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Rationale & Objective: Chronic kidney disease
(CKD) is a major cause of morbidity and mortality.
To date, there are no widely used machine-learning
models that can predict progressive CKD across
the entire disease spectrum, including the earliest
stages. The objective of this study was to use
readily available demographic and laboratory data
from Sonic Healthcare USA laboratories to train
and test the performance of machine learning-
based predictive risk models for CKD progression.

Study Design: Retrospective observational study

Setting & Participants: The study population was
composed of deidentified laboratory information
services data procured from a large US outpatient
laboratory network. The retrospective data set
included 110,264 adult patients over a 5-year period
with initial estimated glomerular filtration rate (eGFR)
values between 15-89 mL/min/1.73 m2.

Predictors: Patient demographic and laboratory
characteristics.

Outcomes: Accelerated (ie, >30%) eGFR decline
associated with CKD progression within 5 years.

Analytical Approach: Machine-learning models
were developed using random forest survival
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methods, with laboratory-based risk factors
analyzed as potential predictors of significant
eGFR decline.

Results: The 7-variable risk classifier model
accurately predicted an eGFR decline of >30%
within 5 years and achieved an area under the
curve receiver-operator characteristic of 0.85.
The most important predictor of progressive
decline in kidney function was the eGFR slope.
Other key contributors to the model included
initial eGFR, urine albumin-creatinine ratio, serum
albumin (initial and slope), age, and sex.

Limitations: The cohort study did not evaluate the
role of clinical variables (eg, blood pressure) on the
performance of the model.

Conclusions: Our progressive CKD classifier
accurately predicts significant eGFR decline in
patients with early, mid, and advanced disease
using readily obtainable laboratory data.
Although prospective studies are warranted, our
results support the clinical utility of the model
to improve timely recognition and optimal man-
agement for patients at risk for CKD
progression.
Chronic kidney disease (CKD) affects over 37 million
people in the United States and is a tremendous

source of morbidity and mortality worldwide.1,2 CKD is
strongly associated with hematologic,3,4 metabolic
bone,5-7 cerebrovascular8-10 and cardiovascular11-13 dis-
ease, and it is the most common cause of kidney failure,
requiring dialysis or transplant.1 As a complex disorder
that affects critical organ systems, CKD accounts for a
disproportionate health care system expenditure, with
recent studies estimating an overall Medicare cost of
$87.2 billion in 2019.1,14 However, up to 90% of pa-
tients with CKD (including 40% of patients with severe
CKD) are unaware of their diagnosis, which precludes
timely evaluation and optimal management of the
disease.15,16

Kidney Disease Improving Global Outcomes (KDIGO)
clinical practice guidelines classify CKD into categories
based on glomerular filtration rate [≥90 (G1), 60-89 (G2),
45-59 (G3a), 30-44 (G3b), 15-29 (G4), <15 mL/min/
1.72 m2 (G5)] and albuminuria [<30 (A1), 30-299
(A2), ≥300 mg/g creatinine (A3)]. The clinical stage is
established most often by laboratory evaluation for serum
creatinine-based estimated glomerular filtration rate
(eGFR) and urine albumin-creatinine ratio (UACR),
respectively.17

Based primarily on studies from the Alberta Kidney
Disease Network (AKDN),18 CKD progression is defined
by 1 or more of the following: (1) worsening in the
glomerular filtration rate category and a ≥25% drop in the
eGFR from the baseline; or (2) a decline in the eGFR
by >5 mL/min/1.73 m2 per year (rapid progression). To
curb progression to kidney failure in this at-risk popula-
tion, KDIGO recommends that patients with progressive
CKD receive aggressive treatment and specific management
measures.17

