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Abstract

Motivation: Analyzing genome wide association data in the context of biological pathways helps

us understand how genetic variation influences phenotype and increases power to find associ-

ations. However, the utility of pathway-based analysis tools is hampered by undercuration and reli-

ance on a distribution of signal across all of the genes in a pathway. Methods that combine gen-

ome wide association results with genetic networks to infer the key phenotype-modulating

subnetworks combat these issues, but have primarily been limited to network definitions with yes/

no labels for gene-gene interactions. A recent method (EW_dmGWAS) incorporates a biological

network with weighted edge probability by requiring a secondary phenotype-specific expression

dataset. In this article, we combine an algorithm for weighted-edge module searching and a prob-

abilistic interaction network in order to develop a method, STAMS, for recovering modules of

genes with strong associations to the phenotype and probable biologic coherence. Our method

builds on EW_dmGWAS but does not require a secondary expression dataset and performs better

in six test cases.

Results: We show that our algorithm improves over EW_dmGWAS and standard gene-based ana-

lysis by measuring precision and recall of each method on separately identified associations. In the

Wellcome Trust Rheumatoid Arthritis study, STAMS-identified modules were more enriched for

separately identified associations than EW_dmGWAS (STAMS P-value 3.0 � 10�4; EW_dmGWAS-

P-value ¼ 0.8). We demonstrate that the area under the Precision-Recall curve is 5.9 times higher

with STAMS than EW_dmGWAS run on the Wellcome Trust Type 1 Diabetes data.

Availability and Implementation: STAMS is implemented as an R package and is freely available at

https://simtk.org/projects/stams.

Contact: rbaltman@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Genome wide association studies (GWAS) are chronically under-

powered because they interrogate millions of positions in the gen-

ome. In order to overcome the multiple testing burden, such

analyses require either very large cohorts or a reduced number of

tests performed. One way to reduce the number of tests is to aggre-

gate the genetic information from the single nucleotide polymorph-

ism (SNP) level to the gene level, reducing the number of tests from

�1 000 000 to �20 000. However, in cases when it is too expensive

or impossible to collect a large sample (e.g. a very rare phenotype),

aggregation to the gene level may not be enough. Our group

(Daneshjou et al., 2014) and others (Compared in Fehringer et al.,

2012) have shown that aggregating GWAS to the pathway level is

useful for analyzing underpowered GWAS and finding associations

between groups of genes and a phenotype. These pathway methods

provide insights into biological function.

The pathway approach has two major shortcomings. First, our

present curation of genes into pathways covers only a small fraction

of the genes that we measure. Second, most of the curated pathways

are not designed to analyze GWAS. For instance, a metabolism path-

way may contain mostly genes with no SNPs (due to stabilizing se-

lection) but also one or two genes with significant variation. All of

the genes are important to the metabolism, and so are considered

part of the ‘pathway’, but only a couple have GWAS signal. In cases

like this, traditional pathway analysis cannot identify the entire

pathway as significantly associated, because the noise dilutes the

few genes with signal.

‘Dense module searching’, originally proposed for expression

studies in 2002 (Ideker et al., 2002), has become a popular analysis

method for analyzing genome-wide measurements. By overlaying

gene-based P-values on a graph of known biological interactions

and identifying clusters of connected genes that have an enrichment

of signal, dense module searching isolates clusters of concentrated

signal within biologically related genes. These clusters range in size

from two genes to complete pathway-level associations without

requiring predefined pathway lists. Like traditional pathway ana-

lysis techniques, dense module searching leverages known biological

relationships to aggregate measured information. Unlike traditional

pathway analysis techniques, such as Gene Set Enrichment Analysis

(Subramanian et al., 2005; Wang et al., 2007), or Gene Ontology

enrichment (Ashburner et al., 2000; Beissbarth and Speed, 2004),

dense module searching identifies clusters of biologically related

genes that have the most enrichment for signal without requiring

distribution of signal across all of the genes in a predefined list.

Several researchers have published improvements to Ideker’s ori-

ginal algorithm. Nacu et al. (2007) proposed a different search tech-

nique, and made improvements to module scoring including control

for multiple testing. Chuang et al. (2007) presented DMS, a method

that uses a greedy search within a local neighborhood and incorpor-

ates three different kinds of significance testing to output modules.

