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Long non-coding RNA (lncRNA)-mediated competitive endogenous RNA (ceRNA)
networks act as essential mechanisms in tumor initiation and progression, but
their diagnostic and prognostic significance in prostate cancer (PCa) remains
poorly understood. Presently, using the RNA expression data derived from multiple
independent PCa-related studies, we constructed a high confidence and PCa-specific
core ceRNA network by employing three lncRNA-gene inference approaches and
key node filter strategies and then established a logistic model and risk score
formula to evaluate its diagnostic and prognostic values, respectively. The core ceRNA
network consists of 10 nodes, all of which are significantly associated with clinical
outcomes. Combination of expression of the 10 ceRNAs with a logistic model achieved
AUC of ROC and PR curve up to ∼96 and 99% in excluding normal prostate
samples, respectively. Additionally, a risk score formula constructed with the ceRNAs
exhibited significant association with disease-free survival. More importantly, utilizing the
expression of RNAs in the core ceRNA network as a molecular signature, the TCGA-
PRAD cohort was divided into four novel clinically relevant subgroups with distinct
expression patterns, highlighting a feasible way for improving patient stratification in
the future. Overall, we constructed a PCa-specific core ceRNA network, which provides
diagnostic and prognostic value.

Keywords: prostate cancer, ceRNA network, diagnostic model, prognosis, bioinformatics analysis

INTRODUCTION

As the most prevalent malignancy among men, prostate cancer (PCa) accounted for nearly
9.1% of all male cancer deaths in 2018, making it the fourth leading cause of cancer death
in Americans (Siegel et al., 2018). To date, a complete understanding of PCa initiation and
progression remains elusive because its pathogenesis involves an interplay among multiple risk
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factors (Henrik, 2003; Bostwick et al., 2004), such as age, genetics,
lifestyle, etc. While the 5-year survival rate of early PCa patients is
nearly 100% owing to the improvement in modern medications,
those at the advanced stage have a 5-year survival rate of
less than 30% (Yuk and Kwak, 2018). Moreover, PCa patients
at the advanced stage are always subject to great suffering,
such as difficulty urinating and hematuria, which are usually
refractory to treatment. Thus, there is an urgent need for the
development of clinically relevant biomarkers for early detection
and prognosis prediction of PCa, which will increase the chances
for effective treatment and improve our understanding of the
underlying mechanisms.

In recent years, increasing evidence has demonstrated the
critical role of the interactions among endogenous RNA, namely,
the competitive endogenous RNA (ceRNA) network (Salmena
et al., 2011), in the development of complex disease phenotypes,
including cancers (Karreth et al., 2011; Xia et al., 2019). In the
ceRNA networks, miRNAs, which are a class of non-coding RNA
transcripts with 20–22 nucleotides (Ambros, 2004), inhibit the
expression of target genes and long non-coding RNAs (lncRNAs),
leading to lncRNA-gene associations by competitively binding to
shared miRNAs. LncRNA, which has been reported to be closely
involved in cancer occurrence and progression (Zhan et al., 2018;
Hua et al., 2019), is defined as a type of RNAs without coding
potential, which are more than 200 nucleotides in length (Perkel,
2013; Zampetaki et al., 2018).

Therefore, construction of lncRNA-modulated ceRNA
networks may have potential for identifying candidate
biomarkers and has been investigated in multiple human
cancers. For example, Fang et al. constructed a ceRNA network
associated with head and neck squamous cell carcinoma
(HNSCC) and further identified a series of RNAs exhibiting
a significant impact on overall survival (Fang et al., 2018).
By establishing an mRNA-miRNA-lncRNA subnetwork for
pancreatic cancer, Wang et al. demonstrated an association
between the ceRNA network and prognosis of pancreatic
cancer (Wang et al., 2019). Thus, the ceRNA network may
also present a promising strategy for potential biomarker
identification for PCa. Recently, several independent studies
(Jiang et al., 2018; Xu et al., 2018; Li F. et al., 2019; Ye et al.,
2019) identified a handful of prognostic biomarkers for PCa
based on lncRNA-mediated ceRNA networks. For example,
Liu et al. proposed a systems biology approach to infer the
gain and loss of ceRNAs and identified several competitive
RNA pairs showing prognostic values (Liu et al., 2016), which
proved to be useful for developing therapeutic regimens. Xu
et al. constructed a ceRNA network comprised 94 PCa-specific
ceRNAs, which may play a critical role in the progression and
metastasis of PCa (Xu et al., 2018). These studies promote our
understanding in developing novel diagnostic and prognostic
biomarkers for PCa. Nevertheless, systematically elucidating the
diagnostic and prognostic value of the ceRNA network in PCa
is still insufficient. First, most previous studies were conducted
based on single dataset, leading to an increase of the risk of data
bias due to technical and biological noise. In addition, diagnostic
and prognostic related biomarkers were usually identified
independently, which may hinder our understanding of the

relative complete process from PCa initiation to deterioration.
What’s more, the application potential of ceRNA network on
other clinical prognosis related problems, such as molecular
based PCa patient’s stratification, still remains unclear. Therefore,
presently, we aim to compressively investigate the diagnostic and
prognostic value of the ceRNA network in PCa based on multiple
independent datasets.

In the present work, we initially integrated dysregulated RNAs
derived from multiple independent PCa-related studies to make
this analysis more reliable. Functional enrichment analysis on
the commonly appearing genes was subsequently performed to
investigate the underlying mechanism. Then, a high-confidence
and PCa-specific ceRNA network was constructed using the
integrated computational tool GDCRNATools (Li R. et al., 2018)
based on three different lncRNA-gene association inference
strategies. The nodes with significant clinical outcomes were
thereby screening to construct the core ceRNA architecture.
Afterward, using the combination of expression of RNAs in
this core ceRNA network, a logistic model and risk score
formula were established to evaluate its diagnostic and prognostic
values, respectively. Finally, using an unsupervised clustering
approach, we further investigated whether the ceRNA network-
based expression profile has the ability to define novel molecular
subtypes with prognostic information.