To assist with planning for kidney replacement therapy,
KDIGO also endorses using validated risk prediction tools
to identify patients at high risk for kidney failure.
Currently, the Kidney Failure Risk Equation (KFRE) is the
most widely accepted risk prediction model for this
adverse outcome. Initially derived from a Canadian cohort
of 8,391 persons with intermediate-advanced CKD (stages
3a-5) and using Cox proportional hazards regression
methods, the 4-variable (age, sex, eGFR, and UACR)
model uses demographic characteristic data and spot lab-
oratory test results to accurately predict the 2-year and 5-
1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xkme.2023.100692&domain=pdf
mailto:Joseph.aoki@hawaiilabs.com
mailto:Joseph.aoki@hawaiilabs.com
https://doi.org/10.1016/j.xkme.2023.100692
https://doi.org/10.1016/j.xkme.2023.100692
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


PLAIN-LANGUAGE SUMMARY
Defined by a significant decrease in estimated glomer-
ular filtration rate (eGFR), chronic kidney disease
(CKD) progression is strongly associated with kidney
failure. However, to date, there are no broadly used
resources that can predict this clinically significant
event. Using machine-learning techniques on a diverse
US population, this cohort study aimed to address this
deficiency and found that a 5-year risk prediction model
for CKD progression was accurate. The most important
predictor of progressive decline in kidney function was
the eGFR slope, followed by the urine albumin-
creatinine ratio and serum albumin slope. Although
further study is warranted, the results showed that a
machine-learning model using readily obtainable lab-
oratory information accurately predicts CKD progres-
sion, which may inform clinical diagnosis and
management for this at-risk population.
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year risk of progression to kidney failure with excellent
discrimination (AUC = 0.84).19

Although several studies have further validated KFRE
across a variety of clinical settings20-24 a limitation of the
classifier is that, by definition, it is designed exclusively to
predict final loss of function. Recently, work by Wang et al16

reported that in a large retrospective cohort, over 85% of
patients with CKD had either no or a low (<3%) risk of
kidney failure according to the 5-year KFRE. This represents a
substantial population of patients with CKD for whom further
risk stratification is warranted. However, to date, there are no
broadly adopted machine-learning tools that predict a clini-
cally significant and much earlier event—progressive
CKD—across the wide spectrum of disease. Addressing this
knowledge gap would identify high risk patients within this
heterogeneous population who may benefit from targeted
treatment and management at an earlier stage to preserve
kidney function and prevent adverse outcomes.25

Using longitudinal clinical laboratory data across a
geographically diverse cohort, the purpose of our study
was to use machine-learning methods to develop a readily
obtainable risk prediction model for >30% decline in eGFR
or progressive CKD. Because earlier studies exclusively
interrogated mid-late CKD stage (G3-5) cohorts, our
investigation aimed to build a classifier that incorporates
routine variables across early (G2), moderate (G3), and
advanced (G4) stages of CKD.
METHODS

Study Population

The study was reviewed and approved by the institu-
tional review board at Western Institutional Review
Board—Copernicus Group (WCG) (approval number
20222952). Informed consent was waived because of the
2

lack of feasibility of obtaining consent from all participants,
and that the data reviewed were deidentified, record-based,
and retrospective in nature. The study cohort included dei-
dentified data from 330,238 participants from the Northeast,
Southwest, Mid-South, and West or Pacific regions of the
United States. The overall median age was 65 years old, and
51% of the participants were men. The cohort included
participants with a broad spectrum of baseline eGFR results
associated with G2 (60%), G3 (36%), and G4 (4%). The
percentage of participants with initial albuminuria values of
A1, A2, and A3 were 65%, 23%, and 12%, respectively.

Data Collection and Measurements

Creatinine testing was performed on the same high-
throughput instrument platform across all testing sites and
was standardized according to best practices, such as calibra-
tion traceable to an isotope dilution mass spectrometry (IDMS)
reference measurement procedure. The eGFR was calculated
using the 2009 CKD Epidemiology Collaboration (CKD-EPI)
creatinine equation without the race-based coefficient.26

The training and test cohorts were derived from the
laboratory information system (LIS) at outpatient facilities
within Sonic Healthcare USA. To evaluate particularly
early-to-advanced CKD, the cohort was selected for pa-
tients with eGFR values between 89 and 15 mL/min/1.73
m2 (G2-G4) and dates of service between January 1, 2017,
and December 31, 2021. The outcomes were determined
by reviewing records contained in the LIS.

