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Soft tissue tumors (STTs) pose diagnostic and therapeutic challenges due to their rarity, complexity, andmorphological
overlap. Accurate differentiation between benign and malignant STTs is important to set treatment directions,
however, this task can be difficult. The integration of machine learning and artificial intelligence (AI) models can po-
tentially be helpful in classifying these tumors. The aim of this study was to investigate AI and machine learning tools
in the classification of STT into benign and malignant categories. This study consisted of three components: (1) Eval-
uation of whole-slide images (WSIs) to classify STT into benign and malignant entities. Five specialized soft tissue
pathologists from different medical centers independently reviewed 100 WSIs, representing 100 different cases,
with limited clinical information and no additional workup. The results showed an overall concordance rate of
70.4% compared to the reference diagnosis. (2) Identification of cell-specific parameters that can distinguish benign
and malignant STT. Using an image analysis software (QuPath) and a cohort of 95 cases, several cell-specific param-
eters were found to be statistically significant, most notably cell count, nucleus/cell area ratio, nucleus hematoxylin
density mean, and cell max caliper. (3) Evaluation of machine learning library (Scikit-learn) in differentiating benign
and malignant STTs. A total of 195 STT cases (156 cases in the training group and 39 cases in the validation group)
achieved approximately 70% sensitivity and specificity, and an AUC of 0.68. Our limited study suggests that the use
of WSI and AI in soft tissue pathology has the potential to enhance diagnostic accuracy and identify parameters that
can differentiate between benign and malignant STTs. We envision the integration of AI as a supportive tool to aug-
ment the pathologists' diagnostic capabilities.
Introduction

Soft tissue tumors (STT) represent a complex diagnostic area within
oncology due to their rarity and heterogeneity. The diagnostic process is
fraught with challenges, often resulting from the limited availability of
specialized expertise and the broad spectrum of tumor subtypes, which
can result in delayed or incorrect diagnoses.1 A study reviewing second
opinion diagnosis in STT found a discordance rate of 38%, with 25% of
these cases being classified as major diagnostic error impacting patient
management. This has also been shown to increase the number and cost
of malpractice cases in sarcoma care.2,3 Emerging technologies such as dig-
ital pathology and radiomics show promise in improving the accuracy of
cancer diagnosis, characterization, and monitoring.4–8
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The utilization of whole-slide images (WSIs) hasmade it easier to obtain
consultations, even across different institutions.9–11 Soft tissue pathology,
particularly, presents significant challenges for most pathologists, often
necessitating expert consultations. Molecular techniques, including next-
generation sequencing, have contributed significantly to better classifica-
tion of certain soft tissue sarcomas.12 However, getting a timely and
accurate initial working diagnosis mainly based on histology will expedite
the initiation of appropriate management; hence the need for additional
tools to aid in that initial assessment.

Recent advancements in digital pathology and artificial intelligence (AI)
have begun to show potential in enhancing diagnostic precision. Studies
such as that by Foersch et al13 have illustrated significant advancements
in the performance of AI-assisted diagnoses in soft tissue sarcoma,
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emphasizing the progressive nature of this field. This underscores the need
for ongoing research to refine AI applications in pathology, ensuring they
are robust across various studies and datasets. Distinguishing between
benign/reactive processes and malignant ones is a complex task in soft tis-
sue pathology. The large number of entities involved, and the rarity of these
tumors make it challenging to apply existing machine learning and AI
models to this field.4,6,13

The current investigation aims at exploring the application of AI in the
classification of STT into benign and malignant entities, as a step towards
the incorporation of AI into the clinical workflow. The goals of this study
are: (1) identify cell-specific parameters that can aid in the classification
of STTs as benign vs malignant, and (2) explore the capabilities of AI, in
comparison to expert pathologists, in evaluating benign and malignant
STT. By addressing these goals, the study aims to develop AI techniques
that aid in accurately diagnosing STT.

Methods

For all the experiments below, the ground truth was the original
diagnosis obtained utilizing all glass slide, immunostains and molecular
techniques, if necessary (Table 4).