MATERIALS AND METHODS

RNA Expression Profiles and Clinical
Data Retrieval
In order to identify the endogenous RNAs (ceRNAs) potentially
involved in the initiation and development of PCa, expression
profiles of several PCa-related studies were taken into account.
In the first step, miRNA expression profiles of two independent,
PCa-related studies were downloaded from the Gene Expression
Omnibus (GEO) database (Edgar et al., 2002) (GSE76260 and
GSE21036). GSE76260 includes 32 pairs of PCa tumor tissues and
adjacent non-neoplastic tissues, the GSE21036 dataset contains
99 tumor tissues (the metastasis samples were not included)
and 28 normal adjacent benign prostate tissue. These two
datasets were generated on the Illumina Human v2 MicroRNA
expression beadchip (GPL8179) and Agilent-019118 Human
miRNA Microarray 2.0 G4470B (GPL8227), respectively. As for
the mRNA and lncRNA, two RNA-seq datasets derived from
independent PCa-related studies were obtained from GEO. GEO
accession numbers of the two datasets are GSE89223 (n = 28)
and GSE104131 (n = 32), which contain 14 and 16 PCa tumor
samples, respectively. Among them, GSE89223 was based on the
GPL17303 platform (Ion Torrent Proton), and GSE104131 was
based on the GPL16791 platform (Illumina HiSeq 2500).

In addition to the datasets retrieved from GEO, TCGA-PRAD
(Abeshouse et al., 2015) RNA-seq and miRNA sequence data
plus clinical metadata were downloaded with permission from
the Cancer Genomics Hub1 via the “TCGAbiolinks” package
(Colaprico et al., 2015). This dataset contained 547 samples,

1https://cghub.ucsc.edu
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including 495 PCa tumors and 52 normal tissues. The RNA-
seq and miRNA sequence data for these samples were generated
with the IlluminaHiSeq RNASeq and IlluminaHiSeq miRNASeq
sequencing platforms, respectively. Clinical metadata of the 495
PCa patients contained their age, TNM stage, molecular subtypes,
disease-free survival data and outcome.

Identification of Differentially Expressed
mRNAs, lncRNAs, and miRNAs
To obtain the differentially expressed mRNAs, lncRNAs and
miRNAs, a widely used linear model, limma, was performed
as previously described (Ritchie et al., 2015). Briefly, for
each RNA expression dataset, the “limma” package (Ritchie
et al., 2015) from Bioconductor (Gentleman et al., 2004) was
applied to conduct differential expression analysis between
PCa tumor samples and the normal controls. The RNAs with
Log2(fold change) > 0.26 and p-value <0.01 were considered
significantly differentially expressed. We should note here,
according to previous studies (Conway et al., 2017), this
threshold value is a widely accepted differential gene screening
criteria. Additionally, in this study, we aim to find the ceRNAs
with generally prognostic significance in PCa from multiple
independent studies. Therefore, we chose to adopt this relatively
loose threshold instead of a more stringent threshold to avoid
the sample selection bias. Then, the lists of differentially
expressed RNAs derived from the three expression datasets were
compared using matrix-based visualization created by UpSetR
(Harrow et al., 2012). The gene transfer format (GTF) file
for human, which contains gene type annotation (including
“protein coding,” “lincRNA,” etc.), was download from the
GENCODE project (Paraskevopoulou et al., 2012)2, and was
then applied to identify the lncRNAs and mRNAs from the
overlapping differentially expressed genes. The differentially
expressed mRNAs and lncRNAs that commonly appeared in the
three datasets were retained for further analysis. For the miRNAs,
the same procedure was applied to determine differentially
expressed miRNAs commonly appearing in these three miRNA
expression datasets.

Construction of a ceRNA Regulatory
Network
In the present study, the construction of a ceRNA regulatory
network involved retrieving miRNA-target associations from
several publicly available databases as well as predicting
competitive relationships between lncRNAs and mRNAs with
three strategies.

First, putative interactions between differentially expressed
miRNAs and lncRNAs were retrieved from the DIANA-LncBase
v.2 (Li et al., 2013), starBase v2.0 (Jeggari et al., 2012), miRcode
11 (Ning et al., 2016) and lincSNP 2.0 (Wong and Wang, 2014)
databases. Then, all putative interactions from the four databases
were aggregated together. As a result, we obtained 7,359,063
miRNA-lncRNA pairs. For possible miRNA-gene pairs, their
putative and experimentally validated interactions were retrieved

2http://www.gencodegenes.org

from four sources: miRDB 6.0 (Hsu et al., 2010), miRTarBase
7.0 (Agarwal et al., 2015), starBase v2.0 (Jeggari et al., 2012)
and TargetScan 7.2 (Shannon et al., 2003). After aggregating
these interactions, we obtained a total of 98,436,283 miRNA-
mRNA associations.

Next, we dissected the competitive associations between
the differentially expressed mRNAs and lncRNAs using the
R/Bioconductor package “GDCRNATools” (Li R. et al., 2018),
which determines the competing endogenous interactions based
on three criteria: (1) the number of miRNAs shared by gene
and lncRNA must be significant (hypergeometric test, p-value
<0.05); (2) in this cohort, there must be a positive correlation
between the expression of gene and lncRNA (R2 > 0, p-value
<0.05); and (3) those shared miRNAs by lncRNA and gene
should play similar regulatory roles according to a recently
defined regulation similarity score (Li R. et al., 2018) (regulation
similarity score >0). Thus, mRNA-lncRNA associations that
satisfied these three criteria were considered high-confidence
competitive interactions, which were subsequently used for
ceRNA network construction.

Finally, the miRNA-mRNA, miRNA-lncRNA and lncRNA-
mRNA interactions were integrated and imported into
Cytoscape software (Yu et al., 2012) (V 3.6.0) for ceRNA
network visualization.

Identification of the Core Competitive
Endogenous RNA Network
In order to extract the clinically significant core ceRNA
architecture from the primary ceRNA network constructed
above, three criteria were applied to assess the association
between each node and the clinical trait. First, using the RNA
expression profile and clinical data in TCGA, for each node in
the above network, the effectiveness in distinguishing the tumor
and normal samples was evaluated by the area under the curve
(AUC) of the receiver operating characteristic (ROC) curve. The
nodes with a high AUC (>0.80) were regarded as candidate
diagnostic RNAs, which were retained for further analysis. In
addition, we also evaluated the extent to which RNA expression
was associated with disease-free survival using both the log-
rank test and Cox regression (see survival analysis in methods
for details). Specifically, based on the PCa patients’ disease-free
survival data in TCGA, the prognostic effect of 208 RNAs was
initially assessed with Kaplan–Meier analysis. The Benjamini
& Hochberg procedure was applied for false discovery rates
(FDR) calculation to adjust p-values. The nodes with a log-rank
test FDR < 0.1 (p-value <0.05) were considered statistically
significant. Additionally, Cox-proportional hazards regression,
adjusting for clinical parameters such as age at diagnosis and
TNM stage, was performed to further identify the RNAs with
prognostic significance. We set the criteria as FDR < 0.25 (p-
value <0.05) to identify candidate nodes.