They demonstrate that significant modules in breast cancer gene ex-

pression data are better predictors of metastasis than individual

markers. Based on DMS, Jia et al. (2011, 2012) built dmGWAS, the

first GWAS-specific R-based tool that allows users to easily incorp-

orate dense module searching into their GWAS analysis workflow.

dmGWAS uses a greedy search heuristic that iteratively adds nearby

genes to a module if the P-value of the considered gene improves the

aggregate score by an appreciable amount (r) and is described fur-

ther in Sections 2.1.4 and 2.1.5. However, all of these methods are

limited to searching on a network with yes/no edge labels, and there-

fore prone to error due to false negative or false positive edges.

Recently published Edge-Weighted_dmGWAS (EW_dmGWAS)

(Wang et al., 2015) allows users to input a co-expression matrix in

order to weight edges in the input network before module searching.

This is the first time that edge weights have been incorporated into

dense module searching and allows the user to include information

about a) the strength of evidence that two genes interact and/or b)

the strength of the interaction itself. Wang et al. demonstrate that

the addition of edge weight information is valuable by comparing

EW_dmGWAS performance on the GAIN schizophrenia GWAS to

both standard dmGWAS (Jia et al., 2011), and GiGa (Breitling

et al., 2004). Although phenotype-specific co-expression measure-

ments may not be practical in every study, and many types of biolo-

gical relationships are missed in co-expression analysis of

eukaryotes, the expansion of the algorithm to incorporate edge

weights improved performance of their algorithm, and creates an

opportunity for exploring different kinds of gene-gene interaction

weighting schemes.

The STRING database (Franceschini et al., 2012) aggregates

gene-gene and protein-protein interactions into a network, with

edges scored for their confidence. STRING combines informa-

tion from co-expression analysis, databases such as MIPS (Pagel

et al., 2005), high-throughput experiments such as Chromatin

Immunoprecipitation, phylogenetic co-occurrence, conservation

of the genetic neighborhood (in prokaryotes), and literature co-

occurrence. Associations are assigned a confidence score based

on benchmarking groups of associations against KEGG

(Kanehisa and Goto, 1999) pathways and generally correspond

to the probability of finding the linked proteins within the same

KEGG path. Although many other networks are available,

STRING is notable because it consolidates many important inter-

action networks, has edge confidence scores based on a probabil-

istic framework, is very popular with more than 3000 citations,

and is easily usable with R.

In this article, we present a method, STAMS, which incorporates

general edge weights such as those provided by STRING, the search

tool from EW_dmGWAS, and a new significance ranking method.

STAMS allows users to use the edge-weighted searching of

EW_dmGWAS without needing co-expression data. The resulting

modules have high confidence biological relatedness and strong asso-

ciations with phenotype. By leveraging the biological relationships in

STRING, STAMS identifies modules that are more highly replicated

in independent studies than standard analysis with a gene-based

P-value or EW_dmGWAS with a phenotype-specific co-expression

dataset.

2 Methods

2.1 STAMS
As shown in Figure 1, STAMS uses two kinds of input data: an inter-

action network with edge confidence scores, and gene-based P-val-

ues from a GWAS or other genome-wide experiment. These two

data sources are integrated into a single graph with both node and

edge weights. STAMS searches for high scoring modules using a

greedy search, and then ranks the modules using a score normaliza-

tion procedure.

2.1.1 STAMS: underlying STRING network data

STAMS uses the human STRING database, version 9.1, and the

STRINGdb R-plugin (Franceschini et al., 2012) as the underlying

network. For each run of STAMS, we choose one of the eight edge

types published by STRING. The confidence scores from each of the
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eight types are on the interval [0–1000], and generally correlate with

the probability of finding two genes with that edge type within the

same KEGG pathway. The shape of the distribution varies widely by

edge type.

i. Neighborhood (31 550 edges): A confidence level based on

how often the two genes are repeatedly in close neighborhood

in prokaryotic genomes. The median confidence is 169; mean

confidence is 181.

ii. Fusion (1070 edges): A confidence level based on the number

of times that the genes fuse in different species. Median confi-

dence is 6; mean confidence is 77.5.

iii. Co-ocurrence: (11 654 edges): A confidence level based on the

number of times the two proteins co-occur in different species.

