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1  | INTRODUC TION

Chronic kidney disease (CKD) is characterized by a reduced glomer-
ular filtration rate and progressive impaired renal function. It has 
become a global public health issue with an estimated prevalence of 
8%–16% (Jha et al., 2013). Worldwide, diabetes mellitus, hyperten-
sion, and glomerulonephritis are the common causes of CKD. Patients 
with CKD experience several complications including increased blood 
pressure, anemia, acute kidney injury, cardiovascular mortality, and 
accumulation of high levels of uremic toxins.

More than 2,000 species of commensal bacteria live in the intes-
tinal tract in a natural balance. They constitute a dynamic and sym-
biotic ecosystem that interacts with the host metabolism (Bourlioux, 
Koletzko, Guarner, & Braesco, 2003; Dunne, 2001; Hooper & 

Gordon, 2001; Iannitti & Palmieri, 2010). A large number of recent 
studies demonstrated the association of gut microbiota with many 
diseases including obesity, type 2 diabetes, and nonalcoholic fatty 
liver disease (Abu-Shanab & Quigley, 2010; Qin et al., 2012; Ridaura 
et al., 2013). Recent studies have suggested that the gut microbiota 
is one of the pathogenic factors in kidney disease (Anders, Andersen, 
& Stecher, 2013). Vaziri and his colleagues used the 16S rRNA gene 
PhyloChip technique to demonstrate that uremia profoundly altered 
intestinal microbial flora (Vaziri, Wong, et al., 2013). Furthermore, 
some studies investigated the potential of intestinal microbial flora 
as microbial biomarkers for the noninvasive diagnosis and selec-
tion of an appropriate personalized treatment (Pascal et al., 2017; 
Sommer et al., 2017). However, it remains unclear which microbial 
biomarkers are more appropriate for CKD.
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Abstract
The present study aimed to determine the differences in gut microbiota between pa-
tients with chronic kidney disease (CKD) and healthy controls (HC) and search for bet-
ter microbial biomarkers associated with CKD. The 16S rRNA gene sequencing 
approach was used to investigate the differences in gut microbiota between the CKD 
and HC groups. The study found that 12 phylotypes were overrepresented in the CKD 
group and 19 in the HC group at the genus level. Furthermore, genera Lachnospira and 
Ruminococcus_gnavus performed the best in differentiating between HC and CKD pop-
ulations. In addition, this novel study found that the genera Holdemanella, Megamonas, 
Prevotella 2, Dielma, and Scardovia were associated with the progression of CKD and 
hemodialysis. In conclusion, the composition of gut microbiota was different in CKD 
populations compared with healthy populations, and Lachnospira and R._gnavus were 
better microbial biomarkers. In addition, five phylotypes, including Holdemanella, 
Megamonas, Prevotella2, Dielma, and Scardovia, served as an indicator of the progres-
sion of CKD and hemodialysis. However, large-scale prospective studies should be per-
formed to identify the reliability of the set of these phylotypes as biomarkers.
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Therefore, this study was performed to explore the differences 
in gut microbiota between patients with CKD and healthy controls 
(HC) and further search more appropriate microbial biomarkers as-
sociated with CKD.

2  | MATERIAL AND METHODS

2.1 | Study population

This study included 49 patients with CKD (37 males and 12 females 
aged 54 ± 14 years) and 24 HC (16 males and eight females aged 
56 ± 9 years) (age, Student t test, p = 0.303). All enrolled participants 
signed the informed consent. The study was reviewed and approved 
by the Medical Ethics Committee of Taian City Central Hospital, Taian, 
China. Of the 49 patients with CKD, 13 underwent hemodialysis and 
the remaining were never treated with dialysis. Patients with malig-
nancy, pregnancy, acute or chronic infections, chronic inflammatory 
bowel disease, and celiac disease were excluded. All participants in 
this study did not take any antibiotics, probiotics, prebiotics, or sym-
biotics during the 3 months before fecal samples were collected. Stool 
samples from enrolled participants were collected in a sterile plastic 
cup and stored at −80°C for further microbiome analysis.