Finally, the common RNAs that satisfied the three criteria
were treated as significantly diagnostic and prognostic candidate
nodes, which were subsequently mapped to the primary ceRNA
network. As a result, only the interactions between the candidate
RNAs were retained, and the final refined ceRNA network,
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namely, the core ceRNA network, was also visualized with
Cytoscape software (Yu et al., 2012).

Functional Analysis of the Differentially
Expressed mRNAs
To investigate potential molecular mechanisms involved in PCa
development, the Gene Ontology biological process (GOBP) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were performed via the “clusterProfiler”
package (Bishop, 2006). The GOBP and KEGG enrichment
analyses were conducted based on the up regulated and down
regulated mRNAs, respectively, and the significant cut-off criteria
were set as p-values <0.05. For visualization, the top 15 most
significant GOBP and KEGG terms are exhibited as bubble charts
and bar charts, respectively.

Diagnostic Model Construction and
Performance Evaluation
To better understand the diagnostic significance of the ceRNA
network, using the TCGA-PRAD dataset, a logistic regression
model was built based on the combination of the expression levels
of the RNAs in the ceRNA network. The logistic model, which is
a widely used model for supervised machine learning (Therneau
and Lumley, 2014), was adopted to discriminate the PCa tumor
samples from the normal samples. It was established with the
following formula:

y =
1

1+ exp(−β0 −
∑

αi × Ei)

where y is the probability of the tissue being from the tumor
sample, β0 is the y-intercept, and αi is the coefficient of a
given RNA expression Ei. The coefficients were estimated using
maximum-likelihood estimation approach. To avoid overfitting,
leave one out cross validation (LOOCV) was applied to assess
the performance of this model based on the TCGA-PRAD
dataset. Specifically, one sample was taken from the entire
TCGA-PRAD dataset and was used as the test data, and the
remaining samples were used as training data. This process was
repeated 547 times, and the prediction was stored at each step
to evaluate the final performance of the diagnostic model. The
AUC values of the receiver operating characteristic curve (ROC)
and Precision-Recall (PR) curves were calculated with the ROCR
package. What’s more, the diagnostic value of individual RNA
in the ceNRA network was also assessed by AUC of PR curves
using ROCR package.

To further validate the diagnostic value of the core ceRNA
network, we compared its AUC of ROC and PR with the result
obtained from randomly selected gene sets, which was served
as a background. Beefily, the same number of RNAs as the core
ceRNA network were randomly selected from the expression
profile, and were used to constructed a diagnostic model using the
logistic regression model as described above. The AUC values of
the ROC and PR curve were calculated with the ROCR package.
This procedure was repeated 1,000 times to generate distributions
of both the AUC values of the ROC and PR curve.

Survival Analysis
For each RNA in the ceRNA network, we performed both
univariate Cox-proportional hazards regression and Kaplan–
Meier analysis to evaluate its prognostic value. The univariate
Cox-proportional hazards regression model, which adjusted for
clinical parameters such as age at diagnosis and TNM stage,
was built to determine the relationship between the expression
level of each RNA and PCa patient disease-free survival retrieved
from TCGA. It was established with the “survival” package
(Kassambara et al., 2017), and the coefficient and hazard
ratio of each RNA were also calculated. The Benjamini &
Hochberg procedure was applied for FDR calculation to adjust
p-values. FDR <0.25 (p-value <0.05) for the Cox regression was
considered as the statistically significant cut-off. Additionally, for
each RNA, the Kaplan–Meier analysis with a non-parametric
log-rank test was used to compare the disease-free survival of
the PCa patients in the low- and high-expression groups. The
“survminer” package (Chen et al., 2019) was used for Kaplan–
Meier plot generation and log-rank test p-value calculation. In
addition, those RNAs with a log-rank test p-value <0.05 were
regarded as candidate prognosis biomarkers.

Prognostic Risk Score Model
Construction and Assessment
To further assess the prognostic significance of the core ceRNA
network, a prognostic risk score model was constructed as
described previously (Van der Laan et al., 2003; Liu et al., 2018).
First, the univariate Cox regression analysis was performed on
each RNA using the TCGA-PRAD chart as described above.
The coefficient for each RNA on the core ceRNA network was
extracted for further construction of the prognostic risk score
model. Then, the risk score model was constructed based on the
linear combination of the core ceRNAs’ expression levels:

risk score =
N∑
i=1

γi × Ei

where γi is the coefficient of RNA i obtained from Cox regression,
Ei is the expression of RNA i, and N is the number of RNAs
in the core ceRNA network. Finally, for each patient, their risk
score was calculated based on the expression data of the selected
RNAs. According to the median cut-off of the risk scores, the
TCGA-PRAD patients were divided into high-risk and low-risk
subgroups for further analysis. The association between the risk
score was assessed with Fisher’s exact test, and a p-value <0.05
was considered the significant cut-off.

Patient Stratification Based on the Core
ceRNA Network
In order to further investigate whether using the core
ceRNA network is capable of dividing the entire cohort
into clinically relevant subgroups, unsupervised cluster
analysis was performed with a standard consensus clustering
framework. First, RNA expression in the TCGA-PRAD
cohort was normalized by a z-score transformation. This
was only performed on the RNAs of the core ceRNA
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network. The z score of each RNA was calculated as follows:

score (Gi) =
Gi − µ(G)

δ(G)

where Gi is the expression level of RNA G in patient
i, and µ(G) and δ(G) are the mean expression level
and standard deviation of RNA G across all samples,
respectively. Then, we computed Pearson’s correlation
coefficient (PCC) between samples to assess their similarity
and subsequently divided the samples into k subgroups using
the partition around medoids algorithm (Wilkerson and
Hayes, 2010). The maximizing cluster reliability approach
was adopted to determine the optimal number of subgroups
as described previously. Consensus clustering analysis was
implemented with the “ConsensusClusterPlus” package
(Wickham, 2011).

To further validate and visualize core ceRNA network-derived
clustering, principal component analysis (PCA) was performed
among the TCGA-PRAD tumor samples. The PCA analysis was
conducted based on the normalized expression data using the
“prcomp” function from the “stats” module in the R 3.3.6 system.
We then selected the first two principal components with the
most variance to project each sample into two-dimensional space.
Finally, the expression pattern of all samples as well as the
core ceRNA network-derived clusters was visualized with the
“ggplot2” package (Raspe et al., 2012).