Median confidence is 152; mean confidence is 159.

iv. Coexpression (534 720 edges): A confidence level based on

how much the genes are co-expressed across species. Median

confidence is 185; mean confidence is 231.

v. Experimental (197 709 edges): A confidence level based on

protein interaction data from protein-protein interaction data-

bases, e.g. MIPS. Median confidence is 266; mean confidence

is 349.

vi. Database (126 374 edges): A confidence level based on protein

interaction groups from curated databases, e.g. Reactome

(Croft et al., 2010). Median confidence is 899; mean confi-

dence is 867.

vii. Textmining (text) (1 150 456 edges): A confidence level based

on protein interaction groups extracted from abstracts and

open source full texts of scientific literature. Median confi-

dence is 201; mean confidence is 244.

viii. Combined score (CS) (1 684 531 edges): These scores are com-

bined as if they are independent data sources:

ConfidenceðeÞ ¼ 1000 � ð1�
Y7

i¼1
ð1� cðeiÞ=1000ÞÞ

where ci(e) is the confidence level of the edge according to data type

i. Median confidence is 229; mean confidence is 319.

2.1.2 STAMS specific: edge weights

We transform the confidence levels from STRING into edge weights

for the graph. To easily utilize the EW_dmGWAS search function,

we defined edgeweight(e) ¼ u�1(confidence(e)/1000) where u�1 is

the inverse Cumulative Distribution Function (CDF) (quantile func-

tion) of the normal distribution, resulting in an approximately

standard normal distribution of edge weights.

2.1.3 STAMS specific: node weights

We transform the gene-level P-values into node weights. In order to

make direct comparisons to EW_dmGWAS, and to directly apply

the search function from EW_dmGWAS, we defined nodeweight as

nodeweight(v) ¼ u�1(1–P) where P denotes the gene-based P-value

of the node v.

2.1.4 STAMS: scoring

With the node weights and edge weights as described earlier, the

searching and scoring functions from EW_dmGWAS were used

without alteration. Briefly, the module score is defined by:

s ¼ k

P
e2EedgeweightðeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

No: of E
p þ 1� k½ �

P
v2VnodeweightðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

No: of V
p

where E and V represent the edges and nodes of the module, and k is

a parameter between 0 and 1 that balances edge-weight and GWAS

signals. We used the default permutation-based approach from

EW_dmGWAS for choosing k.

2.1.5 STAMS: searching

We used the greedy searching function from EW_dmGWAS without

alteration. Briefly:

i. Assign a seed module M and calculate the module score S(M) of

M. Initially, the seed module is a single gene.

ii. Examine all of the first-order neighbors of M, and identify the

neighbor node Nmax that generals the maximum increment of

the module score.

iii. Add Nmax to the current module M if the score increment is

greater than S(M) � r, where r is a parameter that decides the

magnitude of the increment. We used r ¼ 0.1.

iv. Repeat steps 1–3 until no more neighbors can be added.

2.1.6 STAMS specific: normalization of module score

For each module, we calculate a background distribution of 100

000 randomly generated modules by permuting the node weights.

Lambda and the edge weights remain the same as the observed mod-

ule. We calculate the mean l and standard deviation r of the 100

000 scores. For a candidate module with score S(M), the normalized

score is SN(M) ¼ (S(M)�l)/r. Modules are ranked by SN. An empir-

ical P-value is calculated as the fraction of permuted scores that

meet or exceed the observed score.

Fig. 1. The workflow overview of STAMS. STAMS overlays GWAS gene-

based P-values on a graph of gene–gene interaction confidence scores from

the STRING database. In the resulting graph, circular nodes represent genes

with size proportional to 1� (P-value) of the gene’s individual association

with the phenotype. Graph edges are edges from the STRING database,

weighted with confidence scores calculated by STRING. Using a search based

on EW_dmGWAS, STAMS identifies modules of genes that have high biolo-

gical coherence and an enrichment of GWAS signal

STRING-assisted module search for GWAS and application 3817
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2.2 Validation of STAMS
We validated STAMS on six GWAS from the Wellcome Trust Case

Control Consortium (WTCCC) (Burton et al., 2007), and the GAIN

schizophrenia data set.