Expert pathologist review (study arm 1)

Five soft tissue pathologists from five different medical centers indepen-
dently reviewed 100 WSI of hematoxylin and eosin (H&E)-stained slides
representing 100 different soft tissue cases, following the institutional re-
search protocol approved by the Institutional Review Board. Only one
slide per case was provided with limited clinical information (patient age,
gender, and anatomic location). Immunohistochemical and molecular
information was not provided to the reviewing pathologists. Deidentified
slides were scanned at 20×magnification using an Aperio scanner (Aperio
AT2, Leica Biosystems, Illinois), and acquired digital files were converted
from .svs to a DICOM format. Theywere uploaded to a locally hosted, exter-
nally accessible compute node for review using a web-based WSI viewer
system (Orthanc v1.3.2 WSI Plugin v0.5). Pathologists were asked to
choose one of four diagnostic categories (benign, intermediate/borderline,
malignant, and uncertain) and to provide up to three differential diagnoses.
Fig. 1. Representative whole-slide image upl
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A REDCap survey (https://www.project-redcap.org/) was used to record
the answers.

Answers were compared to the original “ground-truth” diagnoses.
Major and minor discordances, as well as uncertainty were defined as fol-
lows.Major discordance referred to discrepancies that could change patient
management or prognosis, such as mistaking a benign tumor for a malig-
nant one, or vice versa. Minor discordance involved differences that
would not affect overall treatment, such as subclassification within the
same category of benign or malignant tumors. Uncertainty was used for
cases where a definitive diagnosis could not be reached due to insufficient
information or ambiguous histological features.

Identifying cell specific parameters (study arm 2)

A cohort of 95 STT cases was utilized from the “expert pathologist
review” experiment described above, including 60 benign and 35 malig-
nant cases, encompassing 68 distinct STT entities. The cases were scanned
at 40× magnification using a high-throughput scanner (Aperio AT2) and
uploaded to an OMERO server14 for annotation. The regions of interest
(ROIs) were marked on all slides by the pathologist (Fig. 1). At the highest
layer of resolution, the slide images were divided into 768-pixel tiles
(Fig. 2). Each tile was evaluated for tissue percentage and color factors
using pre-processing software developed as part of the Deep HistoPath pro-
ject (https://github.com/CODAIT/deep-histopath). The metadata associ-
ated with tile and cell metrics was used to select the top 500 tiles per case
within ROI. Cell detection was performed on each tile with at least 25%
tissue using QuPath,15 providing 38 cell-specific parameters, which were
averaged per tile. The cell-based metrics were averaged both across the
top tiles per case and at the case-level. Welch’s t test was used, with
p < 0.05 considered significant.

Employing an AI model to differentiate benign vs malignant soft tissue tumors
(study arm 3)

A total of 195 soft tissue cases were collected from the files of one of the
authors (SQ), encompassing the 95 cases from the “cell-specific parame-
ters” experiment described above. These cases were divided into a training
group (156) and validation group (39). A free software machine learning
oaded to OMERO for annotation of ROI.

https://www.project-redcap.org/
https://github.com/CODAIT/deep-histopath


Fig. 2. Representative case divided into 768-pixel tiles at the highest layer of resolution. 38 cell-specific parameters were detected using QuPath, which were averaged per
tile.
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library for Python programming language (Scikit-learn) was employed to
analyze these cases into benign and malignant STT (https://scikit-learn.
org/stable/). Scikit-learn, an open-source machine learning library for
Python programming language, offers a wide range of classification, regres-
sion, and clustering algorithms, including support-vector machines,
random forests, and gradient boosting.

Results

Pathologist diagnostic concordance rate using WSI

The concordance rate of the pathologists when assessed against the ref-
erence diagnosis, made using traditional microscope, was 70.4% across the
four diagnostic categories. In detail, minor discordances were observed in
11.6% of the cases, where the pathologists’ diagnoses were close but not ex-
actly the same as the reference. Major discordances, wherein the diagnoses
substantially differed, occurred in 5% of the cases. Additionally, there was a
3

13% rate of uncertainty where the pathologists could not reach a definitive
diagnosis (Table 1). Analyzing the cases further, malignant tumors were
most accurately diagnosed with an 81.7% concordance rate, whereas be-
nign cases exhibited the highest rate ofmajor discordance at 7.7%. Interme-
diate cases showed the highest rates of minor discordance (28%) and
uncertainty (22.4%) (Fig. 3). Overall, a correct differential diagnosis was
established in 63% of the cases. Additionally, the pathologists reported ei-
ther excellent or satisfactory quality of the scanned images for 96.4% of
the cases.

