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A B S T R A C T

Autism spectrum disorder (ASD) is associated with altered patterns of over- and under-connectivity of neural
circuits. Age-related changes in neural connectivities remain unclear for autistic children as compared with
normal children. In this study, a parts-based network-decomposition technique, known as non-negative matrix
factorization (NMF), was applied to identify a set of possible abnormal connectivity patterns in brains affected by
ASD, using resting-state electroencephalographic (EEG) data. Age-related changes in connectivities in both inter-
and intra-hemispheric areas were studied in a total of 256 children (3–6 years old), both with and without ASD.
The findings included the following: (1) the brains of children affected by ASD were characterized by a general
trend toward long-range under-connectivity, particularly in interhemispheric connections, combined with short-
range over-connectivity; (2) long-range connections were often associated with slower rhythms (δ and θ),
whereas synchronization of short-range networks tended to be associated with faster frequencies (α and β); and
(3) the α-band specific patterns of interhemispheric connections in ASD could be the most prominent during
early childhood neurodevelopment. Therefore, NMF would be useful for further exploring the early childhood
developmental functional connectivity of children aged 3–6 with ASD as well as with typical development.
Additionally, long-range interhemispheric alterations in connectivity may represent a potential biomarker for
the identification of ASD.

1. Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental
disorder that is characterized by repetitive behaviors, restricted inter-
ests, and impairments in social interaction and communication
(Keown et al., 2017). Evidence that ASD could be a result of altered
patterns of neural connectivity is growing (Geschwind and Levitt, 2007;
O'Reilly et al., 2017; Minshew and Keller, 2010). The devel-
opmental–disconnection model of ASD indicates that changes in func-
tional connectivity in individuals with ASD follow a pattern of short-
range over-connectivity (Belmonte et al., 2004) and long-range under-
connectivity (Geschwind and Levitt, 2007) or even global under-con-
nectivity (Hughes, 2007; Just et al., 2004). Recent findings, however,
emphasize a mixture of hypo- and hyper-connectivity (Kana et al.,
2014). This abnormal connection pattern may then reflect inadequacy
in the fine-tuning of networks during development in ASD, which is a
process that is typically characterized by increased integration within

local networks and increased segregation across separate networks
(Bos et al., 2014). However, several findings remain unreplicated, and
conclusions regarding the nature of altered patterns of connectivity in
ASD have been divergent.

A substantial body of research has partially addressed questions
regarding brain connectivity in ASD, including approaches that have
investigated structural connectivity by diffusion imaging
(Anagnostou and Taylor, 2011; Müller, 2014) and correlated activity by
functional magnetic resonance imaging (fMRI) (Thai et al., 2009;
Uddin et al., 2013). Specifically, fMRI studies have identified atypi-
calities in functional-connectivity patterns in individuals with ASD
(Hahamy et al., 2015), which include reductions in various functional
connections (Belmonte et al., 2004; Just et al., 2004), particularly in
interhemispheric connections (Hahamy et al., 2015; Dinstein et al.,
2011; Di Martino et al., 2014). Moreover, fMRI studies have reflected a
shift in the understanding of the biological basis and cognitive deficits
of ASD toward the patterns of functional connectivity between areas of
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the so-called default mode network (DMN), which are neural networks
that are activated at rest (Raichle, 2009).

Brain connectivity can also be evaluated by multiple electro-
encephalography (EEG) signals. According to its high temporal re-
solution and direct relationship with neuronal potential activity, EEG-
connectivity analyses can provide abundant information about the dy-
namic activation and deactivation of functional networks
(O'Reilly et al., 2017). Recently, aberrant gamma activity has been re-
ported in autistic children, which has been interpreted as the sup-
porting hypothesis of aberrant brain connectivity (Brown et al., 2005).
EEG coherence has been directly used as a measure of connectivity in
several EEG studies, and the reports support the evidence of both under-
and over-connectivity in different frequency bands in ASD populations
(Murias et al., 2007). However, a more complete understanding of the
patterns of connectivity in ASD remains lacking. Thus, our goal in this
study is to identify connectivity patterns and effective brain con-
nectivity in ASD, with a focus on factors impacting over- versus under-
connectivity during the early stage of neurodevelopment (ages: 3–6
years old).

Given the complexities and conflict in the ASD literature, data-
driven techniques provide exploratory approaches that are appropriate
for identifying connectivity patterns, even in the absence of strong di-
rectional assumptions (Keown et al., 2017). To address these conflicting
reports, a data-driven approach that can extract the parts of functional
brain networks that encode resting states associated with altered pat-
terns of connectivity—and track their expression over time—is re-
quired. Such a capability would improve our understanding of those
patterns of brain networks that are significant for different groups of
ASDs and how these patterns change over time.

In this work, we identified four frequency-band-specific (δ, θ, α, and
β bands) patterns of functional brain networks associated with autistic
resting states using an unsupervised machine-learning technique known
as non-negative matrix factorization (NMF) (Lee and Seung, 1999). In
recent years, this new tool has been applied to identify time-varying
functional connectivity patterns in the brain (Marimpis et al., 2016).
Intuitively, NMF decomposes functional brain networks into the fol-
lowing: (1) a set of subnetworks (patterns) overlapping in space and
time and (2) corresponding coefficient time series that quantify the
contribution of each subnetwork (pattern) at each time point
(Chai et al., 2017; Khambhati et al., 2017, 2018a,b). One possible de-
finition for an EEG subnetwork—and the one that we use in this
study—is that it reflects the pattern of connectivity. This computational
tool allows us to track how groups of networks interacting across brain
areas are dynamically expressed during rest states. As compared to
hard-partitioning schemes, the advantage of this method is that it
provides information about brain-network dynamics in a continuous,
overlapping manner in space and time rather than in discrete partitions.
Furthermore, owing to the parts-based nature of the technique, we
obtained subnetworks that resembled the localized features of large-
scale brain networks rather than generalized patterns of the overall
network (Lee and Seung, 1999; Chai et al., 2017). Based on prior work
suggesting distance-dependent organization of brain networks into
local, function-specific interactions (characteristic of clusters and
modules (Rubinov and Sporns, 2010; Telesford et al., 2011)), we hy-
pothesize that subgraphs are selectively sensitive to functional inter-
actions over different distances. Specifically, we applied this technique
to a control group of early childhood neurodevelopmental autistic and
age-matched children to address the following hypotheses: the first
hypothesis considered autism to be characterized by long-range under-
connectivity (particularly in interhemispheric connections) potentially
combined with short-range over-connectivity, reflecting atypical de-
velopment of functional networks. The second hypothesis is that we
would find differences between groups (i.e., between autistic and
control children) in these canonical patterns of functional connectivity.
The third hypothesis is that there would be an age-related trend in the
measured patterns of connectivity, potentially owing to slight

differences in early childhood developmental trajectories between au-
tistic and control children.

2. Methods and materials

2.1. Participants

In this study, we collected EEG data from 256 children, including
115 children with ASD (age range 3–6 years old, mean age: 4.7 years,
SD: 1.53 years) and 141 age-matched typically developing (TD) con-
trols (age range: 3–6 years old, mean age: 4.85 years, SD: 1.47 years).
All children in the ASD group were recruited because they had a prior
diagnosis of ASD, according to the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-V) (Association, 2013). The re-
search protocol was approved by the ethics committee of Beijing
Normal University. Informed consent was obtained from all parents
before the start of the experiment. All protocols of this study conform to
the Declaration of Helsinki guidelines.