Candidates were selected based on the availability of
sufficient demographic data (eg, age and sex) and labo-
ratory results for eGFR, albumin, and UACR. The mini-
mum criteria for inclusion in the study were: 3 eGFR
values over a span of ≥12 months and ≥1 value for serum
albumin and UACR. On the basis of previous work27-32

these data and additional clinical laboratory values were
evaluated as continuous or time-based variables. Where
applicable, slopes for specific variables were calculated
using the linear regression function within the Python
Sklearn linear model. The slopes were derived from base-
line values and adjusted using an annual time interval.

To broadly ensure all criteria for observed CKD pro-
gression17 were met within the cohort, such as participants
in the G2 and G3a subsets, the outcome of interest was
defined as >30% eGFR decline with confirmation at any
point over the course of 5 years. The rationale for this
outcome is further supported by several studies that sug-
gest that >30% eGFR decline is a clinically meaningful
surrogate end point for progressive kidney disease.33-35

Statistical Analysis

Models were built by creating training and testing datasets,
using 80% of the data for training and 20% for indepen-
dent testing, respectively. The training and testing datasets
were stratified to ensure similar patient cohorts. After
filtering, a random forest (RF) classifier was built using
Sklearn version 1.1.1. Ten thousand trees were generated
within the models to develop the classifier. Additional 5-
Kidney Med Vol 5 | Iss 9 | September 2023 | 100692



Table 1. Baseline Characteristics

Training Set Test Set
Patient Demographics
Number of unique individuals 88,211 22,053
Age (y), median (IQR) 65 (12) 65(12)
Male (%) 44,860 (51) 11,080 (50)

Laboratory Values
eGFR, mL/min/1.73 m2, initial, median (IQR) 64 (24) 64 (24)
15-29 (%) 3,107(4) 783 (4)
30-59 (%) 32,284 (36) 8,018 (36)
60-89 (%) 52,820 (60) 13,252 (60)

Serum calcium, mg/dL, initial, median (IQR) 9.6 (0.6) 9.6 (0.6)
Hemoglobin A1c, (%), initial, median (IQR) 6.6 (1.9) 6.6 (1.9)
Serum albumin, g/dL, initial, median (IQR) 4.4 (0.5) 4.4 (0.5)

Urine albumin-to-creatinine ratio, mg/g
UACR, initial, median (IQR) 14 (60) 14 (58)
<30 (%) 57,067 (65) 14,258 (65)
30-299 (%) 19,883 (23) 5,012 (22)
≥300 (%) 11,261 (12) 2,783 (13)

End point, >30% decline in eGFR
Events (%) 15,301 (17) 3,821 (17)
Progression time, mo (IQR) 20.9 (22) 19.9 (22)
Observation time, mo (IQR) 40.0 (28.7) 40.0 (28.7)
Note: Progression time is defined as the average number of months identified for eGFR decline of 30% from baseline. Observation time is defined as the average
number of months of laboratory data procured for the cohort.
Abbreviations: IQR, interquartile range; eGFR, estimated glomerular filtration rate.
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fold cross validation was performed on the training set,
and a representative model was used in the testing set to
assess the performance. R version 4.2.1 was used to
perform additional data wrangling, and statistical analysis
was reported using the tidyverse packages and the equiv-
alence package. In time-to-event analysis, participants were
censored if the event (ie, >30% eGFR decline) occurred
during the designated slope evaluation time period. Par-
ticipants lost-to-follow-up who did not experience an
event before the end of the maximum 5-year follow-up
time were censored at 36 months from the last encounter.