RESULTS

Identification of PCa-Associated
mRNAs, miRNAs, and lncRNAs
Due to the poor reproducibility across biological replicates and
multiple studies, the RNA expression profile has not been broadly
adopted in clinical tests (Hanahan and Weinberg, 2011; Alvarez
et al., 2016). Thus, to enhance the reliability of this study, we
integrated PCa-related mRNAs, miRNAs and lncRNAs derived
from multiple independent traits.

First, RNA-seq profiles as well as their corresponding clinical
information of three PCa-related studies were retrieved, of which
two were downloaded from the GEO (Edgar et al., 2002) and
one was downloaded from TCGA (Abeshouse et al., 2015). The
“limma” package (Ritchie et al., 2015) was then applied to identify
the differentially expressed RNAs by comparing the expression
profiles between the normal tissues and tumor tissues (Methods).
As a result, 1,033, 350 and 3,552 up regulated genes as well
as 1,165, 929 and 4,238 down regulated genes were obtained
from the three datasets, respectively (Figures 1A–C). As showed
in Figures 1D,E, 146 up regulated and 445 down regulated
genes commonly appeared in the three datasets. We then used
the gene transfer format (GTF) file for human retrieved from
GENCODE project (Paraskevopoulou et al., 2012) to identify
the lncRNAs and mRNAs from the overlapping differentially
expressed genes. We finally obtained 21 up regulated and 15
down regulated lncRNAs, as well as 125 up regulated and 430
down regulated mRNAs.

Then, the same procedure was conducted to identify the
miRNAs that potentially contribute to PCa occurrence. We
initially downloaded two miRNA expression profiles and the
corresponding clinical information from the GEO and one from
TCGA. Note that the three miRNA expression profiles are
derived from three independent PCa-related studies. Afterward,
as showing in the volcano plots (Figures 2A–C), the differential
analysis performed by “limma” on the three datasets allowed
the identification of three lists of deregulated miRNAs in PCa
tissues compared to that in normal controls. By comparing
these three lists of miRNAs, we identified 35 miRNAs that were
differentially expressed in all three datasets, 13 of which were up
regulated and 21 of which were down regulated in the tumor
tissues (Figures 2D,E). The overlapping differentially expressed
miRNAs as well as the mRNAs and lncRNAs may be strongly
associated with the presence of PCa. Thus, they were selected for
subsequent analyses.

GO and Pathway Enrichment Analyses
for the PCa-Associated mRNAs
In order to explore the functional roles of deregulated genes in the
pathogenesis of PCa, GO biological process (GOBP) and KEGG
enrichment analyses on the overlapping up regulated and down
regulated mRNAs were performed using the “clusterProfiler”
package (Bishop, 2006). Figures 3A,B illustrate the top 15
most significantly enriched GOBP and KEGG terms for the
overlapping up regulated genes. As seen, there was a significant
enrichment for metabolism process-related terms, including “N-
acylethanolamine metabolic process,” “CTP metabolic process”
and “short-chain fatty acid metabolic process.” According to the
KEGG analysis, the results demonstrated that the pathways found
to be mainly involved were consistent with the enriched GOBP
terms. Specifically, the most significantly enriched pathways are
metabolism-related pathways such as “pyrimidine metabolism,”
“lipid metabolism” and “arginine and proline metabolism.” It has
been well demonstrated that metabolic alteration is a hallmark
of PCa initiation (Tennant et al., 2010), and serves as a novel
therapeutic target for cancer treatment (Liu, 2006). For example,
according to a previous study, fatty acid metabolism is a critical
bioenergetic pathway in PCa, and has the potential to diagnosis
and targeted treatment (Migita et al., 2009). What’s more, Migita
et al. have reported that fatty acid synthase, a key regulator
for the synthesis of long-chain fatty acids, is involved in PCa
occurrence (Wu et al., 2014). Additionally, dysregulation of
lipid metabolism such as altered enzyme activity induced lipid
accumulation has been a hallmark of the malignant phenotype
of PCa (Li X. et al., 2019). Recent plasma metabolic profiling
revealed that as one of the most influenced metabolic pathway,
arginine and proline metabolism is also highly associated with
PCa. More importantly, it was demonstrated that the alteration of
metabolic processes is not only a hallmark of cancer development
but also a potential target for enhancing antitumor immunity
(Hennenberg et al., 2014). Collectively, these results suggest that
one of the main mechanisms for PCa initiation and progression
is metabolic disorder.
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FIGURE 1 | Identification of differentially expressed mRNAs between prostate tumor tissue and normal control. (A–C) Volcano plot of differentially expressed mRNAs
derived from three independent PCa related studies: GSE89223 (A), GSE104131 (B) and TCGA-PRAD (C). Red spots represent significantly deregulated mRNAs.
(D,E) UpSet plot of overlapping up regulated and down regulated mRNAs from three independent PCa related studies.

Regarding the overlapping down regulated mRNAs, the
most significantly enriched GOBP and KEGG terms can be
seen from Figures 3C,D. As illustrated, these genes were
mainly enriched for muscle system process-related terms
such as “muscle contraction.” Hennenberg et al. reported
that prostate smooth muscle contraction may be critically
involved in maintaining the physiological function of lower
urinary tract (Paul et al., 1997), which usually exhibits severe
pathological changes in PCa patients. In addition, a significant
enrichment for the cell adhesion-related process, such as “cell-
substrate adhesion,” “cell junction assembly” and “cell junction
organization,” is also displayed in Figure 3C. Importantly,
dysfunction of the cell adhesion-related pathway is involved
in PCa invasiveness and progression, and the genes in this
pathway are important prognostic markers in PCa, which were
reported correlated with the PCa grade, patient survival and
recurrence after radical prostatectomy (Yardy and Brewster,
2005). Further dissection of these genes and KEGG pathways
confirmed enrichment for cell adhesion (e.g., “focal adhesion”
and “adherens junction”). What’s more, we also observed a
significant enrichment in various signal transduction pathways,
including the “calcium signaling pathway (map04020)” and “wnt

signaling pathway (map04310).” And both of these two pathways
have been proven to play critical roles in PCa development
(Wasilenko et al., 1997; Albert-László et al., 2011), which
may provide insight into the upstream molecular mechanism
for PCa progression. Taken together, these results suggest
that the overlapping deregulated genes play a crucial role in
modulating different functions and pathways involved in PCa
initiation and progression, implying their potential diagnostic
and prognostic significance.