2.2. EEG collection and preprocessing

The EEG was continuously recorded from a 128-channel EEG system
(Electrical Geodesics Inc., Eugene, OR). Scalp impedance was checked
online via the Use Net Station (EGI, Inc.) and was maintained below
50kΩ. EEG data were referenced online to Cz and digitized at a sam-
pling rate of 1,000 Hz. Open-eyes resting-state EEGs were recorded for
at least 5 min. Children were instructed to sit comfortably and relax
during the recording and were usually accompanied by their caregiver
in a quiet room.

The resting-state EEG data were preprocessed offline using EEGLAB,
v14.0.0b (Delorme and Makeig, 2004) and MATLAB 2017b (Math-
works, Inc., USA). According to the 10-10 standard international
system, the same 62 electrodes were selected from the 128 channels of
the Geodesic Sensor Net (GSN) for all participants to ensure the
broadest spatial coverage of the whole brain (frontal, central, temporal,
and occipital). The data were re-referenced to a common average re-
ference and down-sampled to 512 Hz. A notch filter centered at 50 Hz
was applied to minimize line-noise artifacts, and the data were then
band-pass filtered (0.5–45 Hz). Independent component analysis (ICA)
was performed on cleaned data using FastICA (Rogasch et al., 2014) to
decompose 62 spatiotemporal features of the EEG-independent com-
ponents (EEG ICs), and then the corresponding blink/oculomotor,
muscle, or transient electrode artifacts were subtracted from the data
via visual inspection in terms of channel-based scalp topography mea-
sures and power spectral density (PSD) measures (median, variance,
and kurtosis). To ensure the quality of the resting-state data, the middle
portion of the EEG data (of 2 min duration) was used for subsequent
analysis, as it was less noisy than the entire time series. The EEG data
were then cut into 30 non-overlapping segments of 4 s each.

2.3. Time-varying network construction

After preprocessing the rest-state EEG data for each participant, we
obtained a 120-s time series from each electrode and divided it into 30
non-overlapping 4-s windows. Thereafter, we examined the time-
varying brain functional connectivity, for which the connectivity be-
tween all pairs of brain regions (i.e., channels or electrodes) was re-
quired to be estimated as a function of time and frequency using the
sliding-window technique (Cai et al., 2018). For each time window, we
measured functional connectivity between each pair of brain regions
based on the imaginary part of wavelet coherency within four fre-
quency bands: δ (2–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–30 Hz).

In this study, we only analyzed connectivity at the sensor level
owing to the lack of MRI data. Certain known limitations exist to scalp-
level analysis of functional networks (Colclough et al., 2016;
Brookes et al., 2014): (i) the locations of EEG channels are not related
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directly to the location of the underlying sources and (ii) spurious es-
timates of functional connectivity can possibly occur between channels
owing to the effects of field spread and volume conduction. To over-
come the problems of sensor-level connectivity, Stam et al. (2007) and
Nolte et al. (2004) came up with two methods—the phase lag index
(PLI) and the imaginary part of coherency, respectively. These methods
discard zero-lag connectivity and are, therefore, insensitive to volume
conduction. In this study, we adopted the imaginary part of coherency
(Nolte et al., 2004; Helfrich et al., 2016) based on wavelet transforms.
The main steps are detailed below.

Let xt and yt denote two stationary multivariate time series. The
continuous wavelet transforms, denoted as Xω and Yω, are defined as
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where b is a time index and a denotes the wavelet scale. The function ψ0
is chosen to be the complex Morlet wavelet:
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where the parameter ω0 governs the relative time and frequency re-
solution.
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denote complex-valued covariance matrices, where the super-
script‘*’denotes vector/matrix transposition and complex conjugation.
These matrices correspond to the wavelet cross-spectral density ma-
trices.

Subsequently, we use the imaginary part of the covariance matrices
to calculate general lagged coherence, proposed by Nolte et al. (2004),
with the zero-lag effect removed:

=Coherency
s

s s
Im( )

Im( )yxw

yyw xxw (7)

where syyw and sxxw denote pure real variances and syxw denotes the
complex-valued covariance, with the real and imaginary parts denoted
as Re(syxw) and Im(syxw), respectively.

For each participant, coherence values were stored in an N × N× T
connectivity tensor A, where N = 62 channels and T = 30 time win-
dows. Thereafter, these tensors were converted into matrices (vector-
izing the upper diagonal of each N × N connectivity matrix of a time
window). For real data with multiple participants, we built the matrix V
by concatenating the columns from all participants (from all conditions)
together to form a single time-varying network configuration matrix V.
This matrix V had dimensions = ×× −E TS,N N( 1)

2 where
S = 115 + 141 = 256 participants. These pooled neural data, which
facilitated network sharing by all participants could be identified
(Fig. 1A−E illustrates these matrices). In our weighted-network ana-
lysis, we retained and analyzed all possible connection weights between
nodes without applying any threshold. This matrix was then used as
input to the NMF algorithm and for subsequent processing (Fig. 1E, F).

2.4. Decomposing dynamic network into network patterns

To identify network patterns, we applied an unsupervised machine-

learning algorithm, NMF (Lee and Seung, 1999), to the constructed
time-varying network (Fig. 1D). This technique allowed us to pursue a
near-decomposition of the whole network into topological subnetworks
and the corresponding dynamically temporal coefficients (Fig. 1E, F).
Each pattern is an additive component of the original network,
weighted by its associated time-varying expression coefficient, and re-
presents a pattern of functional interactions between brain regions. The
NMF-based connectivity pattern learning paradigm is a basis decom-
position of a collection of dynamic networks that separates co-varying
network edges into subnetworks, or basis functions, with associated
temporal coefficients, or basis weights. Unlike other graph clustering
approaches that seek a hard partition of nodes and edges into clusters
(Mucha et al., 2010; Bassett et al., 2013), the temporal variability
coefficients provide a soft partition of the network edges, such that the
original functional network of any time window can be reconstructed
through a linear combination of all of the connectivity patterns
weighted by their associated temporal variability coefficients in that
time window (Leonardi et al., 2013; Leonardi et al., 2014). This com-
putation implies that at a specific time window, connectivity patterns
with a high temporal variability coefficient contribute their pattern of
functional interactions more than subgraphs with a low temporal
variability coefficient (Khambhati et al., 2018a).

Mathematically, NMF is a multivariate-decomposition technique
that approximates a data matrix V (here, of size E×M) as the product
of two non-negative matrices W and H. Next, we solved the matrix-
factorization problem V≈WH,W≥ 0,H≥ 0 by optimizing the fol-
lowing cost function:

= ⎧
⎨⎩
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≥ ≥
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where k∈ −min E T[2, ( , ) 1] is the number of patterns to decompose, β
is a penalty weight that enforces sparsity on the temporal variability
coefficients, and α is a regularization parameter that provides an upper
bound on the connection strengths within the patterns (Kim and
Park, 2011). To solve the NMF equation, we performed 100 iterations
using alternating non-negative least squares with the block-pivoting
method to quickly and efficiently decompose the original matrices
(Kim et al., 2014). We initialized W and H with non-negative weights
drawn from a uniform-random distribution on the interval [0, 1].

To select the parameters k, β, and α, we used a random-sampling
scheme, demonstrating effective optimization of high-dimensional
parameter spaces (Khambhati et al., 2018a; Bergstra and Bengio, 2012),
where we re-ran the NMF algorithm for 1000 parameter sets, where k
was randomly selected from 2 to 20, β was randomly selected from 0.01
to 1, and α was randomly selected from 0.01 to 1 (Fig. 2). We evaluated
subnetwork-learning performance based on a fivefold cross-validation
scheme. Iteratively, four folds were used to extract subnetworks and the
one fold left out was used to calculate the cross-validation error
( −V WHF

2). The optimal parameter set yielded subnetworks that mini-
mized the cross-validation error and reliably spanned the observed
network topology space (Khambhati et al., 2018a). Based on these
criteria, we chose an optimal parameter set (k̄, β̄, ᾱ) that yielded a low
residual error according to our scheme (Fig. 1G−I).