Variable importance was calculated as part of the RF
analysis. Candidate variables that were supported by the
dataset and showed a meaningful impact to the classifier were
reported as a percentage. The predictive accuracy was
assessed using the area under the receiver-operator charac-
teristic curve (AUC) on the test set. Calibrated and uncali-
brated RF models were developed using isotonic and sigmoid
calibrations from Scikit-learn. Curves comparing observed
positive classification versus predicted probability of positive
classification were also generated (Fig S1). In addition, cali-
bration was performed with additional time series data going
from 6 months to 36 months, and the 95% confidence in-
terval and Brier score loss were generated for all models.
RESULTS

Baseline Characteristics

The initial registry included 330,238 adult patients aged
18 to 75 years old with an outpatient clinical laboratory
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encounter within the Sonic Healthcare USA network be-
tween January 1, 2017, and December 31, 2021 (Table 1).
To account for the well-established challenge of inter-
laboratory variation, creatinine analysis was performed on
a single high-throughput instrument platform and stan-
dardized according to best practices, such as calibration
traceable to an IDMS reference measurement procedure.36

The eGFR was calculated using the 2009 CKD Epidemi-
ology Collaboration (CKD-EPI) creatinine equation.26 Pa-
tients with eGFR <15 mL/min/1.73 m2 or >89 mL/min/
1.73 m2, no serum albumin or UACR results, or less than
12 months of follow-up data were omitted from the study.

After applying exclusion criteria, the abnormal eGFR
dataset contained 110,264 patients (Fig 1) with a median
age of 66 years and a similar distribution between men and
women. The cohort included participants with a broad
spectrum of baseline eGFR results associated with G2
(60%), G3 (36%), and G4 (4%) and initial UACR values
of <30 mg/g (65%), 30-299 mg/g (23%),
and ≥ 300 mg/g (12%). On average, the observation time
was 40 months, and follow-up was adequate with 9 eGFR
results per person (1.8 eGFR tests per person per year)
over the course of the study.

Machine-Learning Models for CKD Progression

Models using 2 variables (initial eGFR and eGFR slope) or
7 variables (age, sex, initial eGFR, eGFR slope, initial
UACR, initial serum albumin, and serum albumin slope)
with 5-fold cross validation were trained and tested against
a >30% decline in eGFR within 5 years. Compared with
3



Figure 1. Participant flow diagram. The flow diagram depicts the number of adult participants between 18 and 75 years of age in the
original dataset before removal because of exclusion criteria. Omitted participants included those with less than 12 months of data,
less than 3 eGFR and serum albumin values, less than 1 UACR value, and initial eGFR <15 or >89 mL/min/1.73 m2. The final data
set included 110,264 participants.
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the 2-variable model, the 7-variable model was more ac-
curate and achieved an overall AUC of 0.85 (Fig 2).

Further analysis was performed on the 7-variable pro-
gressive CKD risk classifier. The uncalibrated model was
similar to the calibrated model [S1], with a Brier score loss
of 0.01 between the models. In sensitivity analysis, the
cohort was selected exclusively for G2 or G3 disease, and
the performance was similar (AUC = 0.85). Keeping with
previous work by Inker et al,34 the classifier improved
when the eGFR slope input was extended from 6-month
(AUC = 0.76, Brier score 0.017), 18-month
Figure 2. Receiver-operator characteristic curves of classifier mod
The 2-variable classifier included initial eGFR and eGFR slope. Th
initial serum albumin, serum albumin slope, age, and sex. eGFR, es
ratio.

4

(AUC = 0.81, Brier score 0.015), and 36-month
(AUC = 0.83, Brier score 0.015) time intervals. Exam-
ined across regional cohorts, the model performed as ex-
pected across the Mid-South, West or Pacific, Southwest,
and Northeast with AUC values of 0.83-0.88 (Brier score
0.013-0.02). For time-to-event and regional analysis, the
95% confidence interval was within 0.01.