2.2 | Microbiota analysis

The V3–V4 region of the 16S rRNA gene was amplified and se-
quenced on the Illumina Hiseq System (PE250) to profile the mi-
crobial composition of fecal samples. The forward primer was 
341F: CCTAYGGGRBGCASCAG, and the reverse primer was 806R: 
GGACTACHVGGGTWTCTAAT. All polymerase chain reactions 
were performed in 20-μl reaction mixtures with 4 μl of 5 ×  FastPfu 
Buffer, 2 μl of 2.5 mM dNTPs, 0.5 μM forward and reverse primers, 
0.4 μl of FastPfu Polymerase, and 10 ng template DNA. Thermal cy-
cling consisted of initial denaturation at 95°C for 5 min, 27 cycles of 
denaturation at 99°C for 30 s, annealing at 55°C for 30 s, elongation 
at 72°C for 45 s, and maintenance at 72°C for 10 min. The library 
was constructed and sequenced on an Illumina HiSeq platform. 
Sequences were grouped into operational taxonomic units (OTUs) 
using the Usearch (version 7.1 http://drive5.com/uparse/) algorithm 
and assigned to the same OTU with a distance-based similarity of 
≥97% (Edgar, 2010). Assigned sequence reads were used to assess 
the differences in taxonomic abundances between CKD and HC at 
the phylum level. The measurements of beta diversity were per-
formed with the principal component analysis (PCA) based on the 
Euclidean distance and nonmetric multidimensional scaling (NMDS) 
based on the UniFrac distance. PCA and NMDS plots were gener-
ated using the R package vegan. The significantly differential taxa 
between groups were determined using LEfSe (http://huttenhower.
sph.harvard.edu/galaxy/root?tool_id=lefse_upload), which performs 
a nonparametric factorial Kruskal–Wallis rank-sum test followed by 
the linear discriminant analysis (LDA) coupled with measurements to 
assess the effect size of each differentially abundant taxon, and the 
threshold of the LDA was set to 2 (Segata et al., 2011).

The ability of the microbial markers to differentiate between HC 
and CKD was evaluated using the area under the receiver operating 
characteristic (ROC) curve. The phylotypes detected in hemodialysis 
samples and HC group were discovered by evaluating the data from 
high-throughput sequencing.

2.3 | Statistical analysis

The statistical analysis of quantitative data and ROC was conducted 
with the Student t test using SPSS 16.0. A p value less than 0.05 was 
considered statistically significant.

3  | RESULTS

The gut microbiota of patients with CKD and HC were investigated 
using the high-throughput sequencing of the V3–V4 region of the 
16S rDNA gene, and a total of 2,754,607 reads were sequenced.

F IGURE  1 Taxonomic analysis of gut microbiota from 16S 
rRNA sequencing. (a) Composition of gut microbiota (phylum) of 
HC. (b) Composition of gut microbiota (phylum) of CKD. (c) Relative 
abundance of microbial community at the phylum level in fecal 
samples collected from both the CKD and HC groups. (d) Venn 
diagram of fecal microbiota at the OTU level. Each ellipse represents 
one sample. Red represents HC, whereas green represents CKD

Firmicutes
Bacteroidetes
Proteobacteria
Actinobacteria
Fusobacteria
Verrucomicrobia
Cyanobacteria
Euryarchaeota
Tenericutes
Saccharibacteria
Synergistetes
Lentisphaerae

67.23%

26.79% Fimicutes
Bacteroidetes

4.44%

Proteobacteria
HC(a)

Firmicutes
Bacteroidetes
Proteobacteria
Actinobacteria
Fusobacteria
Verrucomicrobia
Cyanobacteria
Euryarchaeota
Tenericutes
Saccharibacteria
Synergistetes
Elusimicrobia
Lentisphaerae

46.4%42.32%

FimicutesBacteroidetes

9.74%

Proteroidetes

       CKD(b)

http://drive5.com/uparse/
http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload
http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload


     |  3 of 10LUN et al.