Cell-specific parameters and their significance in benign vs malignant STT

Within the scope of 95 cases, encompassing 52 females and 43 males
aged from 9 months to 90 years (with an average age of 41 and a median
of 42), image analysis highlighted several cell-specific parameters that
showed statistically significant differences (p < 0.05). These parameters in-
cluded cell count, nucleus/cell area ratio, nucleus hematoxylin OD* mean,

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/


Table 1
Summary of study findings (study arm 1). “Concordance” indicates agreement with
the reference diagnosis with regards to the diagnostic categories (benign, interme-
diate/borderline, and malignant). Correct diagnosis is recorded when one of the
differentials provided by the pathologist matches the reference diagnosis (e.g.,
myxoid liposarcoma). Please note that this arm of the study was performed using
one slide only, no ancillary testing, and limited clinical data.

Pathologists
(P)

Overall
concordance
rate (%)

Major
discordance
(%)

Minor
discordance
(%)

Uncertain
diagnosis
(%)

Correct
DX (%)

P1 70 5 10 15 66
P2 71 3 8 18 70
P3 70 4 9 17 63
P4 76 9 15 0 37
P5 65 4 16 15 79
Overall 70.4 5 11.6 13 63
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cell max caliper, cell area, cell perimeter, cell circularity, and cell min
caliper (Table 2). The Welch’s t-test confirmed significant distinctions in
the mean values of these parameters between benign and malignant
groups, suggesting their potential utility in creating machine learning
models for aiding with a soft tissue diagnosis.

AI model performance relative to expert pathologists

The machine learning models that achieved the best performance in
distinguishing benign from malignant STTs included gradient boosting,
neural network, xgboost, random forest, bagging, histgradientboosting,
sgdclassifier, and logistic regression. For instance, logistic regression exhib-
ited a sensitivity of 0.737 and a specificity of 0.8, whereas random forest
showed a sensitivity of 0.864 and a specificity of 0.75. The average sensitiv-
ity among thesemodels was 0.60, specificity was 0.75, and overall accuracy
was 0.68. The area under the receiver operating characteristic curve (AUC)
for thesemodels was also 0.68 (Table 3). These results indicate that the per-
formance of the AI models is on par with that of the expert pathologists,
suggesting a promising role for AI in supporting diagnostic processes in
soft tissue pathology.
Fig. 3. Expert pathologists’ review (study arm 1). This was performed using one slide o
concordance rate (82%), benign cases had the highest major discordance rate (7%), a
rates (22%).
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Discussion

Accurate diagnosis of STT and their subtypes is crucial in determining
effective personalized oncology treatment plans for the best patient out-
comes. There is scarcity of studies focusing on diagnostic discrepancies,
especially in cases that have received second opinion in soft tissue
pathology.1,16 One notable study examining the diagnosis of sarcoma
through histopathology review revealed a substantial 24% discordance in
diagnoses between community pathologists and an expert sarcoma
reference pathology group. Sixty-six percent of these discordant cases had
clinically significant implications for treatment recommendations.16 Inter-
estingly, for all major discordant cases, excluding non-mesenchymal le-
sions, the diagnosis could have been made through conventional
H&E-stained slides. The primary reason for diagnostic errors was the lim-
ited experience of non-specialized surgical pathologists with uncommon
and atypical neoplasms.

Whole-slide imaging has emerged as a powerful tool for enhancing the
care of cancer patients, accelerated by the COVID-19 pandemic and the
CMS approval of remote sign out, thereby increasing the adoption of the
technology.17 This technology enables timely assessment of tumor tissue
by experts in STT, it fosters collaboration among specialists in sarcoma
management, and it provides pathologists in underserved regions, without
access to sarcoma centers, the opportunity to consult with a sarcoma
specialist.18 Previous studies have also highlighted the utility of WSI
technology in diagnosing STT. For instance, Sargen et al reported a notable
diagnostic accuracy of 89% using WSI for STT by two experienced soft tis-
sue pathologists.19 In another study, nine pathologists, with different levels
of expertise, assessed 291 STT using WSI, and demonstrated a substantial
increase in accuracy from 46.3% (±15.5%) to 87.1% (±11.1%) with the
assistance of deep machine learning.13 These findings emphasize the piv-
otal role of specialized pathology assessment in sarcoma diagnosis, and
the need to leverage WSI for this purpose.