Construction of the Prostate
Cancer-Associated ceRNA Regulatory
Network
To dissect the regulatory relationship between the
differentially expressed mRNAs, miRNAs and lncRNAs in
PCa comprehensively, the ceRNA network was constructed
using a R/Bioconductor package, i.e., GDCRNATools (Li R.
et al., 2018). Initially, competitive associations between the
lncRNA-mRNA pairs were determined based on the significance
of the hypergeometric test, Pearson correlation analysis and
regulation pattern analysis (Methods). The miRNA-mRNA and
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FIGURE 2 | Identification of differentially expressed miRNAs between prostate tumor tissue and normal control. (A–C) Volcano plot of differentially expressed
miRNAs derived from three independent PCa related studies: GSE76260 (A), GSE21036 (B) and TCGA-PRAD (C). Red spots represent significantly deregulated
miRNAs. (D,E) UpSet plot of overlapping up regulated and down regulated miRNAs from three independent PCa related studies.

miRNA-lncRNA interactions were retrieved from 7 miRNA-
target databases (Methods). Subsequently, we constructed
a mRNA-miRNA-lncRNA network and visualized it with
Cystoscope software (Yu et al., 2012) (Version 3.6.0), as showed
in Figure 4.

The resulting ceRNA network consists of 207 nodes and
1,588 edges. In detail, the nodes in the network include
39, 11, and 5 up regulated as well as 123, 20, and 9
down regulated mRNAs, miRNAs and lncRNAs, respectively.
Additionally, the numbers of lncRNA-mRNA pairs and miRNA-
target pairs in the ceRNA network are 186 and 1,423,
respectively. The average number of targets per miRNA
is 44.47, indicating the multitarget regulation features of
the miRNAs. For instance, the miRNA with the highest
connective degree is hsa-miR-378a-5p, followed by hsa-miR-
455-5p with 113 miRNA-target interactions and hsa-miR-18a-5p
possessing 100 targets.

By further observation of the ceRNA network, we found
that some lncRNAs competitively associated with multiple
genes, implying their functional role in regulating PCa
initiation via mRNAs. For example, 10 mRNAs were found
potentially regulated by the lncRNA SNHG3. Interestingly,
we also observed some lncRNAs compete with similar genes.

For instance, more than 20% competitive partner genes of
SNHG3 were also regulated by LINC00665, indicating that
they may exhibit a similar mechanism in the tumor. All
the findings imply that cancer initiation and progression
are driven by aberrant expression of multiple types of
endogenous RNAs working in concert to regulate key
tumor hallmarks.

Identification of the Nodes With
Diagnostic and Prognostic Significance
The ceRNA network constructed above provides a primary
regulatory landscape among the endogenous RNAs. However,
because this network consists of numerous compounds and
interactions among them, it is difficult to elucidate its diagnostic
and prognostic significance. In order to further identify key
nodes in this ceRNA network, for each individual node, we
assessed its effectiveness in distinguishing the tumor and normal
samples as well as to what extent it was associated with disease-
free survival.

To evaluate the diagnostic accuracy of each node in the ceRNA
network, the expression levels were examined in 495 PCa samples
and 52 normal samples from TCGA, and the AUC of the ROC
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FIGURE 3 | GOBP and KEGG enrichment on the commonly appeared differentially expressed genes. (A,B) GOBP enrichment analysis on the commonly up
regulated genes and down regulated genes. The y-axis is GOBP term, and the x-axis is the number of genes enriched to the corresponding term. (C,D) KEGG
pathway enrichment analysis on the commonly up regulated genes and down regulated genes. The y-axis is KEGG pathway term, and the x-axis is the gene ratio
representing the proportion of enriched genes in a KEGG pathway term over the number of genes in the inputted gene list.

curve was subsequently calculated. We found that more than 60%
of the node exhibited high AUC values (>0.80), including 111
genes, 12 miRNAs and 8 lncRNAs. This finding implied that the
ceRNA network may provide a new way to identify biomarkers
for the diagnosis of PCa.

We further analyzed the expression level of each node
and survival data of 495 TCGA-PRAD patients to identify
potential prognostic biomarkers. These patients were divided
into two groups based on the normalized expression level,
and the log-rank test was used to compare the differences
in disease-free survival times between the two groups.
We identified 140 out of 208 nodes exhibiting significant
prognostic value (FDR < 0.1, p-value <0.05, log-rank test).
Furthermore, we performed univariate Cox-proportional
hazards analysis on the expression of each RNA, adjusting
for clinical parameters including age at diagnosis and TNM
stage. This analysis showed that 44 of these nodes were
significantly associated with disease-free survival (FDR < 0.25,
p-value <0.05).

Then, the common RNAs with both high diagnostic value
(AUC > 0.80) and prognostic significance (FDR < 0.25
for Cox regression and FDR < 0.25 for log-rank test)

were selected as the candidate RNAs for further analysis.
Thirty-three RNAs were eventually identified (Figure 5A),
including 28 genes, 3 lncRNAs and 2 miRNAs (Supplementary
Table S1). These RNAs can be considered candidate
key regulators contributing to both the initiation and
development of PCa.

Construction of a Core ceRNA Network
and Building Novel Diagnostic and
Prognostic Models
It has been well established that cancer initiation and
progression are a consequence of abnormalities in numerous
intracellular compounds, including multiple types of
RNAs, as well as interactions among them (Glinskii
et al., 2011). We therefore extracted the interactions
among the candidate key RNAs to construct a core
ceRNA network architecture that possesses diagnostic and
prognostic significance.