3.1 | Bacterial microbiota composition

In this study, most of the bacteria of fecal samples collected from both 
CKD and HC groups belonged to the phyla Firmicutes, Bacteroidetes, 
Proteobacteria, and Actinobacteria (98.2% and 98.46%, respectively) 
(Figure 1a,b). The relative abundance of the dominant main phyla 
Firmicutes, Bacteroidetes, and Proteobacteria between CKD and HC 
groups significantly changed. The CKD group had a significantly 
higher abundance of Bacteroidetes and Proteobacteria and lower 
abundance of Firmicutes compared with the HC group (Student t test, 
p = 0.002, 0.03, and 0.000, respectively). The clustering analysis also 

showed that the CKD group differed from the HC group at the phyla 
level (Figure 1c). The Venn diagram represented shared/unique OTUs 
in the gut microbiota of the CKD and HC groups (Figure 1d).

3.2 | Bacterial microbiota diversity analysis

The beta diversity of the samples was evaluated using PCA based 
on the Euclidean distance to investigate the differences in the struc-
ture of gut microbiota (Figure 2a). The result revealed that the gut 
microbiota of patients with CKD were distinct from those of the HC 
with the first two principal component scores 15.16% and 12.24%, 
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F IGURE  1  (Continued)

F IGURE  2  (a) Visualization of the PCA analysis based on the Euclidean distance. (b) Nonmetric multidimensional scaling (NMDS) plot of 
microbial communities, based on the OUT level, derived from fecal samples of HC (red) and patients with CKD (blue)
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respectively. NMDS based on UniFrac distance also showed a sepa-
ration trend of the HC and CKD groups at the OTU level (Figure 2b).

3.3 | Differences in gut microbiota between the 
CKD and HC groups

The differences in gut microbiota between the CKD and HC groups 
were determined using the Linear discriminant analysis Effect Size 
(LEfSe). The cladogram generated from the LEfSe analysis showed the 
most differentially abundant taxa enriched in microbiota from the CKD 
or HC group (Figure 3a). The histogram indicated that a difference of 49 
phylotypes was observed between the CKD and HC groups (Figure 3b). 
A total of 31 phylotypes were different at the genus level, and they 
might serve as biomarkers to differentiate between CKD and HC 
populations. Among the 31 phylotypes, 12 were more abundant in the 
CKD group, including Bacteroides, Escherichia_Shigella, Parabacteroides, 
Ruminococcus_ gnavus, Ruminococcus torques, Weissella, Flavonifractor, 
Ruminiclostridium5, Sellimonas, Erysipelatoclostridium, Eggerthella, 
and Clostridium_innocuum. Furthermore, 19 phylotypes were more 
abundant in the HC group, including Dialister, Eubacterium rectale, 
Carnobacterium, Lachnospira, Subdoligranulum, Eubacterium_copros-
tanoligenes, Coprococcus2, Roseburia, RuminococcaceaeUCG_009, 
RuminococcaceaeNK4A214, LachnospiraceaeFCS020, Ruminococcus1, 
Romboutsia, Butyricicoccus, Collinsella, RuminococcaceaeUCG_003, 
Eubacterium_halliigroup, Tyzzerella3, and LachnospiraceaeUCG_001.

3.4 | Comparison of microbial biomarkers

ROC curves of five phylotypes with the five highest LDA scores at 
the genus level in the HC and CKD groups and their area under the 

ROC curve (AUC) values were obtained to explore the ability of the 
gut microbiome to differentiate between the HC and CKD groups. 
Out of the five phylotypes tested, Lachnospira achieved the best 
performance in the HC group (AUC = 0.813; 95% CI: 0.713–0.912; 
p = 0.000) (Figure 4a) and Ruminococcus_gnavus was the best in 
the CKD group (AUC = 0.764; 95% CI: 0.656–0.873; p = 0.000) 
(Figure 4b).