Owing to the non-deterministic nature of this approach, we in-
tegrated patterns estimates over multiple runs of the algorithm using
consensus clustering—a general method of testing robustness and sta-
bility of clusters over several runs of one or more non-deterministic
clustering algorithms (Monti et al., 2003). Our adapted consensus
clustering procedure involved the following steps: (i) run the NMF
approach R times on each network configuration matrix, (ii) con-
catenate the subnetwork matrix W across R runs into an aggregate
matrix with dimensions ×E R k( * ¯), (iii) apply NMF to the aggregate
matrix to determine a final set of subnetworks Wconsensus and the dy-
namic coefficient Hconsensus. In this study, we set R = 100.
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As a sanity check, we compared our NMF-based results of decom-
posing the α-band network with the classic and sparse NMF schemes
(Lee and Seung, 1999; Berry et al., 2007; Hoyer, 2004), which in theory
should provide very similar results. The results of this comparison are
displayed in Figure S2. Overall, the three NMF derivative approaches
yield very similar patterns. We evaluated their performance based on a
fivefold cross-validation scheme. The classification module classified
the feature vector, i.e., extracted six network components energy, using
the support vector machine (SVM) classifier to identify the children
with ASD (ASD vs TD). The classification accuracies of our NMF-based,
original NMF, and sparse NMF approaches are 72.5%, 70.1%, and
70.25%, respectively. The results reflect that the proposed NMF-based
approach performs better than the original and sparse NMF approaches.

2.5. Test-retest reliability of connectivity patterns

It is essential to consider the reproducibility of patterns measured
using NMF. To quantify the reproducibility of the connectivity patterns,
we measured the extent to which the pattern of the subgraph edge
weights measured in one dataset predicts the pattern of the subgraph
edge weights measured in a second dataset. Specifically, we first ap-
plied NMF using the optimal parameter set to two different datasets (V̂1

and V̂2), resulting in two subnetwork matrices (W1 and W2). It is noted
that the connectivity patterns along the columns of W1 may not ne-
cessarily be ordered similarly to the subgraphs along the columns of W2

because of the stochastic nature of the NMF algorithms. To reorder the
connectivity patterns from the second dataset such that they correspond
to the same order as the patterns from the first dataset, we sought a

Fig. 1. Flowchart of data processing. (A–B) In all, 128 channels of resting-state EEG signals were recorded, of which 62 channels were chosen and 120-s time series
were extracted and divided into 30 non-overlapping 4-s time windows. (C) We computed wavelet coherence between each pair of channels in each time window. (D)
Next, we unfolded matrices for each time window into column vectors and concatenated time windows from all participants. We then applied nonnegative matrix
factorization (NMF) algorithm, which decomposes concatenated matrix into matrix W of subnetworks (E) and matrix H of time-dependent coefficients (F) that
quantify activation of each subnetwork in each time window. (G–I) NMF-based subnetwork detection requires optimizing three parameters—number of subnetworks,
k; temporal sparsity of subnetwork expression, β; and regularization of subnetwork-edge weights, α. Kernel-density estimate of each bivariate distribution is re-
presented by contour plot, where darker shades of blue indicate higher probability mass of random-sampling distribution. The best parameter is average parameter
value that produces a cross-validation error at bottom of sample distribution and is indicated by green dashed line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Age-related differences in patterns of homotopic−interhemispheric connections. Among the 23 patterns of networks, four patterns were highlighted as
examples of age-related variation in network connectivity. For visualization, the thresholds of the subnetwork maps were set at the 90th percentile, and the
connections are depicted in a circular format. Significant differences for each age group in terms of the energy (middle panel) and temporal variability (denoted by
entropy; right panel) of the four patterns as well as statistical analysis of the two groups without considering age factors (inset) were observed. Only significant group
effects are marked. * indicates the network pairs with significant connectivity differences between groups (*, **, and *** indicate p< 0.05, p< 0.01, and p< 0.001,
respectively).
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mapping Xij of the subnetwork W i
1 to the subnetwork W j

2 , where X is a
Boolean matrix that prescribes whether the ith subnetwork from the
first dataset is uniquely assigned to the jth subnetwork from the second
dataset. The cost Ci, j associated with assigning W i

1 to W j
2 is equal to

−W Wi j
1 2 . To determine a unique X, we minimized the cost function

∑ ∑ Xi j i j, using the Hungarian algorithm (Kuhn, 1955). After calculating
an optimal assignment between the connectivity patterns of the two
datasets, we measured the similarity in the pattern of the edge weights
between the assigned subnetwork pairs (i, j) by calculating the Pearson
correlation coefficient (Khambhati et al., 2018a, b). This approach
would enable us to assess the reproducibility of each individual sub-
network based on the magnitude of the Pearson correlation similarity
measure relative to that expected by chance (Khambhati et al., 2018a).

2.6. Statistics

To track the time-varying changes in the expression or activation of
the subnetworks, we first calculated the signal energy of the time-de-
pendent coefficients for each subnetwork and child. Signal energy is
defined as ∑ = Hn

L
n1
2, where Hn is the activation coefficient in time

window and L is the length of the signal for a participant (Chai et al.,
2017). Second, to quantify the dynamic switching behavior of the
network component expression, we calculate the signal entropy of the
activation coefficient time series to characterize temporal variability.
The signal entropy is defined as ∑ −= P x P x( )log( ( )),i

L
i i1 where P(xi) is a

probability mass function on the activation coefficient computed using
the histogram-based entropy estimator (Nelson et al., 2010).

To facilitate between-subject comparisons, we standardized the
energy and entropy values for each subnetwork—we computed the
means of the time-dependent coefficients for each participant and each
network component and then divided all time-dependent coefficients
for each subject and each subnetwork by their respective means. A two-
way analysis of variance (ANOVA) was performed to evaluate the en-
ergy and entropy values in different bands, including the factor groups
(ASD, TD) and age (3–6 years), using Bonferroni's post-hoc test for
multiple comparisons between groups. The α-level of the significance
was set at 0.05. Furthermore, the Pearson correlation was calculated
between the energy (or entropy) values and age (3–6 years) to explore
the trajectory of brain development in early childhood. Only significant
group effects are reported. All statistical analyses and graphical re-
presentations were produced using GraphPad Prism 7.0 Software. Data
are expressed as mean± standard error unless otherwise specified.

3. Results

3.1. Extract patterns of connectivity from the resting-state EEG via NMF

To identify the patterns of resting-state connectivity network, we
first measured the resting-state EEG from a group of 115 children with
ASD and 141 age-matched typically developing controls (TD; Fig. 1A).
In particular, we selected 62 sensors of interest to ensure the maximum
spatial coverage of the frontal, central, temporal, and occipital regions
(Fig. 1B). We then constructed time-varying brain networks for each
participant, in which network nodes represented brain regions and
network edges between the nodes represented the wavelet-based co-
herence coefficient among the regional EEG time series (Fig. 1C).
Specifically, we computed a 62 × 62 adjacency matrix for each parti-
cipant within each EEG time window (corresponding to a 120-s time
series that was divided into 30 non-overlapping 4-s time windows) for
four specific-frequency bands (δ, θ, α, and β). This process resulted in
30 window-level adjacency matrices per participant. Finally, we ag-
gregated all functional brain networks into a network-configuration
matrix (Fig. 1D) with a size of 1891 × 7680. The first dimension of size
1891 corresponded to all unique, pairwise edges between the 62
channels; the second dimension of size 7680 corresponded to all com-
binations of the 30 repeated time windows and 256 participants.