Initially, the 33 candidate RNAs obtained above were mapped
to the primary ceRNA network, and interactions between the
candidate RNAs were retained. The resulting ceRNA network,
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FIGURE 4 | Construction of PCa tissue specific and high confidence ceRNA network. Nodes in this network represent different types of ceRNAs, and edges
represent the interactions among these ceRNAs.

namely, the core ceRNA network, is given in Figure 5B. The
core ceRNA network consists of 3 lncRNAs (SNHG3, RP11-
166D19.1 and MAGI2-AS3), 2 miRNAs (hsa-miR-222-3p and
hsa-miR-221-5p) and 5 genes (ATP2B4, AOX1, ALDH1A2,
TSPAN1 and SLC43A1), as well as 16 edges among them.
Notably, most of these ceRNAs have been shown to play a
role in PCa onset or progression. For instance, the lncRNA
SNHG3 is capable of driving castration-resistant phenotype of
PCa (Zhou et al., 2013), and its dysregulation was predicted well
associated with PCa initiation (Coarfa et al., 2015); hsa-miR-
221-5p is able to suppress PCa cell proliferation by targeting
key oncogenic pathways, including apoptosis, Akt/mammalian
target of rapamycin signaling, metastasis and the androgen
receptor (AR) axis (Yusuke et al., 2015); hsa-miR-222-3p is down
regulated in PCa, and increased hsa-miR-222-3p can significantly
inhibit cell migration (Li W. et al., 2018); a genome-wide scan
identifies that mutation of the AOX1 locus is associated with
PCa-specific survival time (Xu et al., 2016); decreased TSPAN1
promoted PCa progression and served as a biomarker for early
biochemical recurrence (Hanna et al., 2005); ALDH1A2, which
is a retinoic acid synthesis gene, has been previously reported as
a candidate tumor suppressor in PCa (Hofree et al., 2016); and
inhibition of SLC43A1 may provide a novel therapeutic target in
PCa, via suppression of cell cycle genes (Xu et al., 2016). Hence,

the critical role of this ceRNA network was confirmed by these
independent studies.

As illustrated in Figures 5, 6, all of the nodes in the
core ceRNA network were capable of both distinguishing PCa
tumor samples from normal samples and predicting patient
disease-free survival. For instance, the lncRNA SNHG3, which
is significantly up regulated in PCa tumor tissues (t-test p-value
<2.2e-16, Figure 5D), exhibited a striking discrimination among
tumors and normal samples as calculated by the AUC of the
ROC curve (AUC = 0.92, Figure 5C). In addition, the log-
rank test revealed that its up regulated expression was also
associated with poor prognosis in patients with PCa (Figure 5G).
Consistently, as shown in Figure 5J, the forest plot of hazard
ratios indicated that SNHG3 is a risk factor for poor prognosis.
However, all of the other RNAs in the core ceRNA network
were protective factors (Figure 5J) whose high expression
was associated with a good prognosis (Figures 5H,I, 6C–
I). Additionally, most of these RNAs were significantly down
regulated in PCa tumor tissues (Figurea 5H,I, 6C–G) and showed
good performance in identifying tumor tissues (AUC > 0.80,
Figures 5C, 6A,B). Interestingly, we also observed that two
protective factors were significantly down regulated in PCa tumor
tissues (Figures 6H–I), implying their changing functional role
through PCa progression.
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FIGURE 5 | Identification of key RNAs in the ceRNA network and constructing a core ceRNA network. (A) Identification of key RNAs by combining diagnosis and
prognosis analyses. (B) The core ceRNA network constructed by mapping the key RNAs to the primary ceRNA network. (C) The AUC of ROC for discriminating the
tumor and normal tissues based on the expression of lncRNAs in the core ceRNA network. (D–F) Expression of SNHG3, RP11-166019.1 and MAGI2-AS3 in the
normal and tumor tissues of PCa. (G–I) Kaplan–Meier curves of prognostic models built with the expression of SNHG3, RP11-166019.1 and MAGI2-AS3,
respectively. (J) Forest plot of hazard ratios showing the prognostic values of all RNAs in the core ceRNA network. *p < 0.05; **p < 0.01; ***p < 0.001.

Since each individual RNA in the core ceRNA network
exhibited diagnostic and prognostic values, we investigated
whether the combination of these factors could provide new
opportunities for predicting PCa initiation and prognosis. First,
a logistic regression model was constructed to discriminate the
PCa tissues from normal controls in TCGA (Figures 7A,B). To
avoid overfitting, the leave one out cross validation (LOOCV)
was used to evaluate the model performance (Methods). We
observed that the combination of 10 RNAs achieved ∼96% AUC
of the ROC curve in excluding normal samples (Figure 7C),
indicating the potential for early detection of PCa. We further
assessed the AUC of PR to avoid the affection by unbalanced
classes, which ends up with a consistent result that AUC value
of PR achieved ∼99% (Figure 7D). In addition, the individual
RNA in the ceRNA network also exhibited high AUC value of
PR (>90%, Figures 7E–G). To further validate the diagnostic
value of the core ceRNA network, we compared its performance
with that obtained from randomly selected gene sets, serving as
a background. As shown in Figure 7H, the AUC value of ROC

and PR curve of the ceRNA network significantly better than did
a random model (p-value < 0.01, t-test), suggesting it plays a role
in early detection of PCa.

We further defined a risk score to link the expression of
these RNAs and the disease-free survival time using Cox-
proportional hazards analysis according to a previous study
(Van der Laan et al., 2003; Liu et al., 2018) (Methods).
Then, we calculated the risk score for each PCa patient from
TCGA and divided this population into high-risk and low-risk
subgroups by the median value (Figure 8A, top). Remarkably,
we observed that most of the progressed patients possessed high
risk (p-value <0.01, Fisher extract test) compared to disease-
free. Moreover, the heatmap of 10 RNA expression profiles
revealed a distinct expression pattern for the two subgroups
(Figure 8B), confirming the prognostic value of the ceRNA
network. In addition, we investigated the association between
the risk-score-based groups and other patients’ classifications,
including molecular-based subtypes and tumor TNM staging.
Fisher’s exact test showed that the risk score was significantly
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FIGURE 6 | Evaluation of the diagnostic and prognostic value of the genes and miRNAs in the core ceRNA network. (A) The AUC of ROC for discriminating the
tumor and normal tissues based on the expression of miRNAs (hsa-miR-222-3p and hsa-miR-221-5p) in the core ceRNA network. (B) The AUC of ROC for
discriminating the tumor and normal tissues based on the expression of mRNAs (ATP2B4, AOX1, ALDH1A2, TSPAN1, and SLC43A1) in the core ceRNA network.
(C–I) left: Expression of two miRNAs (hsa-miR-222-3p and hsa-miR-221-5p) and five mRNAs (ATP2B4, AOX1, ALDH1A2, TSPAN1, and SLC43A1) in the normal
and tumor tissues of PCa; right: Kaplan–Meier curves of prognostic models built with the expression of hsa-miR-222-3p, hsa-miR-221-5p, ATP2B4, AOX1,
ALDH1A2, TSPAN1, and SLC43A1, respectively.

associated with tumor T staging and N staging rather than
with the molecular subtype (Figure 8B), suggesting that the
expression pattern of the core ceRNA network defined novel
clinically meaningful groups. Taken together, these results
indicate that the core ceRNA network exhibited high diagnostic
and prognostic significance.