The expert review experiment in this project aimed to establish a
baseline of what is achievable with limited clinical information and lack
of ancillary studies, for comparison with an AI-assisted scenario using
H&E-stained slides only. It is important to recognize that a comprehen-
sive diagnostic evaluation necessitates the review of all case slides,
nly, no ancillary testing, and limited clinical data. Malignant cases had the highest
nd intermediate cases had the highest minor discordance (28%) and uncertainty



Table 2
Cell-specific parameters of soft tissue tumors and their p values (Study arm 2).

Mean Difference between means ± SEM 95% confidence interval p value

0 1

Cases (n) 60 35

Nucleus/Cell area ratio 0.218 0.2731 0.05504 ± 0.008515 0.03804 to 0.07204 <0.0001
Cell count 171.9 278.9 107.0 ± 18.51 70.08 to 143.9 <0.0001
Nucleus area 28.41 29.7 1.287 ± 0.7150 −0.1327 to 2.708 0.075
Nucleus perimeter 23.16 23.21 0.04822 ± 0.3044 −0.5563 to 0.6527 0.8745
Nucleus: Circularity 0.665 0.6748 0.009753 ± 0.008050 −0.006236 to 0.02574 0.2288
Nucleus: Max caliper 8.984 8.748 −0.2359 ± 0.1266 −0.4874 to 0.01556 0.0656
Nucleus: Hematoxylin OD mean 0.3127 0.3741 0.06141 ± 0.02067 0.02032 to 0.1025 0.0039
Cell: Max caliper 16.33 14.95 −1.381 ± 0.2853 −1.949 to −0.8130 <0.0001
Nucleus: Eccentricity 0.809 0.7885 −0.02050 ± 0.005593 −0.03161 to −0.009397 0.0004
Nucleus: Min caliper 4.579 4.854 0.2756 ± 0.06869 0.1391 to 0.4120 0.0001
Nucleus: Hematoxylin OD sum 36.71 47.15 10.44 ± 2.362 5.738 to 15.15 <0.0001
Nucleus: Hematoxylin OD std dev 0.1034 0.1144 0.01096 ± 0.004120 0.002775 to 0.01914 0.0092
Nucleus: Hematoxylin OD max 0.5784 0.6721 0.09370 ± 0.02779 0.03846 to 0.1489 0.0011
Nucleus: Hematoxylin OD min 0.1047 0.1376 0.03292 ± 0.01320 0.006608 to 0.05923 0.0149
Nucleus: Hematoxylin OD range 0.4736 0.5344 0.06078 ± 0.01833 0.02436 to 0.09719 0.0013
Nucleus: Eosin OD mean 0.2425 0.2352 −0.007304 ± 0.01187 −0.03094 to 0.01633 0.5401
Nucleus: Eosin OD sum 27.54 28.55 1.012 ± 1.403 −1.803 to 3.827 0.4738
Nucleus: Eosin OD std dev 0.06607 0.0649 −0.001174 ± 0.003765 −0.008651 to 0.006303 0.7559
Nucleus: Eosin OD max 0.3925 0.3862 −0.006242 ± 0.01772 −0.04147 to 0.02899 0.7255
Nucleus: Eosin OD min 0.08946 0.08085 −0.008608 ± 0.006045 −0.02072 to 0.003505 0.1601
Nucleus: Eosin OD range 0.303 0.3054 0.002360 ± 0.01477 −0.02697 to 0.03169 0.8734
Cell: Area 135.1 110.7 −24.42 ± 5.009 −34.38 to −14.46 <0.0001
Cell: Perimeter 44.33 40.5 −3.831 ± 0.7991 −5.422 to −2.240 <0.0001
Cell: Circularity 0.8166 0.7968 −0.01988 ± 0.004069 −0.02796 to −0.01180 <0.0001
Cell: Min caliper 10.88 9.898 −0.9780 ± 0.2126 −1.401 to −0.5548 <0.0001
Cell: Eccentricity 0.6993 0.7058 0.006489 ± 0.003267 1.171e-006 to 0.01298 0.05
Cell: Eosin OD mean 0.179 0.1718 −0.007139 ± 0.009776 −0.02658 to 0.01230 0.4672
Cell: Eosin std dev 0.08495 0.08461 −0.0003421 ± 0.005141 −0.01056 to 0.009875 0.9471
Cell: Eosin OD max 0.4168 0.4017 −0.01506 ± 0.01941 −0.05364 to 0.02351 0.4397
Cell: Eosin OD min 0.01473 0.007824 −0.006906 ± 0.002861 −0.01259 to −0.001224 0.0178
Cytoplasm: Hematoxylin OD mean 0.08647 0.122 0.03549 ± 0.009522 0.01644 to 0.05454 0.0004
Cytoplasm: Hematoxylin OD std dev 0.06128 0.07984 0.01855 ± 0.004686 0.009220 to 0.02789 0.0002
Cytoplasm: Hematoxylin OD max 0.3381 0.4205 0.08239 ± 0.02081 0.04094 to 0.1238 0.0002
Cytoplasm: Hematoxylin OD min −0.01809 −0.00513 0.01296 ± 0.004507 0.003989 to 0.02194 0.0052
Cytoplasm: Eosin OD mean 0.1613 0.1477 −0.01362 ± 0.009514 −0.03254 to 0.005288 0.1558
Cytoplasm: Eosin OD std dev 0.07641 0.074 −0.002417 ± 0.004904 −0.01216 to 0.007325 0.6233
Cytoplasm: Eosin OD max 0.3729 0.35 −0.02283 ± 0.01892 −0.06043 to 0.01477 0.2309
Cytoplasm: Eosin OD min 0.01692 0.009997 −0.006924 ± 0.002960 −0.01280 to −0.001046 0.0215