2.2.1 Calculating gene-level GWAS P-values

SNP P-values for six of the WTCCC GWAS data sets were calcu-

lated by using PLINK (Purcell et al., 2007) to count alleles and then

calculating P-values with built in chi-squared test from R. For the

GAIN schizophrenia data, SNP P-values from European Americans

were downloaded from dbGAP. Gene-based P-values for all seven

data sets were calculated with VEGAS (Liu et al., 2010) using de-

fault settings. VEGAS P-values are simulation-based, so in cases

where VEGAS reported P ¼ 0, we substituted P ¼ 1/(number of

simulations) which may overestimate some P-values. The P-values

from VEGAS were approximately uniform on the interval (0,1).

2.2.2 Replication in subsequent studies using knowngenes list

To demonstrate that STAMS identifies genes that have true biolo-

gical associations with the phenotype, we tested whether the identi-

fied modules were enriched for genes with independently identified

associations. For each phenotype, we downloaded all of the reported

phenotype-specific gene associations in the genome.gov GWAS cata-

log, except those found in the discovery datasets, into a list, denoted

as knowngenes. The catalog contains hits with P-value < 1.0 �
10�5 in the initial þ replication population from English language

publications of new GWAS data measuring at least 100 000 SNPs.

Fisher’s exact test was used to measure enrichment of the genes in

the top 1% of STAMS-identified modules for genes on the known-

genes list. We calculated Precision (true positives � number of

STAMS-identified genes) and Recall (true positives � number of

knowngenes) of STAMS alongside a standard VEGAS þ Bonferroni

and VEGAS þ FDR analyses with corrected P-value � 0.05.

2.2.3 Comparison of STAMS and EW_dmGWAS on six WTCCC

datasets and the GAIN schizophrenia data set

In order to demonstrate the performance improvements in STAMS

over EW_dmGWAS, we used both methods to analyze seven data-

sets. We performed standard EW_dmGWAS of (Wang et al., 2015),

software version 3.0, dated April 10, 2014) with phenotype-specific

expression datasets for type 1 diabetes (T1D), bipolar disorder (BD),

rheumatoid arthritis (RA), coronary artery disease (CAD), type 2

diabetes (T2D), hypertension (HT) and the GAIN schizophrenia

data. See Supplementary Materials.

2.2.4 Precision and recall of STAMS and EW_dmGWAS

in reduced datasets

To demonstrate the performance of STAMS with under-powered

datasets, we created datasets using the full control samples and var-

ied the percentage of case patients by randomly selecting 20–100%

of the cases each time in 20% increments (non-progressively). We

compared the Precision/Recall curves of STAMS performed on these

lower-powered datasets to the curve generated by using the full data

set. The gold standard in this analysis was the list of genes that met

genome-wide significance in the full dataset.

2.3 Application of STAMS to autism fGWAS
We analyzed an autism GWAS with STAMS. The cohort consisted

of 654 probands from the Autism Genetic Resource Exchange

(AGRE) and 1593 unselected controls from the iControl data set,

both genotyped on the Illumina HumanHap550v3 [The data

selection criteria are described further in Geschwind et al. (2001)].

The data (AGRE/iControl) were restricted to 1945 individuals of

western European decent based on results from multidimensional

scaling conducted using PLINK. SNPs with minor allele frequency <

0.01, Hardy-Weinberg equilibrium P-values < 0.001, genotype mis-

singness > 0.02, and differential missingness between cases and con-

trols > 0.01 were excluded. After these quality control measures,

511 483 SNPs remained. We imputed with HapMAP3 R2 Build 36

and MACHv1, resulting in a total of 1.38M SNPs.

For each SNP, we did a logistic regression with the genotype and

the top four principal components as covariates. We constructed

gene-level annotations that included expression quantitative trait

loci (eQTLs) previously identified in the parietal cortex (GSE35978)

and the cerebellum (GSE35978) as well as coding variants (non-

sense, frameshift and missense) within the gene. The P-values for

each SNP from its regression were filtered based on their function—

eQTLs, non-sense, missense and frameshift SNPs were included and

all other SNPs were dropped from the model. For each gene, the test

statistic Y was calculated as:

Y ¼
XL

i¼1
log ðPiÞ

where L is number of SNPs that are annotated to the gene. To con-

trol for linkage disequilibrium, we permuted the phenotype labels in

order to generate an empirical null distribution for the test statistic.

