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Lysosomes are ubiquitous intracellular organelles that have an
acidic internal pH, and play crucial roles in cellular clearance.
Numerous functions depend on normal lysosomes, including
the turnover of cellular constituents, cholesterol homeostasis,
downregulation of surface receptors, inactivation of patho-
genic organisms, repair of the plasma membrane and bone
remodeling. Lysosomal storage disorders (LSDs) are character-
ized by progressive accumulation of undigested macromole-
cules within the cell due to lysosomal dysfunction. As a
consequence, many tissues and organ systems are affected,
including brain, viscera, bone and cartilage. The progressive
nature of phenotype development is one of the hallmarks of
LSDs. In recent years biochemical and cell biology studies of
LSDs have revealed an ample spectrum of abnormalities in a
variety of cellular functions. These include defects in signal-
ing pathways, calcium homeostasis, lipid biosynthesis and
degradation and intracellular trafficking. Lysosomes also play a
fundamental role in the autophagic pathway by fusing with
autophagosomes and digesting their content. Considering the
highly integrated function of lysosomes and autophagosomes
it was reasonable to expect that lysosomal storage in LSDs
would have an impact upon autophagy. The goal of this
review is to provide readers with an overview of recent
findings that have been obtained through analysis of the auto-
phagic pathway in several types of LSDs, supporting the idea
that LSDs could be seen primarily as “autophagy disorders.”

Introduction

Lysosomes are ubiquitous intracellular organelles that have an
acidic internal pH, and have crucial roles in cellular clearance.
Numerous functions have been shown to depend on normal
lysosomes, including turnover of cellular constituents, cholesterol
homeostasis, downregulation of surface receptors, inactivation of
pathogenic organisms, repair of the plasma membrane and bone
remodeling. Lysosomal biogenesis involves maturation of early
endosomes to form multivesicular bodies (i.e., late endosomes),
followed by fusion to the lysosomes and subsequent lysosome

reformation.1-3 Lysosomes are involved in the degradation of a
wide variety of structurally diverse substances into their basic
building blocks, such as proteins, glycosaminoglycans (GAGs),
sphingolipids, glycogen, nucleic acids, oligosaccharides and
complex lipids. These are either recycled through biosynthetic
pathways or further degraded to generate energy. Cellular and
foreign material destined for degradation reach lysosomes via
endocytosis, phagocytosis, autophagy, or direct transport.

Lysosomal storage disorders (LSDs) are characterized by
progressive accumulation of undigested macromolecules within
the cell due to lysosomal dysfunction. LSDs were first defined as
lysosomal enzyme deficiency states in 1965 by H.G. Hers based
on his discovery that the glycogen storage disorder known as
Pompe disease exhibits an absence of acidic a-glucosidase
activity.4 Hers’ conceptual breakthrough provided the foundation
for understanding literally dozens of additional so-called “storage”
disorders, including the gangliosidoses and other sphingolipidoses,
the mucopolysaccharidoses, the glycoproteinoses, and so forth.
What became readily apparent in time, however, was that non-
lysosomal enzymes, as well as soluble and transmembrane proteins
of late endosomes and lysosomes—when defective—could also
cause lysosomal storage defects essentially identical to conditions
lacking a specific lysosomal hydrolase. Hence the emergence of an
understanding of the latter type of LSDs, which include I-cell
disease, multiple sulfatase deficiency, Niemann-Pick type C
disease, mucolipidosis IV, Danon disease, juvenile neuronal
ceroid lipofuscinosis and others.5 Today, LSDs are recognized as a
cohort of nearly 60 different inherited disorders, with each sharing
a genetic defect that renders the lysosomal system dysfunctional
and unable to degrade specific materials normally processed
within the cell. As a consequence, many tissues and organ systems
are affected, including brain, viscera, bone and cartilage, with early
onset central nervous system (CNS) dysfunction predominating.
Whereas clinical features of these disorders vary widely, most are
fatal within the first two decades of life following many years of
worsening disease. The progressive nature of phenotype devel-
opment is one of the hallmarks of LSDs.