The bolded entities represent statistically significant values.
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along with access to clinical information, imaging data, and often addi-
tional tests like immunohistochemistry and molecular studies.20 In partic-
ular, intermediate (borderline) lesions continue to pose challenges in
classification, underscoring the need for supplementary tools in the diag-
nostic process.

This study identified several cell-specific parameters as being statisti-
cally significant (p<0.05) in distinguishing between benign and malignant
STT. Recent research has also shown the potential of nuclearmorphology as
a deep learning biomarker for cellular senescence, which can be applied to
cancer.21 In another study, deep learning algorithms significantly enhanced
Table 3
Representative AI models metrics, classifying benign and malignant soft tissue
tumors (Study arm 3).

Metric AUC Accuracy Sensitivity Specificity

Gradientboosting 0.664 0.667 0.579 0.75
Neuralnetwork 0.638 0.641 0.526 0.75
Xgboost 0.639 0.641 0.579 0.7
Randomforest 0.717 0.718 0.684 0.75
Bagging 0.666 0.667 0.632 0.7
Tabpfn 0.743 0.744 0.737 0.75
Histgradientboosting 0.664 0.667 0.579 0.75
Sgdclassifier 0.584 0.59 0.368 0.8
Logisticregression 0.768 0.769 0.737 0.8
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pathologists' accuracy in diagnosing leiomyosarcomas and predicting out-
comes, increasing accuracy from 46.3% to 87.1%.8 These findings suggest
that cell-specific parameters hold promise in aiding pathologists in distin-
guishing benign from malignant STT and hence improving diagnostic
accuracy.

In this study, Scikit-learn22 AI software, was utilized, employing gradi-
ent boosting, neural networks, xgboost, and logistic regression algorithms.
The successful classification of benign and malignant STT, in our study,
underscores the potential of an AI-based approach to enhance diagnostic
accuracy in soft tissue pathology. A major limitation of this study is the rel-
atively small number of cases analyzed and the inclusion of a large number
of STT entities. Unfortunately, this is an expected challenge in studies in-
volving STT, as the majority of these tumors are rare, and the differential
diagnosis can be quite broad. In addition, the boundaries between benign,
reactive, intermediate-, and low-grade malignancy can be blurry. Another
limitation is the lack of validation using an independent dataset.

Despite the aforementioned success yielded in our pilot study, it is cru-
cial to acknowledge that the role of AI in STT diagnosis and treatment is still
premature, and that further research is imperative to validate its practical
applicability in the clinical setting. Nevertheless, we believe that expanding
the dataset with more cases has the potential to significantly improve the
performance of the AI model. Finally, the implementation of AI in pathol-
ogymandates careful consideration of various technical and ethical aspects,
such as patient data privacy, data interpretability, model transparency, and
potential biases.