To uncover the patterns of connectivity and their dynamic expres-
sions from group-level brain networks, we applied the NMF technique
to the network-constructed configuration matrix. This technique en-
abled us to pursue a parts-based decomposition of network edges into
additive functional subnetworks (i.e., patterns; Fig. 1E) with accom-
panying expression coefficients over time and over subjects (Fig. 1F)
(Chai et al., 2017; Khambhati et al., 2018a). Each subnetwork was
composed of a 62 × 62 adjacency matrix, and the expression coeffi-
cients of each subnetwork were composed of a vector of length 7680.
Thus, the subnetworks comprised the topological components of the
functional brain network, and the temporal coefficients quantified their
connection strengths and dynamic expressions over time.

A critical step in using NMF is the optimization of model parameters
that identify a robust set of connectivity patterns. We apply a random
sampling scheme to characterize the rich parameter space of the
number of subnetworks k, temporal sparsity of subnetwork expression
β, and regularization of subnetwork-edge weights α across the time-
varying networks of all participants to ensure the generalizability of
patterns without overfitting the model to the constructed configuration
matrix. In this paper, we only present the optimization results of the α-
band connectivity (Fig. 1G−I).

By designing a fivefold, leave-one-fold-out cross-validation scheme,
we measured the relationship between the fivefold cross-validation
error and each parameter k, α, and β (Fig. 1G−I). We observed a weak
relationship between the cross-validation error and temporal sparsity
(Pearson r = −0.15, p = 0.15). We also observe a significant increase
in cross-validation error as the subnetwork regularization parameter
(Pearson r = 0.36, p < 0.001). Similarly, we observe a significant
positive relationship between the cross-validation error and number of
subnetworks (Pearson r = 0.66, p < 1× −10 16).

Collectively, these results suggest a potential strategy for choosing
parameters that achieve a balance between the spatial and temporal
generalizability and specificity of the subgraphs. Therefore, we aver-
aged the randomly sampled parameters associated with the lowest 25%
cross-validation error and found the optimal number of subnetworks to
be six, the temporal sparsity to be 0.65, and the regularization of the
subnetwork edge weights to be 0.45 (Fig. 1G−I). Thus, we performed
parameter optimization on four frequency-band-specific con-
nectivity−configuration matrices (Table 1). The results presented a
near-linear increase in the number of patterns with increasing band-
width from the δ to β bands. These results can be explained by the fact
that a wider bandwidth yields a greater capacity to hold information
and, thus, results in a larger number of patterns. To summarize, 23
patterns of connectivity were identified in the autistic group-level EEG
data over four frequency-band-specific connectivity patterns (patterns
A–D for δ connectivity, patterns E–I for θ connectivity, patterns J–O for
α connectivity, patterns P–W for β connectivity). We then visualized the
resulting adjacency matrices as circular-ring graphs (Figure S1). The
pairwise correlation matrix between the spatial topology of network
components identified with NMF in four specific frequency bands is
displayed in Figure S3. Overall, the four frequency-band-specific net-
work components are similar. The α-band-specific network components
were topologically more similar than the other frequency-based coun-
terparts. The autocorrelation of spatial topology is on the diagonal.

Next, we considered the time-varying expression of patterns across

Table 1
Result of parameter optimization on four frequency-band-specific con-
nectivity−configuration matrices.

Frequency band δ θ α β
(2–4 Hz) (4–8 Hz) (8–13 Hz) (13–30 Hz)

k 4 5 6 8
α 0.82 0.84 0.65 0.62
β 0.42 0.5 0.45 0.42
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individuals. To measure how strongly a pattern was expressed over time
windows, we computed the energy of pattern expression for the tem-
poral coefficients of each pattern for each participant. Similarly, to
measure how transiently the pattern was expressed, we also computed
the temporal variability of pattern expression using a histogram esti-
mator. We then statistically compared the energy and temporal varia-
bility of pattern expression between the group of 114 autism children
and the group of 141 typically developing children (Table S1). The
development trajectory of all connectivity patterns was evaluated in
Table S2.

3.2. Homotopic interhemispheric patterns

We first analyzed the homotopic interhemispheric-connection pat-
terns, as they offered a relatively simple yet robust subset of brain
connectivity. The homotopic interhemispheric pattern is defined as
interhemispheric connectivity between homologous areas.
Interhemispheric connections were apparent between the bilateral
temporal lobes across four frequency bands (Fig. 2). We observed that
in the α-band connectivity pattern (pattern K), the energy at different
ages displayed a significant decreasing trend in the ASD group com-
pared to the TD group (see Table S1), indicating an under-connectivity
in the homotopic interhemispheric-connection patterns in ASD. In the
θ-band connectivity pattern (pattern I), the energy was significantly
lower in the ASD group compared to the TD group at the ages of 3
(p < 0.05) and 4 (p < 0.05). However, in the δ- and β-band con-
nectivity patterns (patterns B and Q), we found no significant differ-
ences in energy between the groups (ASD vs TD) across all ages. We
then considered the time-varying expression of subnetworks—or sub-
network dynamics—across individuals. In the four frequency-band
connectivity patterns, a slightly decreasing trend of temporal variability
was observed in the ASD group, but this did not reach statistical sig-
nificance. The results suggest that the α rhythms are preferentially as-
sociated with the interaction processes involving homotopic inter-
hemispheric connections.

Fig. 3 illustrates group differences between ASD and TD children in
subnetwork energy in different age groups, demonstrating differences
in early childhood developmental trajectories of interhemispheric
connectivity. In Fig. 3, the homotopic interhemispheric pattern of the
ASD group displays a significant trend of increasing network energy
with age in the δ band (pattern B; r = 0.24, p = 0.0075) and α band
(pattern K; r=0.18, p=0.03), whereas the trends were not found to be
significant in the TD group (pattern B; r=0.15, p=0.06; pattern K;
r=0.12, p=0.13). In the θ-band-based pattern I and β-band-based
pattern Q, the TD group illustrated a weak correlation between sub-
network energy and age (pattern I; r=0.05, p=0.5; pattern Q;
r=0.11, p=0.17); a similar trend was observed in the ASD group.

Taken together, the control group exhibited a faster rate of incre-
mental increases in interhemispheric connectivity during early child-
hood development compared to that of the ASD group. Particularly, the
α-band connectivity exhibited the largest developmental significant
difference in terms of long-range interhemispheric connections; ASD-
related abnormalities in the α band have been reported fairly con-
sistently and, thus, may represent a biomarker of ASD (Han et al.,
2017). Interesting relationships might be hypothesized linking this
potential initial under-connectivity with the early abnormal develop-
ment of the brain in ASD individuals.

3.3. Heterotopic interhemispheric and intrahemispheric patterns

The heterotopic interhemispheric connection was considered as a
characteristic distortion of idiosyncratic connectivity. To address this
question, we compared heterotopic interhemispheric-connectivity pat-
terns and intrahemispheric-connectivity patterns of autistic and control
children across four frequency bands (Fig. 4). The heterotopic inter-
hemispheric pattern is defined as interhemispheric connectivity

between heterogeneous areas. Extending our findings of idiosyncratic
connectivity, the ASD group demonstrated a consistent reduction in
long-range heterotopic interhemispheric-connectivity patterns in com-
parison to that of the control groups (e.g., patterns A, C, E, N, and U). In
δ-band connectivity patterns (pattern A), the energy was significantly
lower in ASD group compared to that in the TD group at ages of 3, 4,
and 5, whereas the δ-band connectivity pattern C displayed no sig-
nificant difference between the groups. Similarly, in the θ-band con-
nectivity pattern E, the energy illustrated a significant decreasing trend
in the ASD group compared to the TD group. The same phenomenon
was evident in terms of the connectivity within the bilateral short-range
hemispheric patterns (e.g., patterns L and O). These qualitative as-
sessments of patterns of connectivity reveal a generally heterotopic
bilateral and lateralized organization across hemispheres. These results
indicate that ASD is characterized by heterotopic interhemispheric
patterns.