In spite of the clarity brought about by modern genetic and
biochemical studies of storage diseases, a persisting conundrum is
why defects in the lysosomal system per se ultimately cause cell
and organ dysfunction, particularly for the brain. This question
grows in part out of the realization that early on, cells and organs
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in most storage disorders appear to develop and function
normally, and only later is this followed by insidious disease
onset and progression. In recent years biochemical and cell
biology studies of LSDs have revealed an ample spectrum of
abnormalities in a variety of cellular functions. These include
defects in signaling pathways, calcium homeostasis, lipid biosyn-
thesis and degradation and intracellular trafficking (see ref. 6 for
a review). Therefore, an emerging view7 to explain the disease
cascade is one focused on the importance of the multiple
endosomal and autophagosomal streams flowing into the lyso-
somal system for processing. Failure to degrade and recycle
sequestered materials in lysosomal disease may also lead to
deficiency states in which precursors for metabolic pathways in
the cell are diminished, followed by altered synthetic pathways
and an increased metabolic demand on affected cells. The lyso-
somal system has thus emerged from being considered only an
end-organelle, to being at the very hub of metabolic regulatory
control. Perhaps the best example of the interconnection of the
lysosome with other cellular systems is autophagy. Lysosomes play
a fundamental role in the autophagic pathway by fusing with
autophagosomes and digesting their content. Recent evidence
of the cooperative and integrated roles of lysosomes and auto-
phagosomes comes from the discovery of an overarching
regulatory gene network (CLEAR) and a master gene, transcrip-
tion factor EB (TFEB), controlling the biogenesis and function
of both lysosomes and autophagosomes.8-10

Considering the highly integrated function of lysosomes and
autophagosomes it was reasonable to expect that lysosomal storage
in LSDs would have an impact upon autophagy. The goal of the
present review is to provide readers with an overview of recent
findings that have been obtained through analysis of the
autophagic pathway in several types of LSDs. The main results
of the studies on autophagy in LSDs are reported in Table 1.

Autophagy in Glycogenosis Type II (Pompe Disease)
and Danon Disease

Pompe disease. Pompe disease was the first recognized lysosomal
storage disorder. The disease is caused by deficiency of acid
maltase, also known as acid a-glucosidase (GAA). Clinical hetero-
geneity of the disease is a well-established phenomenon.29,30 In the
most serious infantile form, the disease leads to profound weak-
ness, heart failure, and if left untreated causes death within one
year. Even in milder late-onset form the illness is relentless and
debilitating: patients eventually become confined to a wheelchair
or a bed and many die prematurely from respiratory failure.

It took more than 30 y to define the cause of Pompe disease
after its discovery in 1932,31,4 and even longer to develop a
therapy. Only recently, enzyme replacement therapy (ERT) using
recombinant human acid a-glucosidase designed to supplement
the defective enzyme was approved for all forms of the disease.
This therapy stemmed from a straightforward hypothesis to
explain the disease pathogenesis, namely that progressive enlarge-
ment of glycogen-filled lysosomes would lead to lysosomal
rupture and to release of glycogen and toxic substances into the
cytosol.32,33 The assumption was that early treatment, initiated

before lysosomal integrity was compromised, would reverse this
pathogenic cascade. Now, after years of preclinical and clinical
experience with this therapy it has become clear that this
assumption is only partially correct: while cardiac muscle responds
very well to therapy, skeletal muscle does not. The poor muscle
response to therapy led to the need to revisit the pathogenesis of
the disease, with increased attention to an involvement of the
autophagic pathway in disease pathogenesis.

Poor skeletal muscle response to ERT was initially shown in
long-term preclinical studies in a mouse model of Pompe disease
[GAA-knockout (GAA-KO)].34 The presence of large areas of
autophagic accumulation detected by electron microscopy in the
therapy-resistant fast muscle suggested that abnormal autophagy
might be the culprit (Fig. 1A). Surprisingly, huge clusters of
LAMP1 (a lysosomal marker)- and LC3 (an autophagosomal
marker)-positive vesicles are seen in the core of virtually every
muscle fiber even in young Pompe mice. Only outside the core is
the expected pathology of Pompe disease observed, namely
individual or isolated groups of expanded lysosomes with clearly
defined borders. The autophagic mass grows in size as the animals
age, and from a morphological perspective, it is evident that
abnormal autophagy, rather than lysosomal expansion, is what
eventually causes muscle fiber destruction and the loss of muscle
force.35 It appears that both ends of the autophagic process—the
generation of autophagosomes and their resolution by lysosomal
fusion36—are impaired in Pompe skeletal muscle. The compo-
nents of the system, such as BECN1, GABARAP, ATG7 and
LC3, are present in excess, but this excess is associated with
functional deficiency of autophagy. The phenotypic defect in fast
muscle of the GAA-KO mice appears to arise not from an
induction of autophagy but rather from a block in autophago-
somal turnover (a defect in autophagosome-lysosome fusion) in
the diseased muscle. Autophagy substrates, such as p62/SQSTM1
and ubiquitinated proteins37-39 accumulate in the core of Pompe
muscle fibers.11 The formation of ubiquitin-positive protein
aggregates in the GAA-KO mice precedes the development of
clinical symptoms and parallels the progression of the disease.11

Autophagic buildup poses a significant problem for the
lysosomal delivery of the therapeutic enzyme. The enzyme traffics
to its destination, lysosomes, via mannose-6-phosphate receptor-
mediated endocytosis. Autophagic and endocytic pathways con-
verge at several steps along the way: autophagosomes fuse not only
with lysosomes, but also with late and even early endosomes.40

Therefore, it is perhaps not surprising that the recombinant
enzyme ends up in the area of autophagosome accumulation.41–43

Thus, the removal of autophagic buildup seemed a reasonable
approach to improve the therapy.