Table 4
List of cases used for all study arms (Study arms 1, 2, and 3). Cases with * are not considered soft tissue tumors but have either presented in a location and/or showed mor-
phological overlap with soft tissue tumors warranting them being submitted to the soft tissue service for consultation.

Case Age/Sex Location Diagnosis

1 45 F Esophagus Ewing/PNET
2 88 F Chest wall Elastofibroma
3 3m M Flank Kaposiform hemangioendothelioma
5 8m M Thigh Juvenile xanthogranuloma
6 63 F Vulva Angiomyofibroblastoma
7 53 M Leg Cutaneous leiomyosarcoma
8 54 M Intestinal Malignant GIST
9 26 M Rectum *Balloon cell melanoma
11 31 M Thumb Perineurioma
12 49 M Mediastinal *Type-A thymoma
14 34 F Retroperitoneal Ewing/PNET
15 76 M Elbow *Late stage erythema elevatum diutinum
17 42 M Arm Nodular fasciitis
20 78 M Shoulder Ischemic fasciitis
21 95 F Intra-abdominal *Granulosa cell tumor
22 15 F Subcutaneous Malignant giant cell tumor of soft parts
26 42 M Hip Schwannoma
27 45 F Arm MPNST arising in a neurofibroma
28 36 M Ankle Clear cell sarcoma
29 2 F Thigh Sclerosing rhabdomyosarcoma
31 57 F Vagina Benign genital stromal polyp
34 50 F Thigh Biphasic synovial sarcoma, grade 2
35 55 M Shoulder Pleomorphic rhabdomyosarcoma, high grade
36 66 F Scapula HPC/SFT with malignant potential
38 79 F Groin *Metastatic melanoma
39 13 M Leg DFSP
40 47 M Retroperitoneal Schwannoma
42 7 F Thigh Pleomorphic sarcoma with giant cells (malignant giant cell tumor of soft parts)
45 8 M Shoulder Granular cell tumor
46 62 M Nose Well differentiated fibrosarcoma (grade 1)
48 29 M Preauricular solitary fibrous tumor/hemangiopericytoma
49 16 M Tongue Granular cell tumor
51 19 M Intra-ventricular Hemangioma, cavernous/capillary type
52 59 F Pelvis *High grade carcinosarcoma
53 49 F Uterus Epithelioid leiomyoma
56 24 M Trunk Dermatofibrosarcoma protuberans
58 38 F Foot Marked Stasis changes
60 42 F Uterine serosa Mesenchymal tumor, favor unusual smooth muscle tumor of uncertain malignant potential
63 78 M Arm Kaposi sarcoma
68 66 M Abdomen *Diffuse follicle center lymphoma
69 8 F Small bowel Reactive changes
70 39 F Forearm Sarcoma with myofibroblastic features
74 55 F Axillary *Malignant S100 positive tumor, favor melanoma
77 23 F Retroperitoneal Angiolymphoid hyperplasia (with eosinophilia)
78 59 M Back *Adnexal neoplasm of at least low grade malignancy
79 52 M Arm Myxoid variant of hemangiopericytoma/SFT
80 66 M Parotid Pleomorphic sarcoma with myoid differentiation
81 42 F Arm Epithelioid sarcoma
82 25 M Periumbilical Myoepithelial tumor of soft tissue, histologically benign
84 69 F Omentum *Low grade endometrial stromal sarcoma
86 42 M Mesenteric Follicular dendritic cell tumor
87 52 F Breast Histiocytic tumor of uncertain malignant potential
90 1 F Abdominal wall Juvenile xanthogranuloma
92 6 F Finger Cellular juvenile aponeurotic fibroma
93 84 M Temple *Ulcerating carcinoma
94 20 F Chest wall Monophasic synovial sarcoma, high grade
95 5 F R foot Fibrous histiocytoma
97 41 F R tongue Myofibroma
99 67 M Toe Low grade pleomorphic sarcoma
103 8 M Hand *Cellular blue nevus
104 30 M Shoulder *Soft tissue chordoma with bone erosion
105 42 F Lower abdomen *Malignant tumor c/w myoepithelial carcinoma, high grade
107 1 M R chest Infantile fibromatosis
108 35 M Spine (T1) Metastatic malignant peripheral nerve sheath tumor (MPNST), epithelioid type
109 43 M Flank Angiosarcoma, high grade
120 41 F Breast Leiomyoma
122 39 M Stomach Malignant gastrointestinal stromal tumor (GIST)
124 41 M Rectum Gastrointestinal stromal tumor
127 47 M Subcutaneous Low grade fibromyxoid sarcoma
129 12 M Toe Benign mesenchymal tumor with features of angiomatosis and myofibromatosis
130 67 F Vulva Benign genital stromal tumor
135 43 F Wrist Pleomorphic undifferentiated sarcoma, high grade
139 42 F Arm Extranodal Rosai Dorfman disease
141 75 M Sinonasal Hemangiopericytoma-like tumor of the nasal passages
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Table 4 (continued)