In addition to the significant difference in connection strength, we
also observed a significant difference between the groups in terms of
the temporal variability (denoted by the entropy value) of the patterns
A, C, E, and U, which represent lateralized long-range interhemispheric
connections. Specifically, temporal variability was higher in the control
group, suggesting that there was a higher tendency for these patterns to
change over time in the controls compared to that in ASD children.
Conversely, the patterns of α-band connectivity—including the short-
range, within-frontal lobe (pattern L), within-occipital lobe (pattern O),
and prefrontal−occipital junction in both hemispheres (pattern
N)—were not significantly different between the two groups and were
less prone to change.

Fig. 5 depicts group differences between ASD and TD children in
subnetwork energy at different ages. Pattern L comprised relatively
dense connectivity, including both short-range, within-frontal-lobe and
longer, between-frontal-lobe connections. The strength of pattern L
followed a weak increasing trend with age in the TD group (r=0.09,
p=0.28). However, the ASD group reflected an opposite trend with
respect to age in the α band (r=−0.07, p=0.4). Similar trends in
connectivity were seen for the pattern O, which comprised relatively
dense connectivity that included both short-range, within-occipital-lobe
and longer, between-occipital-lobe connections. The strength of pattern
O followed a weak increasing trend with age in the TD group (r=0.03,
p=0.65), whereas the opposite trend was observed in the ASD group
(r=−0.04, p=0.64). Interestingly, the variance in pattern U in the
ASD group appears to be nearly zero (approximately 0.1); meanwhile,
there was a significance difference (p < 0.001) in variance between
groups (ASD vs TD). A significant decreasing trend was observed for the
TD group (r=−0.04, p=0.64). Pattern U appears to be an early brain
development network pattern sensitive to typically developing chil-
dren, which may be useful for tracking development trajectory.

3.4. Generalization of short-range connectivity patterns

Thus far, we have established that the interhemispheric-con-
nectivity patterns were more under-connected in the ASD group com-
pared to those of the control group. However, it is also possible that
there were common patterns of short-range connectivity in ASD groups
across the four frequency bands of connectivity. Indeed, the patterns of
over-connectivity within the ASD group have been identified in α-band
and β-band connectivities (Fig. 6; patterns M and S). These matura-
tional patterns appeared to differ in the ASD group from lower fre-
quencies (δ and θ bands) to higher frequencies (α and β bands), as the
short-range over-connectivity patterns were only observed in higher
frequency bands (α and β bands). An interesting relationship may be
hypothesized, linking this potential initial over-connectivity with the
early overdevelopment of the brain in ASD (Courchesne et al., 2011,
2007) and the early maturation of white-matter tracts previously re-
ported in young children with ASD (Bashat et al., 2007; Weinstein et al.,
2011; Billeci et al., 2012). Some recent evidence suggests that
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seemingly divergent under- and over-connectivity findings in ASD may
be reconciled in a model of reductions, both in network integration
(under-connectivity within neurotypical networks) and in network
differentiation or segregation (over-connectivity with atypical regions
outside neurotypical networks) (O'Reilly et al., 2017).

Fig. 7 depicts a linear correlation of network energy with age in
patterns M and S. We did not observe a clear developmental trajectory
in patterns M and S. Specifically, the TD group illustrated a slight in-
creasing trend of energy with age in pattern M (r=0.05, p=0.54),
whereas the opposite trend was observed in the ASD group (r=−0.04,
p=0.65).

4. Discussion

Using novel dynamic machine-learning techniques that decompose
matrices into time-varying subnetworks, we studied how dynamic
patterns altered and evolved with early childhood development in a
group of 115 children with ASD and 141 age-matched typically de-
veloping controls. Considerable changes occurred in the patterns of

functional brain networks during an early stage of neurodevelopment.
We demonstrated that the homotopic interhemispheric patterns of
resting-state connectivity in the ASD participants were significantly
decreased relative to those in the control children. Moreover, we
compared heterotopic interhemispheric-connectivity patterns as well as
within-hemisphere connectivity patterns of the autistic and control
participants. The ASD group demonstrated a consistent reduction in
long-range connectivity in comparison to that of the control group in
terms of heterotopic interhemispheric-connectivity patterns. Finally,
we observed a pattern of over-connectivity in the ASD group in terms of
α-band and β-band connectivities.

4.1. Functional connectivity via resting-state EEG

Resting-state brain networks have revealed architectures closely
related to underlying anatomical connections (Deco and
Corbetta, 2011). The notion of globally coordinated and dynamically
competing resting-state networks directly motivates studies that can
identify overlapping cognitive systems and explain and predict their

Fig. 3. Development of homotopic interhemispheric subnetwork properties of ASD group (red) and TD group (blue) at each frequency band. Scatter plot depicting
correlation between age and network energy in each frequency band. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

T. Zhou, et al. NeuroImage: Clinical 26 (2020) 102251

8



Fig. 4. Age-related differences in patterns of heterotopic−interhemi-
spheric connections. The following seven patterns were highlighted as
examples of age-related variation in the heterotopic−interhemi-
spheric network across four frequency-band-specific con-
nectivities—patterns A and C for δ-band connectivity; pattern E for θ-
band connectivity; patterns L, N, and O for α-band connectivity; and
pattern U for β-band connectivity. Significant differences for each age
group in terms of the energy (middle panel) and entropy (right panel)
of the four patterns as well as statistical analysis of the two groups
without considering age factors (inset) were observed. * indicates
network pairs with significantly different connections between groups
(*, **, and *** indicate p < 0.05, p < 0.01, and p < 0.001, respec-
tively).

T. Zhou, et al. NeuroImage: Clinical 26 (2020) 102251

9



dynamics (Chai et al., 2017).
Previous work in spatially and temporally overlapping community

detection has uncovered cohesive structures in resting-state brain net-
works (Fortunato, 2010). In the present study, we employed an NMF
approach, which identifies the subnetworks of a brain network that
dynamically vary across participants and across time, to obtain the
connectivity for each subject in each time window as a nonnegative
combination of basis subnetworks (Chai et al., 2017; Eavani et al.,
2013). NMF offers prominent advantages over other dynamic graph-
modeling approaches. First, the non-negativity constraint means that
subnetworks can be interpreted as additive components, which together
form the original network. Second, NMF does not make any explicit
assumptions (including orthogonality or independence) with respect to
the resulting subnetworks, which provides extra flexibility in extracting
network components that may correspond to brain processes that
overlap spatially (Khambhati et al., 2018c). Third, compared with the
hard-partitioning of nodes into discrete modules in dynamic-commu-
nity detection, NMF pursues a soft-partitioning of the network and al-
lows one to track how functionally interacting brain areas can be dy-
namically expressed in a continuous and overlapping manner
(Khambhati et al., 2018a).

Thus, from the perspective of network-based encoding of the ASD-
related networks, we observed salient connectivity patterns in resting-
state EEG data acquired from a group of 115 children with ASD and 141
age-matched typically developing controls.

4.2. Abnormal connectivity patterns in ASD

Our study revealed that the ASD group was characterized by short-
range over-connectivity and long-range under-connectivity, particu-
larly in interhemispheric connections. Both aberrant intrahemispheric
and interhemispheric connectivity was observed, with a general trend
toward under-connectivity, but with probable local short-range over-
connectivity as well. Long-range under-connectivity was observed in
lower frequency bands, which we hypothesized to be preferentially
involved in long-range integrative networks (Figs. 2 and 4), whereas a
stronger tendency for over-connectivity was observed (see Fig. 6) in
higher frequency bands (hypothesized to be generally associated with
more localized processes).