Empirical gene-level P-values were then obtained by calculating the

proportion of test statistics from the null distribution that met or ex-

ceeded the test statistic from the associated set of results. These P-

values were the input to the STAMS algorithm.

3 Results

Figure 2 demonstrates that STAMS identifies modules with better

enrichment for knowngenes than EW_dmGWAS. We analyzed six

Wellcome Trust datasets and the GAIN schizophrenia dataset with

STAMS and EW_dmGWAS. Figure 2 compares the negative log of

the P-value for Fisher’s exact tests of modules for enrichment with

independently identified knowngenes for the six phenotypes with

signal. Neither STAMS nor EW_dmGWAS identified modules with

enrichment for knowngenes in the HT dataset. Since Wang et al.

(2015) suggest using the top 1% of modules returned by

EW_dmGWAS for further study, we compared the top 1% of mod-

ules returned by each method. In all six phenotypes with signal, the

Textmining edge set with STAMS gave the best enrichment, fol-

lowed by the CS edge set with STAMS. The other six edge modal-

ities in STRING did not perform as well, and are compared in

Figure 5. We also ran EW_dmGWAS using the PINA interaction

network on the schizophrenia data as described in Wang et al.

(2015) and the results were substantially consistent with the

EW_dmGWASþ STRING results presented here.

Figure 3 plots precision and recall of STAMS with the

Textmining edge set against knowngenes alongside EW_dmGWAS,

a standard gene-based test (VEGAS) with Bonferroni correction,

and VEGAS with an FDR correction. STAMS and EW_dmGWAS

parameters (number of considered modules) were set such that their

precision roughly matches that of the gene-based tests of T1D.

STAMS is plotted with 75 top modules; EW_dmGWAS is plotted

with 25 top modules. STAMS with Textmining edges has universally

better performance than EW_dmGWAS, and in two phenotypes has

better performance than standard gene-based analyses. We present

the Precision/Recall for a corrected P-value of 0.05 because it is a
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commonly used cutoff in the literature. See Supplementary Figure S2

for the full Precision/Recall curves.

In BD with 75 modules, STAMS identified 12 knowngenes that

were not individually significant. These genes include two small

clusters of STRING-connected genes (GLT8D1, SPCS1, NDUFAB1;

ITIH3, ITIH1, HNRNPC, NEK4, CACNA1C, PBRM1). The re-

maining genes were not connected to other knowngenes. In T2D,

STAMS identified 11 knowngenes that were not individually signifi-

cant. Nine of them were connected to each other in STRING

(ZFAND6, ZBED3, IGF2BP2, HHEX, FTO, TSPAN8, CSKN2B,

CDKAL1, HNF1B).

Figure 4 demonstrates that STAMS with Textmining edges re-

covers more of the genome-wide significant genes in the original

dataset than EW_dmGWAS, even when using only 20% of the pa-

tient’s data. It also shows that STAMS performance is maintained in

a reduced sample size. Performance of STAMS on T1D is better

than on RA due to the strong edge weights between genes in the

HLA region, many of which have known T1D associations.

Figure 5 shows the variability in performance of STAMS across

six WTCCC disorders and different types of edge sets from

STRING. The Experimental, Database, Textmining, and CS edge

sets are heavily enriched for knowngenes while the Fusion edges,

which are based on the number of times that two genes fuse across

species, are not. Many edge types perform well on T1D, while none

perform well for HT.

Figure 6 shows a top-scoring module from the AGRE autism

fGWAS. The module includes an individually non-significant gene,

CTTNBP2 (gene-based P-value ¼ 0.2) with known rare-variant aut-

ism associations. The other genes in this module are part of the

STRIPAK complex. CTTNBP2 and STRIPAK interact to regulate

dendritic spinogenesis. This module was chosen for discussion be-

cause it is the best scoring module (rank ¼ 91) that contains a gene

from the high confidence rare-variant associations in (DeRubeis et

al., 2014). Its empirical P-value based on 1 million node-label per-

mutations is 0.001905.
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Fig. 2. Performance comparison of STAMS with EW_dmGWAS for six pheno-

types. We pooled the genes in the top 1% of modules from each analysis and

measured enrichment for genes reported in independent GWAS for each

phenotype (knowngenes) using Fisher’s exact test. We plot the �log10 of the

P-value so that taller bars indicate better enrichment
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selected subpopulations of patients to include and show that performance of