Case Age/Sex Location Diagnosis

142 45 M Kidney Malignant glomus tumor
143 16 M Knee Necrobiotic granuloma
145 51 M Neck Benign mesenchymal tumor, favor spindle cell lipoma
148 85 M Scalp *Poorly differentiated carcinoma, probably metastatic
151 45 M Retroperitoneal Monophasic synovial sarcoma, high grade
153 47 M Upper leg Dermatofibrosarcoma protuberans
157 51 F Mediastinal Myxoid/round cell liposarcoma, high grade
158 64 F Toe Ewing sarcoma
160 30 F Paraspinal Sclerosing epithelioid fibrosarcoma
164 14 M L4 vertebra Langerhans cell histiocytosis
165 1 M Hip Calcifying aponeurotic fibroma
167 31 M Scalp Alveolar soft part sarcoma. Rule out metastasis
168 5 M Tongue Reactive myofibroblastic proliferation
169 58 F Sternocleidomastoid muscle Soft tissue myoepithelioma, histologically benign
171 26 M Omentum Benign fibroblastic proliferation, favor reactive
174 71 F Neck Malignant hemangiopericytoma/solitary fibrous tumor, high grade
176 92 M Neck *Desmoplastic melanoma
177 33 F Calf Neuroblastoma-like schwannoma (schwannoma with collagen rosettes)
178 66 M Patella Glomus tumor
179 32 F Knee Angiomatoid fibrous histiocytoma
180 39 M Shoulder Kaposi sarcoma
184 59 F Orbit Hemangiopericytoma
186 18 M Scrotum Embryonal rhabdomyosarcoma
188 62 F Leg Fibrous histiocytoma with atypical (monster) cells
191 34 F Calf *Paraganglioma-like dermal melanocytic tumor
193 47 F Uterine serosa Leiomyoma
195 3 F labia majora Lipoblastoma
196 19 F Brachial plexus Epithelioid nerve sheath tumor, probably of low grade malignancy
198 60 F Mesenteric/small bowel Bacillary angiomatosis
199 44 F Calf Extraskeletal myxoid chondrosarcoma
200 50 F Anus *Malignant melanoma
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Conclusion

This study demonstrates the potential of AI techniques to enhance the
diagnosis and classification of STTs, with promising results in distinguish-
ing benign from malignant cases and highlighting the relevance of cell-
specific parameters. A comprehensive diagnostic evaluation, encompassing
all slides and access to immunohistochemical and molecular studies, re-
mains indispensable for accurate soft tissue diagnosis. The use of large het-
erogeneous, well-curated and annotated/labelled datasets will be essential
to bolster AI model training and accuracy in the field of soft tissue pathol-
ogy. Nevertheless, the integration of AI into the diagnostic process offers
substantial promise, poised to elevate our capacity to differentiate between
these tumors, ultimately leading to heightened diagnostic precision and im-
proved patient outcomes.

We would like to emphasize that this is a proof-of-concept small study,
and larger studies are needed to validate and expand on the findings. The
current study provides a foundation upon which future studies can be
built. Future research should focus on expanding the dataset and refining
AI algorithms to potentially improve diagnostic sensitivity and specificity.
Additionally, ongoing effortsmust be made to address technical and ethical
considerations, such as ensuring data privacy and the accuracy of
AI-generated results.
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