Our present finding regarding the frequency-band-based modula-
tion of over- versus under-connectivity is consistent with that of slower
oscillators involving more neurons in larger volumes (Von Stein and

Fig. 5. Development of heterotopic interhemispheric and intrahemispheric patterns of ASD group (red) and TD group (blue). Scatter plot illustrating correlation
between age and network energy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Sarnthein, 2000). Indeed, coordination of faster frequency required
lager axons for any particular distance between two regions. Based on
this fact, sharing a short range of high-frequency-band activity is more
efficient for bias connectivity, whereas long-range interactions are

required for lower frequency bands. Several studies have recently re-
ported that high EEG frequencies are preferentially associated with
more localized neural activity, whereas slower rhythms (δ, θ) are pre-
ferentially associated with more widespread integrative cross-region

Fig. 6. Age-related differences in generalized patterns of localized connections. Following two patterns are highlighted as examples of age-related variation in
localized network across four frequency-specific bands of connectivity: pattern M for α-band connectivity and pattern S for β-band connectivity. Significant dif-
ferences for each age group in terms of the energy (middle panel) and entropy (right panel) of the four patterns as well as statistical analysis of the two groups without
considering age factors (inset) were observed. * indicates network pairs with significantly different connections between groups (*, **, and *** indicate p < 0.05,
p < 0.01, and p < 0.001, respectively).

Fig. 7. Development of local connectivity patterns of ASD group (red) and TD group (blue). Scatter plot depicting correlation between age and network energy. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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interaction processes that involve long-range connections. The syn-
chronization of short-range cortical networks tend to be associated with
higher frequencies (α, β) (Uhlhaas and Singer, 2010; Von Stein et al.,
2000). These recent findings are consistent with our present results.

4.3. Neurodevelopmental changes in salient connectivity patterns

Considerable changes in the patterns of functional brain networks
occur throughout neurodevelopment. The modularity of brain struc-
tures evolve with age, as does inter-regional connectivity
(Meunier et al., 2009). Several studies (Teipel et al., 2009) have re-
ported a correlation between EEG α-band coherence and the structural
integrity of white matter and the fact that the connections among
resting-state networks strengthen with age (Betzel et al., 2014). Con-
sistent with these findings, we observed age-related differences in the
strength and flexibility of the α-band patterns between autistic and
control children. Specifically, the α-band patterns of interhemispheric
homotopic long-range connections (pattern K) displayed the largest
developmental differences. Interesting relationships may be hypothe-
sized between the α-band interhemispheric long-range connections and
neurodevelopment to link this pattern with ASD-related idiosyncratic
early childhood development markers.

Group differences were observed in the developmental trajectories
of specific brain connectivity patterns. With respect to the brain con-
nectivity pattern that may display the largest developmental differ-
ences, our findings demonstrated that interhemispheric connectivity
patterns are particularly vulnerable to ASD. In general, our findings
demonstrated an age-dependent ASD connectivity pattern with inter-
hemispheric long-range under-connectivity and local short-range over-
connectivity. This observation is supported by findings from several
past studies—a delay in the onset of axonal remodeling could drive
brain overgrowth; thus, short-distance connections are favored over
long-distance connections via typical developmental mechanisms
(Lewis et al., 2013; Lewis and Elman, 2008).

4.4. Limitations

The present work had some limitations. First, we analyzed only
sensor-level signals, which suffer from the effects of spatial leakage. In
addition, the estimation of connectivity between sensors may be diffi-
cult to interpret, which prompted us to adopt source-level connectivity
with the NMF algorithm. There are several advantages of source space
projection in connectivity assessment (Schoffelen and Gross, 2009).
First, the results can be overlaid directly onto structural brain images,
enabling direct interpretation with respect to underlying anatomy.
Second, source localization (via adaptive techniques such as beam-
forming) reduces artifacts in M/EEG data, indicating that the signal-to-
noise ratio (SNR) of projected data is higher than the SNR of raw data in
channel space (Lai et al., 2018). This suggests to us that the combina-
tion of source-level connectivity and NMF could be complementary and
provides a tool for analyses of cortical communication patterns from the
EEG.

Moreover, the ICA-based artifact-rejection technique that we used
may have distorted the network topology we obtained. ICA is widely
regarded as a robust and powerful method for artifact removal from
EEG data and has recently received increasing attention
(Castellanos and Makarov, 2006; Zafar et al., 2019). However, during
subtraction (ICA is a linear operation applied to all sensors) of an ar-
tifactual waveform from segments of artifactual data, several challenges
are encountered: (a) it is unclear what part of the artifactual waveform
is artifact and what part is signal, (b) ICA does not completely remove
the entire signal from any channel, even if the entire signal was arti-
factual, (c) ICA contaminates other channels with the artifactual com-
ponent, and (d) ICA applies the same transformation throughout the
recording and, therefore, mixes the non-artifactual time segments using
the same spatial coefficients computed for that component. Therefore,

ICA should only be applied to artifacts such as eyeblink, muscle, and
cardiac rhythms that persist throughout the recording. Future studies
should elucidate the effects of ICA artifact rejection on subsequent
connectivity and network analyses.

5. Conclusions

We applied a novel extracting-dynamic-network framework for
uncovering a set of interpretable patterns that highlighted significant
group-level differences between ASD and control children. Our results
support the framework that ASD is characterized by a general trend
toward a long-range under-connectivity of lower band frequencies,
particularly for interhemispheric connections, combined with short-
range over-connectivity. These results provide a context for more
clearly understanding how early childhood developmental factors in-
duce ASD-related abnormalities in brain connectivity throughout early
childhood development.

Few studies have investigated individual variability within ASD and
neurodevelopmental status. Hence, future studies must pay more at-
tention to individually distinct (idiosyncratic) distortions in partici-
pants with ASD. Further, the EEG analyses of ASD individuals typically
involve the computation of spectral power over predefined frequency
bands (i.e., 2–4 Hz for θ, 4–8 Hz for δ, 8–13 Hz for α, and 13–30 Hz for β
bands). In fact, these frequency bands change over time and among
participants, particularly in children. In future work, individual fre-
quency bands must be considered. Moreover, our NMF approach may
provide invaluable insights on a variety of other neurodevelopmental
disorders such as schizophrenia and attention-deficit hyperactivity
disorder.

CRediT authorship contribution statement

Tianyi Zhou: Conceptualization, Methodology, Software, Writing -
original draft. Jiannan Kang: Data curation. Fengyu Cong:
Methodology. Dr. Xiaoli Li: Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors state that they have no conflict of interest.

Acknowledgements

The authors are extremely thankful to the anonymous reviewers for
their helpful suggestions for improving the manuscript and to Zheng Li
for language editing. This research was supported by grants from the
National Natural Science Foundation of China (grant no. 61761166003)
and the National Key R&D Program of China (grant no.
2016YFC1306203).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.nicl.2020.102251.

References

Anagnostou, E., Taylor, M.J., 2011. Review of neuroimaging in autism spectrum dis-
orders: what have we learned and where we go from here. Mol. Autism 2, 4.

Association, A.P., 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®).
American Psychiatric Pub.

Bashat, D.B., Kronfeld-Duenias, V., Zachor, D.A., Ekstein, P.M., Hendler, T., Tarrasch, R.,
et al., 2007. Accelerated maturation of white matter in young children with autism: a
high b value DWI study. Neuroimage 37, 40–47.

Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Mucha, P.J., 2013.
Robust detection of dynamic community structure in networks. Chaos 23, 013142.

Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., Webb,
S.J., 2004. Autism and abnormal development of brain connectivity. J. Neurosci. 24,
9228–9231.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J. Mach.