STAMS with CS edges decreases when fewer patients are included. We also

ran EW_dmGWAS with expression data for edge weights, and show its per-

formance. (A) shows results for RA and (B) shows results for T1D
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Fig. 5. STAMS performance varies over different edge data sources and dis-

orders. We ran STAMS on the subsets of edges in STRING that were curated

in each edge-set modality as summarized in Methods. We pooled the genes

from the top 1% of modules returned and measured enrichment for known-

genes with Fisher’s exact test. The �log10 of the P-value of is plotted
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Normalization improves module selection
The normalization function described in section 2.1.6 improves

module detection. As shown in Supplementary Figure S1, the

STAMS normalization function identifies modules that are more en-

riched for knowngenes than either the EW_dmGWAS normalization

function, or ranking the output modules by the raw scores.

4 Discussion

In this article, we show that using the multimodal edge weights from

the STRING database improves the performance of EW_dmGWAS

while eliminating the need for a secondary phenotype-specific ex-

pression dataset. We demonstrate this improved performance in sev-

eral ways. We compare STAMS performance to EW_dmGWAS on

two gold standards: genes that were identified in independent stud-

ies (knowngenes) and genes that were individually significant in the

full dataset. We show that STAMS demonstrates high precision and

recall on knowngenes and recovers more of the disease genes even

with only 20% of the patients as input data.

The results from all GWAS analysis techniques are dataset de-

pendent. We presented results on seven datasets in order to demon-

strate the range of STAMS performance across varying levels of

signal. In all datasets (excluding low-signal HT), STAMS performs

better than EW_dmGWAS. In two out of five WTCCC GWAS,

STAMS has notably better performance than a gene-based test with

a Bonferroni correction. For T1D, the recall of STAMS is better

than the recall of VEGAS with a Bonferroni correction, but lower

than recall of VEGAS with an FDR correction. In BD and T2D,

STAMS has dramatically better precision and recall than either

gene-based test. In RA and CAD, the performance of STAMS and

the gene-based tests are comparable.

In BD and T2D, where STAMS identified genes that standard

analysis techniques missed, the genes were found clustered together.

The improvement of recall by STAMS shows that the addition of

interaction data identifies genes that would otherwise be missed in

an underpowered study, even though they are true associations. The

improvement of precision demonstrates that the genes that belong to

clusters of biologically related high-scoring genes are more likely to

be validated in independent studies than genes that have individual

genome-wide significance in a single study.

When we examine STAMS and EW_dmGWAS precision and re-

call on the genes that were individually genome-wide significant in

the full dataset, we predictably see that both methods fail to recover

some of the individually significant hits. Both methods rely on

strong gene-gene interactions to identify modules, so neither method

detects genes that have strong individual signal but no neighbors

with good P-values, which are detectable by single-gene based tests.

However, STAMS maintains nearly full levels of precision and recall

even with fewer patients included. As the P-values for genes (based

on patient data) become less significant, the edge weights from

STRING remain constant, stabilizing STAMS performance in the

reduced power datasets. In T1D, the strong edge weights between

members of the HLA region allows STAMS to perform well on only

20% of the patient data. Performance of STAMS on the reduced-

power datasets from RA shows nearly full precision and recall using

60% (n ¼ 1116 cases) or more of the patient data. These data indi-

cate the utility of STAMS to rescue important gene associations that

would otherwise be missed due to lack of power. Finding ways to in-

crease power without requiring larger sample sizes is mandatory in

some cases. For instance, in some rare drug events and populations,

researchers have collected every known example, and are still under-

powered to find associations. By demonstrating that STAMS has

high precision and recall of significant genes even as less and less in-

put data are used, we have demonstrated its utility for identifying

candidate genes in a small GWAS.