PCa Patient Stratification Based on the
Core ceRNA Network
As cancer is a complex and wildly heterogeneous disease, cancer
informatics studies have raised fundamental questions regarding
patient stratification using their molecular profiles (Wold et al.,
1987). Because the above results have demonstrated the strikingly
diagnostic and prognostic values of the core ceRNA network, we
investigated whether the ceRNA network is capable of classifying
the PCa population into clinically relevant subtypes. Presently,
the expression profiles of the RNAs in the core ceRNA network
were used as genomic signatures for patients with PCa from
TCGA, and the unsupervised consensus clustering approach
was subsequently applied to discover distinct subgroups. The

results indicated that patients with PCa were subjected to four
distinct clusters (Figure 9A) with different patient numbers (68,
110, 144, and 163, respectively). Subsequently, the separation
between the different patient groups was further validated by
the principal component analysis (Xin et al., 2009) (PCA)
using the expression profile of the ceRNA network. Remarkably,
the PCA map showed lower intra-cluster patient-to-patient
similarity compared to the inter-cluster similarities (Figure 9B).
What’s more, the first two principal components contributed
up to 67% of the total variation, and patients in different
subgroups exhibited distinct expression profile patterns. To
assess whether the stratification determined by the core ceRNA
network was associated with clinical outcomes, we evaluated
the prognostic performance of the clusters with respect to
disease-free survival using the Kaplan–Meier survival analysis.
As displayed in Figure 9C, the ceRNA network-based subtypes
were significantly associated with disease-free survival in this PCa
population (p value <0.05, log-rank test). Taken together, these
findings demonstrate that by using the nodes in the core ceRNA
network as probes, we can identify novel patient subgroups with
significant clinical outcomes.
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FIGURE 7 | Building a novel diagnostic model and evaluate its performance. (A) The boxplot represents the distribution of each coefficient during the LOOCV
procedure. (B) The coefficient of each ceRNA variable of the logistic model. (C,D) The AUC of ROC and PR curve of the logistic model for discriminating tumor
tissue from normal controls, respectively. (E–G) The AUC of PR curve for discriminating the tumor and normal tissues based on the expression of lncRNAs, miRNAs
and mRNAs in the core ceRNA network, respectively (H).

DISCUSSION

Prior work has demonstrated the critical role of non-coding
RNAs, such as miRNAs and lncRNAs, in regulating tumor onset
and development. Huang et al., for example, reported that mir-
210 is capable of regulating the hypoxic response of tumor cells
and further controlling tumor growth (Li et al., 2017). mir-377
exhibited a suppression effect on esophageal cancer initiation and
progression by inhibiting CD133 and VEGF (Liuqing et al., 2013).
As for lncRNAs, increasing evidence has suggested their broad
functional roles in mediating tumor formation and metastasis of
many cancer types. For instance, lncRNAs PCAT8 and PCGEM1

are highly overexpressed in aggressive prostate cancer and
strongly enhance androgen-receptor-mediated gene activation
and proliferation in prostate cancer cells (Wei et al., 2017).
Additionally, X-inactive specific transcript (XIST) promotes the
tumor development by triggering miR−133a/EGFR signaling in
Pancreatic Cancer (Falzone et al., 2019). Moreover, both lncRNAs
and miRNAs are able to serve as promising diagnostic and
prognostic biomarkers across multiple tumor types, such as oral
cancer (Guo et al., 2015) and ovarian cancer (Hirohashi and
Kanai, 2010). Given the functional interdependencies between
the distinct RNA molecules, cancer pathology studies have shifted
their focus from individual RNAs that carry cancer-associated
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FIGURE 8 | Evaluation of prognostic significance of the core ceRNA network using the risk score formal. (A) The distribution of disease-free survival data of the
high-risk and low-risk subgroups for the TCGA-PRAD cohort. (B) The heatmap of the 12 RNA expression profiles for high-risk and low-risk subgroups, and the
correlation between the risk score based subgroups and other subtypes including T staging, M staging and a molecular based subtype. ***p < 0.001; ns:
non-significance.

FIGURE 9 | TCGA-PRAD patients stratification based on the expression of RNAs in the core ceRNA network. (A) Consensus clustering analysis of 492 TCGA-PRAD
samples based on the expression profile of the RNAs in the ceRNA network. The heatmap shows the sample-by-sample Pearson’s correlation coefficient.
(B) TCGA-PRAD populations identified after unsupervised clustering in panel (A). Each point depicts a single patient, colored according to cluster designation. We
reduced dimensionality by principal component analysis (PCA), and use the first and second principal components (x-axis and y-axis) to visualize the expression
patterns of different clusters. (C) Kaplan–Meier curves and risk table showing the association between the ceRNA network-based subtypes and the disease free
survival time.

dysregulation toward a network-based perspective of underlying
mechanisms such as the ceRNA network hypothesis (Salmena
et al., 2011). For example, Wang et al. recently established a

mRNA-miRNA-lncRNA network, which was demonstrated to
be associated with the prognosis of pancreatic cancer (Wang
et al., 2019). Additionally, the ceRNA network was reported
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to exhibit a strong relationship with certain clinical features in
human head and neck squamous cell carcinoma (Fang et al.,
2018). Specifically, for prostate cancer, Liu et al. systematically
investigated the gain and loss of ceRNAs and suggested its
potential for development biomarkers and therapeutics (Liu et al.,
2016). Nevertheless, comprehensively elucidating the diagnostic
and prognostic significance of the ceRNA network in PCa is still
insufficient. In this study, using the expression data from multiple
independent PCa-related studies, we constructed a core ceRNA
network with high confidence by employing three lncRNA-
gene prediction approaches and key node filter strategies and
then established a logistic model and risk score formula to
evaluate its diagnostic and prognostic value, respectively. We
found that the combination of expression of 10 RNAs not only
achieved an AUC of ROC and PR curve of more than 95% in
excluding normal prostate samples but also can be used to predict
the patient’s prognosis as well as divide patients into clinically
relevant subtypes.