3.5 | Microbial markers associated with the 
progression of CKD and hemodialysis

The data from high-throughput sequencing were analyzed to explore 
microbial species associated with the progression of CKD and hemo-
dialysis. At the genus level, the genera Holdemanella, Megamonas, and 
Prevotella2 were not detected in the HD samples, and the rate of their 
detection decreased in the CKD group compared with the HC group. 
The genera Dielma and Scardovia were not detected in all the HC sam-
ples (Table 1).

4  | DISCUSSION

This study used the high-throughput sequencing of the fecal micro-
biota of patients with CKD and HC to investigate the alteration of 
intestinal microbiota in patients with CKD. Significant differences 
in the composition of gut microbiota were found between the CKD 
and HC groups. At the phylum level, a significantly increased preva-
lence of Bacteroidetes and Proteobacteria and a reduced prevalence 
of Firmicutes were found in patients with CKD. Gut microbiota are 
vital in the progression of CKD. The fermentation of amino acids 

F IGURE  3  (a) Cladogram showing 
the most differentially abundant taxa 
identified by LEfSe. Red indicates clades 
enriched in the HC group, whereas green 
indicate clades enriched in the CKD group. 
(b) Comparisons of gut bacteria between 
the HC and CKD groups. The histogram 
shows the LDA score computed for genera 
differentially abundant between groups 
and identified using LEfSe
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HC
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F IGURE  3  (Continued)
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tyrosine and tryptophan obtained from food by intestinal micro-
biota generates p-cresol and indole, respectively, which are fur-
ther metabolized to generate p-cresyl sulfate and p-indoxyl sulfate 

in the liver after absorption. These toxins are eliminated mainly 
by tubular secretion in the kidneys. Their increased concentration 
is associated with renal impairment and advancing CKD (Poesen, 
Meijers, & Evenepoel, 2013).

The relationship between the human microbiome and kidney 
disease is bidirectional. CKD also affects the structure of gut 
microbiota and contributes to symbiosis. Studies on uremic rats 
showed marked azotemia, systemic oxidative stress, and marked 
depletion of the key protein constituents of the epithelial tight 
junction (claudin-1, occludin, and ZO1) in the stomach, jejunum, 
and ileum (Vaziri, Yuan, Nazertehrani, Ni, & Liu, 2013). Many fac-
tors are associated with CKD, including frequent use of antibiotics 

TABLE  1 Detection rate of bacteria at the genus level

Bacteria HD Non-HD HC

Holdemanella 0% 11.76% 33.33%

Megamonas 0% 14.71% 45.83%

Prevotella2 0% 5.88% 29.17%

Dielma 31% 29.41% 0.00%

Scardovia 23% 2.94% 0.00%

F IGURE  4 ROC curves for microbial 
biomarkers. (a) ROC curves of five 
phylotypes with the highest LDA score at 
the genus level in the HC group. (b) ROC 
curves of five phylotypes with the highest 
LDA score at the genus level in the CKD 
group. A higher curve generally indicates a 
better method. AUC statistic summarizes 
the trade-offs across the varied sensitivity/
specificity range
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(Jakobsson et al., 2010), decreased consumption of dietary fibers 
(Kalantar-Zadeh, Kopple, Deepak, Block, & Block, 2002), metabolic 
acidosis, slow colonic transit, intestinal wall edema, volume over-
load with intestinal wall congestion, and oral iron intake (Fouque 
et al., 2014; Nakao, 2012; 2005). Many of these factors lead to the 
translocation of bacteria and microbial dysbiosis. Elevated levels 
of gut fluid urea and uric acid and reduced levels of fiber-derived 
short-chain fatty acids, which contribute to uremia-induced mi-
crobial dysbiosis (Wong et al., 2014), may be the causal factors 
for microbial dysbiosis in patients with CKD. When the kidney 
function is insufficient, urea is secreted into the gastrointestinal 
tract, hydrolyzed by the expansion of urease-possessing bacte-
ria, and results in the production of large quantities of ammonia, 
which contributes to systemic inflammation by disrupting the gut 
epithelial tight junction (Kang, 1993; Vaziri, Duresmith, Miller, & 
Mirahmadi, 1985; Vaziri, Yuan, & Norris, 2013; Wong et al., 2014). 
In addition, the intestinal dysbiosis of microbiota may be due to 
iatrogenic causes. Hemodialysis can contribute to recurrent re-
gional ischemia and systemic circulatory stress, which may also 
damage the mechanical barrier of the gut (Ding & Li, 2003).

