to develop ICSscore,
which can be applied successfully in prognostic stratification
and therapeutic evaluation in HCC. Also, in melanoma and
breast cancer, the unified ICSscore was validated to distinguish
the samples with therapeutic benefits. This study provides a
novel insight into the prognosis and therapeutic efficacy of ICS.
ICSscore may be a potential marker for therapeutic efficacy in
HCC, and even a broad spectrum of pan cancer.
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