Variable Importance

Overall, the change of the eGFR over time, so-called eGFR
velocity or slope, was identified as the highest contributor
els showing prediction performance for >30% decline in eGFR.
e 7-variable classifier included initial eGFR, eGFR slope, UACR,
timated glomerular filtration rate; UACR, urine albumin-creatinine

Kidney Med Vol 5 | Iss 9 | September 2023 | 100692



Figure 3. Variable importance. eGFR, estimated glomerular filtration rate; UACR, urine albumin-creatinine ratio.
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to the risk prediction model. Other significant inputs to the
model included initial eGFR, initial UACR, initial albumin,
albumin slope, age, and sex (Fig 3).
DISCUSSION

Using machine-learning random forest survival (RFS)
analysis, this retrospective cohort study trained and tested a
risk prediction model for >30% decline in the eGFR
among a large, diverse US adult population with abnormal
kidney function. Consistent with previous studies, our
findings further confirm the following static variables that
are associated with substantial decline in kidney function:
age, sex, eGFR, UACR, and serum albumin.19,37 The ac-
curacy of the progressive CKD risk classifier was robust,
with an overall AUC value of 0.85.

A key strength of this investigation is that the risk
prediction model is uniquely based on machine-learning
RFS analysis that was able to interrogate for the effect of
time-based variables. As opposed to using the Cox pro-
portional hazards regression method and other regression
models, recent reports suggest that RFS may be less prone
to variance and better suited to solving complex problems
with non-linear or continuous features.38-40 As such, the
machine-learning techniques deployed here identified that
longitudinal results over time (eg, slope or velocity be-
tween multiple values) for select variables significantly
enhance the overall performance.

Among continuous variables, the eGFR slope was the
most significant contributor to the classifier. This finding
supports numerous recommendations by authorities that
highlight that interpreting the eGFR results is best per-
formed over a series of studies rather than in
Kidney Med Vol 5 | Iss 9 | September 2023 | 100692
isolation.1,17,25 In addition, the importance of eGFR ve-
locity as a contributor to predicting CKD progression is in
line with other disease entities that identified change over
time in relevant laboratory biomarker values as a clinically
significant (and actionable) event. Paired examples include
myocardial infarction, chronic lymphocytic leukemia, and
prostate cancer with serial changes in troponin,41

lymphocyte cell count,42 and prostate-specific antigen,43

respectively. Although further study is warranted, these
results add to the growing body of evidence showing the
important role of eGFR slope in predicting clinically sig-
nificant disease outcomes, such as progressive CKD.44-47

Another strength of the progressive CKD risk classifier is
that it leverages existing and readily obtainable informa-
tion found within the highly used kidney profile48 and
could be broadly deployed in a value-based manner.
However, the present data suggest that it may be effective
using as little as 6-18 months of previous laboratory data,
then optimized at 36 months with successive encounters.
In one of the largest studies to date, Song et al49 estimates
that, beginning in the third decade of life, US patients
undergo w1.1 chemistry tests (including creatinine or
eGFR) on average per year. This suggests that, by the
fourth decade of life, procuring 18-36 months of longi-
tudinal eGFR results at baseline is currently feasible for
most laboratory service providers, well before the peak
CKD prevalence at 65 years of age.1 Furthermore, the
model avoids novel and potentially costly biomarkers, and
despite geographic, socio-economic, and ethnic differ-
ences, the classifier performed well across all major regions
with an AUC range of 0.83-0.88. Together, these findings
strengthen the overall usability, cost-efficiency, and
generalizability of the model.
5
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Finally, unlike the KFRE, which was designed to
particularly predict kidney failure, this is among the first
reported machine-learning models to accurately identify
patients at risk for a significant decline in the eGFR asso-
ciated with a more upstream event: progressive CKD.
Moreover, the current model was developed for major
stages of disease, such as those with largely preserved
kidney function (eGFR of 60-89 mL/min/1.73 m2). The
importance and relevance of the findings in this report is
highlighted by the recent consensus from the KDIGO
controversies conference, which underscored the need to
improve risk stratification, particularly for early CKD.50

Although prospective studies are warranted, together,
these findings suggest that the progressive CKD risk clas-
sifier could be used in conjunction with the KFRE to
support accurate, value-based risk prediction at a signifi-
cantly earlier stage to maximize the benefit of evidence-
based interventions, such as more frequent monitoring,
avoidance of inciting agents, patient education, treatment
modification, and specialist referral.