At the genus level, 12 phylotypes were overrepresented in the 
CKD group and 19 in the HC group. These 31 phylotypes might serve 
as biomarkers to differentiate between CKD and HC populations. 
Furthermore, the ability of the gut microbiome with a higher LDA 
score to differentiate between the HC and CKD groups was assessed. 
It was found that Lachnospira and Ruminococcus_gnavus achieved the 
best performance, respectively, in the two groups. Previous studies 
showed that the decrease in the abundance of genus Lachnospira in 
the gut microbiome was associated with many diseases. Stiemsma 
et al. (2016) reported that the abundance of genus Lachnospira (L) 
decreased in children with asthma, and opposing shifts in the rela-
tive abundance of Lachnospira and Clostridium neonatale (C) in the 
first 3 months of life were associated with preschool-age asthma, 
and the L/C ratio might serve as a potential early-life biomarker to 
predict asthma development. Wang et al. (2017) found a significant 
loss of Lachnospira in pediatric patients with Crohn’s disease prior to 
infliximab treatment. In the present study, the relative abundance of 
Ruminococcus_gnavus was higher in the CKD group. A study reported 
that the high consumption of red meat, which increased the risk of 
colorectal cancer, lowered the abundance of Ruminococcus_gnavus (Le 
Leu et al., 2015).

In addition, this novel study found that Holdemanella, Megamonas, 
Prevotella2, Dielma, and Scardovia, which had some association be-
tween the detection rate and advancing CKD, had the potential to 
serve as indicators of the progression of CKD and HD. Moreover, the 
five phylotypes were used to study the mechanism of interaction be-
tween intestinal flora and CKD. Stein (2015) reported that the preva-
lence of Prevotella significantly reduced in mice with renal failure, which 
was in line with the findings of the present study. Holdemanella biformis 
was associated with an unhealthy fasting serum lipid profile (Brahe 
et al., 2015). Megamonas had a higher proportion in samples with 
obesity (Chiu et al., 2014). Some reports showed that the prevalence 
of Megamonas significantly increased in healthy individuals compared 

with diseased individuals (Jun et al., 2016; Suchodolski et al., 2015). 
Dielma fastidiosa was reported in the human gut (Ramasamy, Lagier, 
Nguyen, Raoult, & Fournier, 2013). The relative abundance of Scardovia 
was significantly higher in the salivary samples in the group with caries 
(Zhou et al., 2016). Scardovia wiggsiae was associated with the elevated 
sugar intake (Keller, Kressirer, Belstrøm, Twetman, & Tanner, 2017).

Several studies have shown a difference in gut microbiota 
between patients with ESRD and normal controls (Vaziri, Wong, 
et al., 2013; Xu et al., 2017). Improving CKD-induced dysbiosis can 
act as a promising targeted treatment in patients with CKD. Recent 
studies have demonstrated the favorable effect of dietary amy-
lose supplementation on CKD progression and dysbiosis in rats 
and humans with CKD (Kieffer et al., 2016; Tayebi Khosroshahi 
et al., 2018; Vaziri et al., 2014). The differential gut microbiota has 
the potential to guide noninvasive diagnosis and targeted inter-
ventions. Given that many factors are associated with the diagno-
sis of gut microbiota, the biomarker is not a single bacterium but 
a set of bacteria. The present study found associated phylotypes 
by analyzing data from the high-throughput sequencing of the 
16S rRNA gene, but the reliability of these bacteria as biomarkers 
needs to be explored further. Hence, large-scale prospective stud-
ies with extensive sample panels should be conducted to develop 
more reliable microbiome biomarkers.
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