When comparing the performance of STAMS using different

types of edges, we find that edges created from Textmining give the

best performance on the knowngenes in four out of the six WTCCC

phenotypes. However, STAMS on the CS edges outperforms the

Textmining edges on Precision/Recall of individually significant

genes (CS shown in Fig. 4, Textmining data not shown). We suspect

that this is due to the greater number of edges in the CS set than the

Textmining set, which allows more genes to be identified. Unlike the

knowngenes validation list, the individually significant genes may or

may not be replicated in other studies. Many of the edge modalities

(Fusion, Co-expression, Co-occurance, Neighborhood) had poor

performance across phenotypes. We were not surprised to learn that

these edges, based on prokaryotic features or cross-species features,

were less useful than the edge-sets created from eukaryotic protein–

protein interaction databases (Experimental, Database). We tried

combining some of the top-performing edge modalities into new

edge scores, but the results were not better than Textmining alone.

We recommend that researchers use the Textmining and/or CS edge

modalities.

Notably, the STAMS performance correlates with number of

edges included in a modality. As shown in Figure 5, the best per-

forming edge modalities are the ones that contain the most edges. In

Supplementary Figure S4, we illustrate STAMS performance as

edges are randomly dropped or added to the input graph. Although

performance drops as edges are removed, STAMS performance is

not as sensitive to the added edges, indicating that it is robust to

false-positive gene–gene links.

The utility of the Textmining based edges to find replicable re-

sults demonstrates the power of natural language processing (NLP)

for curating biomedical knowledge. The edges currently in STRING

Fig. 6. STAMS-identified module from autism GWAS. A high-scoring autism

module from AGRE fGWAS is plotted with input gene-based P-values listed

in the nodes. Line width corresponds to CS edge confidence, but are all very

high confidence (z-scores range from 1.43 to 3.09). The module contains

CTTNBP2; rare loss of function mutations in CTTNBP2 have been associated

with autism. The other genes in the module are members of the STRIPAK

complex. CTTNBP2 interacts with STRIPAK to regulate dendritic spinogensis,

a proposed mechanism for autism
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are based on two genes or proteins co-occurring in PubMed

abstracts or open- source articles. As NLP techniques improve to

include sentence parsing and modeling of more complicated gene–

gene relationships, this edge set will get less noisy and identifying

modules based on it will improve.

We should acknowledge that the publications mined could in-

clude those about the GWAS that we used for validation or candi-

date gene studies based on the initial WTCCC results. These

articles may have listed the GWAS hits or candidate genes listed in

the abstract, thus creating links between the hits in the STRING

database. With those links, the modules containing the GWAS hits

are easier to find. However, given the large corpus of PubMed ab-

stracts, and the normalization calculations in STRING, we suspect

that the contamination by publications about our validation set is

very small.

We improved on the significance testing and module-ranking al-

gorithm of EW_dmGWAS by considering permutations of node

weights over a fixed network topology. With randomly selected net-

work topology and connectivity used in permutations as

EW_dmGWAS does, the background scores are almost certainly

underestimated since they may not have connecting edges at all. By

keeping the edges fixed, we focus on whether the weights of the

nodes in the module are significant. Although we ranked the mod-

ules differently, we agree with the authors of EW_dmGWAS that se-

lecting the top 1% of modules for further investigation, although

seemingly arbitrary, works well in practice. This was demonstrated

by our validation against independently associated GWAS hits.

However, because there are several ways to measure significance for

dense modules, we do not rely heavily on the calculated P-value.

With only summary statistics rather than genotype data, the P-val-

ues calculated in neither STAMS nor EW_dmGWAS measure how

associated the module is with the phenotype. Instead, the current im-

plementations measure how densely clustered the high-scoring genes

are in the network. In order to get a more complete picture of signifi-

cance, one would have to permute the case/control labels on the

GWAS data and redo the searching under those permutations to cre-

ate a null distribution. We suggest that users use the P-value to rank

modules and identify candidate modules for follow up study through

permutation of case/control labels, or orthogonal biological

methods.