Recently, work by Chan et al,51 Ferguson et al,52 and
Grams et al.53 successfully generated risk prediction
models for CKD progression. Although there are similar-
ities, the current study uniquely leverages a large and
diverse US population, applies a standardized assay for
creatinine, or eGFR, and exclusively uses routine labora-
tory results. By contrast, the Chan and Ferguson machine-
learning models rely primarily on novel kidney disease
biomarkers and a Canadian cohort, respectively.51,52

Moreover, the effects of continuous variables, such as the
eGFR and serum albumin slope, were not reported. Using
logistic regression, the Grams et al53 model included both
laboratory and clinical variables (eg, systolic blood pres-
sure, body mass index, and medication history). In addi-
tion, the meta-analysis showed that the eGFR slope had a
negligent to modest effect on the classifier’s perfor-
mance.53 Compared with the present findings, the dis-
similar results for the eGFR slope may be explained, in
part, by the different input variables, study design
(observational cohort versus meta-analysis), and method-
ology (logistic regression vs machine learning or RFS).54,55

Taken together, these data underscore the overall success
of risk classifiers using a variety of independent variables
and methods. To be sure, the findings from the emerging
field are dynamic, and prospective, head-to-head studies
are required to establish the optimal predictive model for
progressive CKD.

The study has several limitations. First, the cohort
defined CKD based exclusively on laboratory values rather
than an established clinical diagnosis. However, multiple
studies have shown that CKD in the general population is
frequently undiagnosed1,14 because of various reasons,
such as a lack of awareness and a lack of clinical and
administrative resources.56 As a result, studies that exclu-
sively evaluate clinically confirmed CKD are often limited
to later stages of the disease and preclude the interrogation
of a significant undiagnosed population. Because of the
6

robust size and inclusion of undiagnosed disease, the
findings seen here may be more applicable to the general
population with CKD in the United States. If implemented
broadly, it could also improve the overall recognition and
diagnosis of disease. Second, the study did not particularly
address how the classifier performs in the subset of patients
with CKD with >5 mL/min/1.73 m2 decline per year, so-
called rapid CKD progression.17 Because of the importance
of eGFR slope in the model, it is uniquely positioned to
capture rapid eGFR decline over time; however, further
study is warranted to understand its role in this clinically
significant population. Finally, the study design did not
evaluate important clinical variables, such as body mass
index, blood pressure, smoking, medications, and other
CKD risk factors. Although incorporating these elements
may have improved the accuracy, it would also have added
more complexity and, arguably, decreased the overall
application and usability of the model. However, these
limitations raise an important question about how the risk
prediction model functions in targeted populations asso-
ciated with kidney disease. This question and others should
be answered in prospective cohorts, enriched for cardio-
vascular disease, diabetes, and other disorders linked with
progressive CKD.

In conclusion, the progressive CKD risk classifier was
accurate and achieved an AUC of 0.85. The largest overall
contributor to the model was the eGFR slope. Other sig-
nificant risk factors included static or longitudinal features
for UACR, serum albumin, age, and sex. The model was
derived from routine demographic and laboratory values
in a very large and geographically diverse US outpatient
cohort, which strengthens its overall generalizability and
usability. Used as a complement to and in conjunction
with the well-established KFRE, the progressive CKD risk
classifier has the potential to significantly improve timely
recognition, risk stratification, and optimal management
for a heterogeneous population with CKD at a much earlier
stage for intervention.
SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

Figure S1: Calibration curves comparing observed positive classi-
fication versus predicted probability of positive classification.
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Methods Predictors Predictors

Outcome Outcome
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CKD 
progression
> 30% eGFR 
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7-variable risk 
classifier model

AUC 0.85
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Conclusion: The progressive CKD classifier accurately predicts significant eGFR decline 
in patients with early, moderate, and advanced CKD using readily obtainable laboratory 
data. While prospective studies are warranted, our results support the clinical utility of the 
model to improve timely recognition and optimal management for patients at risk for CKD 
progression.

Initial eGFR
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