T. Zhou, et al. NeuroImage: Clinical 26 (2020) 102251

12

https://doi.org/10.1016/j.nicl.2020.102251
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0001
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0001
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0002
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0003
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0003
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0003
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0004
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0004
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0005
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0005
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0005
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0006


Learn. Res. 13, 281–305.
Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J., 2007. Algorithms

and applications for approximate nonnegative matrix factorization. Comput. Stat.
Data Anal. 52, 155–173.

Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., Sporns, O., 2014. Changes in structural
and functional connectivity among resting-state networks across the human lifespan.
Neuroimage 102, 345–357.

Billeci, L., Calderoni, S., Tosetti, M., Catani, M., Muratori, F., 2012. White matter con-
nectivity in children with autism spectrum disorders: a tract-based spatial statistics
study. BMC Neurol. 12, 148.

Bos, D.J., van Raalten, T.R., Oranje, B., Smits, A.R., Kobussen, N.A., van Belle, J., et al.,
2014. Developmental differences in higher-order resting-state networks in Autism
Spectrum Disorder. NeuroImage 4, 820–827.

Brookes, M.J., O'Neill, G.C., Hall, E.L., Woolrich, M.W., Baker, A., Corner, S.P., et al.,
2014. Measuring temporal, spectral and spatial changes in electrophysiological brain
network connectivity. Neuroimage 91, 282–299.

Brown, C., Gruber, T., Boucher, J., Rippon, G., Brock, J., 2005. Gamma abnormalities
during perception of illusory figures in autism. Cortex 41, 364–376.

B. Cai, G. Zhang, A. Zhang, J. M. Stephen, T. W. Wilson, V. D. Calhoun, et al., "Capturing
dynamic connectivity from resting state fMRI using time-varying graphical lasso,"
IEEE Trans. Biomed. Eng., 2018.

Castellanos, N.P., Makarov, V.A., 2006. Recovering EEG brain signals: artifact suppres-
sion with wavelet enhanced independent component analysis. J. Neurosci. Methods
158, 300–312.

Chai, L.R., Khambhati, A.N., Ciric, R., Moore, T.M., Gur, R.C., Gur, R.E., et al., 2017.
Evolution of brain network dynamics in neurodevelopment. Netw. Neurosci. 1,
14–30.

Colclough, G.L., Woolrich, M.W., Tewarie, P., Brookes, M.J., Quinn, A.J., Smith, S.M.,
2016. How reliable are MEG resting-state connectivity metrics? Neuroimage 138,
284–293.

Courchesne, E., Campbell, K., Solso, S., 2011. Brain growth across the life span in autism:
age-specific changes in anatomical pathology. Brain Res. 1380, 138–145.

Courchesne, E., Pierce, K., Schumann, C.M., Redcay, E., Buckwalter, J.A., Kennedy, D.P.,
et al., 2007. Mapping early brain development in autism. Neuron 56, 399–413.

Deco, G., Corbetta, M., 2011. The dynamical balance of the brain at rest. Neuroscientist
17, 107–123.

Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J. Neurosci. Methods 134,
9–21 2004/03/15/.

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., et al., 2014. The
autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic
brain architecture in autism. Mol. Psychiatry 19, 659.

Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., et al., 2011.
Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218–1225.

H. Eavani, T. D. Satterthwaite, R. E. Gur, R. C. Gur, and C. Davatzikos, "Identifying
patterns in temporal variation of functional connectivity using resting state FMRI," in
2013 IEEE 10th International Symposium on Biomedical Imaging, 2013, pp. 1086-
1089.

Fortunato, S., 2010. Community detection in graphs. Phys. Rep. 486, 75–174.
Geschwind, D.H., Levitt, P., 2007. Autism spectrum disorders: developmental dis-

connection syndromes. Curr. Opin. Neurobiol. 17, 103–111 2007/02/01/.
Hahamy, A., Behrmann, M., Malach, R., 2015. The idiosyncratic brain: distortion of

spontaneous connectivity patterns in autism spectrum disorder. Nat. Neurosci. 18,
302.

Han, J., Zeng, K., Kang, J., Tong, Z., Cai, E., Chen, H., et al., 2017. Development of brain
network in children with autism from early childhood to late childhood.
Neuroscience 367, 134–146.

Helfrich, R.F., Knepper, H., Nolte, G., Sengelmann, M., König, P., Schneider, T.R., et al.,
2016. Spectral fingerprints of large‐scale cortical dynamics during ambiguous motion
perception. Hum. Brain Mapp. 37, 4099–4111.

Hoyer, P.O., 2004. Non-negative matrix factorization with sparseness constraints. J.
Mach. Learn. Res. 5, 1457–1469.

Hughes, J.R., 2007. Autism: the first firm finding= underconnectivity? Epilepsy Behav.
11, 20–24.

Just, M.A., Cherkassky, V.L., Keller, T.A., Minshew, N.J., 2004. Cortical activation and
synchronization during sentence comprehension in high-functioning autism: evi-
dence of underconnectivity. Brain 127, 1811–1821.

Kana, R.K., Uddin, L.Q., Kenet, T., Chugani, D., Müller, R.-A., 2014. Brain connectivity in
autism. Front. Hum. Neurosci. 8, 349.

Keown, C.L., Datko, M.C., Chen, C.P., Maximo, J.O., Jahedi, A., Müller, R.-A., 2017.
Network organization is globally atypical in autism: a graph theory study of intrinsic
functional connectivity. Biol. Psychiatry 2, 66–75.

Khambhati, A.N., Bassett, D.S., Oommen, B.S., Chen, S.H., Lucas, T.H., Davis, K.A., et al.,
2017. Recurring functional interactions predict network architecture of interictal and
ictal states in neocortical epilepsy. eNeuro 4.

A. N. Khambhati, A. E. Kahn, J. Costantini, Y. Ezzyat, E. A. Solomon, R. E. Gross, et al.,
"Predictive control of electrophysiological network architecture using direct, single-
node neurostimulation in humans," bioRxiv, 2018.

Khambhati, A.N., Mattar, M.G., Wymbs, N.F., Grafton, S.T., Bassett, D.S., 2018b. Beyond
modularity: fine-scale mechanisms and rules for brain network reconfiguration.
NeuroImage 166, 385–399.

Khambhati, A.N., Medaglia, J.D., Karuza, E.A., Thompson-Schill, S.L., Bassett, D.S.,
2018a. Subgraphs of functional brain networks identify dynamical constraints of
cognitive control. PLoS Comput. Biol. 14, e1006234.

Khambhati, A.N., Sizemore, A.E., Betzel, R.F., Bassett, D.S., 2018c. Modeling and inter-
preting mesoscale network dynamics. NeuroImage 180, 337–349 2018/10/15/.

Kim, J., He, Y., Park, H., 2014. Algorithms for nonnegative matrix and tensor factoriza-
tions: a unified view based on block coordinate descent framework. J. Glob. Optim.
58, 285–319.

Kim, J., Park, H., 2011. Fast nonnegative matrix factorization: an active-set-like method
and comparisons. SIAM J. Sci. Comput. 33, 3261–3281.

Kuhn, H.W., 1955. The Hungarian method for the assignment problem. Naval Res. Logist.
Q. 2, 83–97.

Lai, M., Demuru, M., Hillebrand, A., Fraschini, M., 2018. A comparison between scalp-and
source-reconstructed EEG networks. Sci. Rep. 8, 1–8.

Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix fac-
torization. Nature 401, 788.

Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Schluep, M., et al.,
2013. Principal components of functional connectivity: a new approach to study
dynamic brain connectivity during rest. NeuroImage 83, 937–950.