In our application to autism, we show that analyzing a common-

variant GWAS with STAMS identifies a module with a known rare-

variant association, demonstrating the power of STAMS to converge

on true biological associations. Rare loss of function mutations in

CTTNBP2, also known as CORTBP2, have been associated with

autism (Cheung et al., 2001; Sanders et al., 2015) but have not been

reported in common-variant autism GWAS to date. The module

also has overlapping genes with other gene groups presented in the

autism literature. Six of the genes overlap with neocortical develop-

ment coexpression modules from Parikshak et al. (2013) (PPP2R5C,

PPP2CB are M4; CTTNBP2 is M2; TCP1 and CCT6A are in M14;

PPP2R2C is in M16). Additionally, PP2R1A was also classified by

Hormozdiari et al. (2010) and as being part of two modules which

are enriched for de novo mRNA mutations in autistic probands,

Epilepsy and ‘M3: Extended autism spectrum disorder and intellec-

tual disability’. None of the genes in the module overlap with the

copy number variation modules identified by the NETBAG method

of Gilman et al. (2011).

Many of the edges in the identified autism module come from

the STRIPAK complex described by Goudreault et al. (2009). They

used an iterative affinity purification/mass spectrometry approach to

characterize the diversity of protein phosphotase 2A (PP2A)

complexes. The protein products of PPP2R1A, PPP2R1B, STRN,

PPP2R5C, PPP2CB, PPP2R2C, CCT6A and TCP1 are all compo-

nents of the STRIPAK assembly. STRIPAK interacts with

CTTNBP2, which targets the assembly to dendritic spines and where

it regulates dendritic spinogenesis. Since CTTNBP2’s association

with autism may be explained by problems in the regulation of den-

dritic spinogenesis (Chen et al., 2012), it follows that mutations in

members of the STRIPAK complex, which is also part of this pro-

cess, may be associated with autism through the same mechanism.

STAMS reveals meaningful association of the STRIPAK complex

and this possible mechanism for autism by analyzing the GWAS

data within its biological context.

STAMS is limited by the underlying search mechanisms pre-

sented in EW_dmGWAS. Notably, the search is entirely greedy,

which means that genes with small contributions to the score have

no chance of being added to a module, even if they provide a link to

a higher-scoring gene. Several other dense module-searching meth-

ods exist which incorporate non-greedy searching (Ideker et al.,

2002; Nacu et al., 2007; Wang et al., 2015) and the expansion of a

non-greedy search method to include edge weighting would likely

outperform STAMS in some cases.

STAMS, like other gene-based methods, is also limited by includ-

ing only SNPs that are mapped to genes. In our application to aut-

ism, we incorporated SNPs that are known eQTLs for genes into the

gene-based score, but there are still many measured SNPs for which

data are ignored. Expanding gene definitions to include more intra-

genic SNPs may help. However, some individual SNPs and genes

will remain undiscoverable by STAMS, so we recommend running

STAMS as a complement to SNP-based and gene-based analysis

techniques.

Our validation method, which uses genes from independent

GWAS that have SNP that meets a cutoff of P-value < 1.0 � 10�5 in

the initial þ replication population is more relaxed than most

genome-wide SNP significance criteria. Although 1.0 � 10�5 is a

reasonable cutoff for a gene-based test, the results might change

with a stricter validation list based on a P-value < 1.0 � 10�8 cutoff,

which is more typical of a SNP study.

There may be ways to improve these edge sets by making

them more phenotype or tissue specific. For instance, augmenting

the base STRING edge set with extra edges from phenotype-specific

co-expression data, or up-weighting edges in STRING that have

phenotype- or tissue-specific expression may increase performance.

With the evaluation framework that we present in this article, one

could determine whether this kind of added information is useful.

Understanding GWAS hits in the context of their biological

interactions gives insight into mechanism of action. However,

most dense module searching approaches rely on yes/no edge clas-

sification, which creates errors due to arbitrary cutoffs for edge

scores. As shown by comparison to their older binary edge algo-

rithm, the inclusion of edge weights into the search algorithm of

EW_dmGWAS eliminates these errors and makes the algorithm

more robust. We have shown that using the STRING confidence

scores, along with appropriate changes to score normalization, im-

proves the performance of dmGWAS even further. We provide an

R-package, STAMS, that integrates the STRINGdb package, the

EW_dmGWAS search function, and the STAMS-specific score

normalization and allows users to easily perform this analysis on

their gene-based P-values with the edge types of their choosing.

We are also happy to share our reusable validation and evaluation

suite. This suite represents the first systematic way to evaluate and

compare dense module searching methods and parameter choices

across a range of GWAS.
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