In the present study, we used the common mRNAs and
miRNAs from multiple GEO and TCGA studies, and identified
the ceRNAs with diagnostic significance. As can be observed
in Figures 1, 2, if we only used the TCGA dataset, it seems
that we can obtain more candidate ceRNAs for further analysis
such as identification of diagnostic and prognostic biomarkers.
However, it should be noted that the most critical reason that
limits the broad clinical adoption of RNA expression profiles
is the poor reproducibility across biological replicates due to
technical and biological noise (Alvarez et al., 2016). For example,
one RNA-seq dataset (GSE89223) obtained from GEO was
based on the Ion Torrent Proton platform, while RNA-seq
data obtained from TCGA was generated with the Illumina
HiSeq platform. What’s more, samples of these two datasets
are collected from different countries/regions. Thus, there could
be a risk that a part of ceRNAs in the TCGA dataset may be
wrongly selected as diagnostic and prognostic biomarkers due
to the sample or platform induced data bias. To address this
problem, we integrated the differentially expressed RNAs derived
from multiple independent PCa-related studies using different
profiling platforms. Only the differentially expressed RNAs that
commonly appeared in different studies were selected for further
analysis to reduce the risk of data bias and make our analysis
more reliable. Non-coding RNAs usually exert specific functions
through protein-coding RNAs. Thus, the shared genes were
adopted for GOBP and KEGG enrichment analyses, which have
been widely used for investigating the underlying mechanism.
The enrichment analysis revealed that deregulated mRNAs were
significantly enriched in PCa initiation- and progression-related
biological processes, including metabolic (Liu, 2006; Tennant
et al., 2010) and cell adhesion-related processes (Chen et al.,
2015). Furthermore, enrichment in several signaling pathways,
such as the wnt signaling pathway (Wasilenko et al., 1997)
and calcium signaling pathway (Albert-László et al., 2011), may
provide insight into the upstream molecular mechanism for PCa
development. Thus, these differentially expressed RNAs must be
potential biomarkers for diagnosis and prognosis.

Inferring context-specific ceRNA interactions with high
confidence is crucial for better understanding ceRNA

regulatory mechanisms and their biological significance. In
the present study, the ceRNA network was constructed with
“GDCRNATools” (Li R. et al., 2018) based on three strategies,
including the significance of the hypergeometric test, Pearson
correlation analysis and regulation pattern analysis. Specifically,
the hypergeometric test was used to test whether the number of
shared miRNAs by a lncRNA and gene is significant, ensuring
the reliability of the inferred lncRNA-mRNA pairs. Pearson
correlation analysis and regulation pattern analysis were applied
to ensure that the regulatory associations between the lncRNAs
and genes were tissue-specific interactions in PCa.

This ceRNA network thereby provides a tissue-specific
primary regulatory landscape among the endogenous RNAs.
Nevertheless, as it consists of numerous compounds and
interactions among them, it is difficult to elucidate the main
underlying mechanisms of PCa. We therefore adopted three
criteria to filter the key nodes that are associated with PCa
onset and progression and subsequently specify the core ceRNA
network architecture, which may increase the opportunity for
PCa early detection and enhance the reliability of prognosis
monitoring. As a result, the final core ceRNA network consists
of 3 lncRNAs, 2 miRNAs, 5 mRNAs and 16 interactions among
them. All of these RNAs are capable of discriminating the tumor
samples and normal tissues with high accuracy, indicating their
diagnostic value. In the core ceRNA network, only 3 of 10
RNAs (SNHG3, TSNAP1 and SLC43A1) are up regulated in the
tumor tissues, suggesting their potential tumor promotion effect.
However, the other RNAs are tumor-suppressor RNAs whose
low expression is associated with an unfavorable prognosis.
Intriguingly, we found that the high expression of two potential
tumor promotor genes (TSNAP1 and SLC43A1) is associated
with a better prognosis in PCa. This seeming contradiction can
be explained in part by the alternation of their functional roles
during PCa development. Notably, most of these RNAs have
been well investigated in PCa, indicating the critical role of this
core ceRNA network.

One of the most important findings of this study is that
using the combination of different RNAs as candidate diagnostic
biomarkers of PCa achieved an AUC of ROC and PR curve of
∼96 and 99%, respectively. To avoid overfitting, the LOOCV
was applied to evaluate the performance of the combination of
the ceRNAs. This result supported the diagnostic significance
of the ceRNA network in PCa detection, implying that PCa
initiation is a complicated process involving multiple types
of RNAs. Moreover, this study provides a novel strategy for
developing diagnostic models with high accuracy. However, we
have not generalized our conclusion to other tumor types. Thus,
the diagnostic value of the ceRNA network on other tumor
types needs further study. By constructing a risk score formula
according to a previous description, the TCGA-PRAD cohort can
be divided into low- and high-risk score subgroups. Remarkably,
the high-risk score is significantly associated with poor disease-
free survival, indicating that the risk score is a new risk factor
for patient prognosis. Additionally, the risk score-based subgroup
is significantly associated with tumor T staging and N staging.
This could be because of the significant association between TNM
staging and patient prognosis. However, it is not associated with

Frontiers in Genetics | www.frontiersin.org 14 July 2020 | Volume 11 | Article 785

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00785 July 29, 2020 Time: 17:12 # 15

Guo et al. ceRNA Network for Prostate Cancer

a well-established molecular subtype (Abeshouse et al., 2015),
suggesting that the ceRNA network must have defined a novel
patient stratification. Strikingly, using an unsupervised clustering
approach, the TCGA-PRAD cohort was stratified into four
clinically relevant clusters with distinct molecular profiles defined
by ceRNA expression, which further proves the prognostic value
of the ceRNA network. This is the first study to provide core
ceRNA network-based stratification of PCa patients, highlighting
a feasible way to improve patient stratification in the future.

In conclusion, we have integrated the RNA expression
profiles derived from multiple independent PCa-related studies
to increase reliability of data, and subsequently constructed a
high confident PCa-specific core ceRNA network by employing
three lncRNA-gene inference approaches. The diagnostic and
prognostic significance of the core ceRNA network were
then validated in PCa patient cohort. However, despite our
encouraging results, some limitations are worth noting. For the
prognosis evaluation of the ceRNA network, we only assessed
the association between the ceRNA network and disease-free
survival rather than the overall survival due to the limitation
of the clinical data. In addition, our research mainly focuses on
evaluation of the prognostic significance of ceRNA networks in
PCa patients with bioinformatics tools, and future work focusing
on the in vitro and in vivo validation before clinical application
is still needed. However, we have reason to believe that in the
not-too-distant future, along with the development of various
experimental approach, the main findings of this research will
be validated in vitro or in vivo, and may be directly used for
clinical purposes. Nevertheless, our findings coupled early tumor
detection and prognostic prediction, which are usually described
as two seemingly disconnected entities, with the refined core
ceRNA network. This study also provided some key molecular
clues regarding tumor onset and progression, which might be
useful for further investigation of PCa.
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