Leonardi, N., Shirer, W.R., Greicius, M.D., Van De Ville, D., 2014. Disentangling dynamic
networks: separated and joint expressions of functional connectivity patterns in time.
Hum. Brain Mapp. 35, 5984–5995.

Lewis, J.D., Elman, J.L., 2008. Growth‐related neural reorganization and the autism
phenotype: a test of the hypothesis that altered brain growth leads to altered con-
nectivity. Dev. Sci. 11, 135–155.

Lewis, J.D., Theilmann, R.J., Fonov, V., Bellec, P., Lincoln, A., Evans, A.C., et al., 2013.
Callosal fiber length and interhemispheric connectivity in adults with autism: brain
overgrowth and underconnectivity. Hum. Brain Mapp. 34, 1685–1695.

Marimpis, A.D., Dimitriadis, S.I., Adamos, D.A., Laskaris, N.A., 2016. NNMF connectivity
microstates: a new approach to represent the dynamic brain coordination. Front.
Neuroinf. 10.

Meunier, D., Achard, S., Morcom, A., Bullmore, E., 2009. Age-related changes in modular
organization of human brain functional networks. Neuroimage 44, 715–723.

Minshew, N.J., Keller, T.A., 2010. The nature of brain dysfunction in autism: functional
brain imaging studies. Curr. Opin. Neurol. 23, 124–130.

Monti, S., Tamayo, P., Mesirov, J., Golub, T., 2003. Consensus clustering: a resampling-
based method for class discovery and visualization of gene expression microarray
data. Mach. Learn. 52, 91–118.

Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P., 2010. Community
structure in time-dependent, multiscale, and multiplex networks. Science 328,
876–878.

Müller, R.-A., 2014. Anatomical and functional connectivity in autism spectrum dis-
orders. Comprehensive Guide to Autism. pp. 49–75.

Murias, M., Webb, S.J., Greenson, J., Dawson, G., 2007. Resting state cortical connectivity
reflected in EEG coherence in individuals with autism. Biol. Psychiatry 62, 270–273.

Nelson, S.M., Cohen, A.L., Power, J.D., Wig, G.S., Miezin, F.M., Wheeler, M.E., et al.,
2010. A parcellation scheme for human left lateral parietal cortex. Neuron 67,
156–170.

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M., 2004. Identifying true
brain interaction from EEG data using the imaginary part of coherency. Clin.
Neurophysiol. 115, 2292–2307.

O'Reilly, C., Lewis, J.D., Elsabbagh, M., 2017. Is functional brain connectivity atypical in
autism? A systematic review of EEG and MEG studies. PLoS ONE 12, e0175870.

Raichle, M.E., 2009. A paradigm shift in functional brain imaging. J. Neurosci. 29,
12729–12734.

Rogasch, N.C., Thomson, R.H., Farzan, F., Fitzgibbon, B.M., Bailey, N.W., Hernandez-
Pavon, J.C., et al., 2014. Removing artefacts from TMS-EEG recordings using in-
dependent component analysis: importance for assessing prefrontal and motor cortex
network properties. Neuroimage 101, 425–439.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 52, 1059–1069.

Schoffelen, J.M., Gross, J., 2009. Source connectivity analysis with MEG and EEG. Hum.
Brain Mapp. 30, 1857–1865.

Stam, C.J., Nolte, G., Daffertshofer, A., 2007. Phase lag index: assessment of functional
connectivity from multi channel EEG and MEG with diminished bias from common
sources. Hum. Brain Mapp. 28, 1178–1193.

Teipel, S.J., Pogarell, O., Meindl, T., Dietrich, O., Sydykova, D., Hunklinger, U., et al.,
2009. Regional networks underlying interhemispheric connectivity: an EEG and DTI
study in healthy ageing and amnestic mild cognitive impairment. Hum. Brain Mapp.
30, 2098–2119.

Telesford, Q.K., Simpson, S.L., Burdette, J.H., Hayasaka, S., Laurienti, P.J., 2011. The
brain as a complex system: using network science as a tool for understanding the
brain. Brain Connect. 1, 295–308.

Thai, N.J., Longe, O., Rippon, G., 2009. Disconnected brains: what is the role of fMRI in
connectivity research? Int. J. Psychophysiol. 73, 27–32.

Uddin, L.Q., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Feinstein, C., et al., 2013.
Salience network–based classification and prediction of symptom severity in children
with autism. JAMA Psychiatry 70, 869–879.

Uhlhaas, P.J., Singer, W., 2010. Abnormal neural oscillations and synchrony in schizo-
phrenia. Nat. Rev. Neurosci. 11, 100.

Von Stein, A., Chiang, C., König, P., 2000. Top-down processing mediated by interareal
synchronization. Proc. Natl. Acad. Sci. 97, 14748–14753.

Von Stein, A., Sarnthein, J., 2000. Different frequencies for different scales of cortical
integration: from local gamma to long range alpha/theta synchronization. Int. J.
Psychophysiol. 38, 301–313.

Weinstein, M., Ben‐Sira, L., Levy, Y., Zachor, D.A., Itzhak, E.B., Artzi, M., et al., 2011.
Abnormal white matter integrity in young children with autism. Hum. Brain Mapp.
32, 534–543.

Zafar, R., Qayyum, A., Mumtaz, W., 2019. Automatic eye blink artifact removal for EEG
based on a sparse coding technique for assessing major mental disorders. J. Integr.
Neurosci. 18, 217–229.

T. Zhou, et al. NeuroImage: Clinical 26 (2020) 102251

13

http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0006
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0007
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0007
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0007
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0008
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0008
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0008
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0009
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0010
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0010
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0010
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0011
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0011
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0011
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0012
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0012
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0013
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0013
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0013
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0014
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0014
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0014
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0015
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0015
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0015
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0016
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0016
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0017
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0017
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0018
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0018
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0019
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0019
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0019
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0020
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0020
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0020
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0021
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0021
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0022
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0023
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0023
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0024
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0024
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0024
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0025
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0025
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0025
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0026
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0027
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0027
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0028
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0028
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0029
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0029
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0029
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0030
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0030
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0031
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0032
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0032
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0032
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0033
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0033
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0033
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0034
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0034
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0034
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0035
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0035
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0036
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0036
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0036
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0037
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0037
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0038
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0038
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0039
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0039
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0040
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0040
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0041
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0041
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0041
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0042
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0042
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0042
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0043
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0043
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0043
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0044
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0044
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0044
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0045
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0045
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0045
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0046
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0046
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0047
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0047
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0048
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0048
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0048
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0049
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0049
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0049
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0050
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0050
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0051
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0051
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0052
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0052
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0052
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0053
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0053
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0053
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0054
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0054
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0055
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0055
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0056
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0056
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0056
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0056
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0057
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0057
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0058
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0058
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0059
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0059
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0059
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0060
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0060
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0060
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0060
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0061
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0061
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0061
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0062
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0062
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0063
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0063
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0063
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0064
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0064
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0065
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0065
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0066
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0066
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0066
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0067
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0067
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0067
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0068
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0068
http://refhub.elsevier.com/S2213-1582(20)30088-7/sbref0068

	Early childhood developmental functional connectivity of autistic brains with non-negative matrix factorization
	Introduction
	Methods and materials
	Participants
	EEG collection and preprocessing
	Time-varying network construction
	Decomposing dynamic network into network patterns
	Test-retest reliability of connectivity patterns
	Statistics

	Results
	Extract patterns of connectivity from the resting-state EEG via NMF
	Homotopic interhemispheric patterns
	Heterotopic interhemispheric and intrahemispheric patterns
	Generalization of short-range connectivity patterns

	Discussion
	Functional connectivity via resting-state EEG
	Abnormal connectivity patterns in ASD
	Neurodevelopmental changes in salient connectivity patterns
	Limitations

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References