Indeed, ERT in muscle-specific Atg5- or Atg7-deficient Pompe
mice results in near-complete glycogen clearance.12 This outcome
observed in both young and older mice is never seen in Pompe
mice in which autophagy is not tampered with. Of note, ERT
plus suppression of autophagy converts Pompe mice into muscle-
specific autophagy-deficient wild-type mice; the health (longevity,
mobility and single fiber contractility) of these mice is far better
than the health of Pompe mice. The accumulation of dysfunc-
tional mitochondria, mild atrophy and age-dependent decrease in

720 Autophagy Volume 8 Issue 5



force have been reported in muscle-specific autophagy-deficient
wild-type mice,44,45 but these abnormalities seem to be a reason-
able price to pay for the reversal of pathology in Pompe disease.

In humans, autophagic buildup is present in many muscle cells
in late-onset patients (both juvenile and adults), thus making the
observations in the mouse model relevant to the human study.
Furthermore, in many fibers autophagic accumulation is the
overwhelming (and in some fibers the only) pathology, because
the lysosomes that lie outside the autophagic region appear
essentially normal.46,47 In contrast, the role of autophagy in the
pathogenesis of infantile Pompe disease is much less obvious.
Unexpectedly, the autophagic component which is so prominent
in late-onset cases is insignificant in infants whose biopsies were
analyzed within days after birth.47 Instead, the major characteristic
of these fibers is the presence of hugely expanded lysosomes
without clear borders, a finding consistent with the hypothesis of
lysosomal rupture as a cause of muscle destruction.32,33

The difference between the relative contribution of the lyso-
somal and autophagic pathologies in untreated infants and adults
presents a conundrum in Pompe disease. One thing appears to be
clear: infants lacking the enzyme are born with already severely
damaged muscle fibers filled with giant lysosomes with ruptured
membranes and massive glycogen deposits. The lack of auto-
phagic buildup in such infants suggests that the role of autophagy

in muscle development is minimal, perhaps because of a constant
supply of nutrients through the umbilical cord. This hypothesis
is consistent with the data in mice showing a low level of auto-
phagy throughout the embryonic period.48 Analysis of biopsies
from infants receiving ERT shows that lysosomes shrink in some
patients, but remarkably, autophagic buildup resembling that
found in skeletal muscle from adults emerges.47 A long-term study
and a larger number of samples are needed to evaluate the fate of
autophagic buildup in ERT-treated infants.

Glycogen passage from the cytosol to lysosomes must involve
some type of autophagic pathway since by definition autophagy
is a process of transport and lysosomal degradation of any intra-
cellular material. Early morphological data showing the presence
of glycogen particles inside autophagic vacuoles in skeletal muscle,
liver and heart of the newborn rats implied the involvement of
macroautophagy.49,50 If this process operates later in life, then
inhibition of macroautophagy would alleviate glycogen burden in
lysosomes by preventing its transport from the cytosol. Indeed,
suppression of autophagosome formation by inactivation of Atg5
or Atg7 in skeletal muscle in untreated Pompe mice results in
reduction of accumulated glycogen; for reasons that are unclear,
this reduction is much more pronounced in ATG7-deficient
Pompe mice.43 Nevertheless, data from both strains suggest that
at least some glycogen is delivered to the lysosomes via the

Table 1. The main results of the studies on autophagy in LSDs

Disease AV
accumulation†

Defective AV
degradation4

Increased
AV formation°

Increased poly-
ub proteins"

Increased
dysfunctional
mitochondria1

Increased p62N Refs.

GLYCOGENOSES

Pompe disease Y Y Y Y NT Y 11,12

Danon disease Y Y NT NT NT NT 13

MUCOPOLYSACCHARIDOSES

MSD Y Y N Y Y Y 14,15

MPSIII A Y Y N Y Y Y 14,15

MPS VI Y Y NT Y Y Y 16

SPHINGOLIPIDOSES

NPC1, NPC2 Y Y Y Y Y Y 17,18

Gaucher disease Y NT NT NT NT Y 19

Fabry disease Y Y NT Y NT Y 20

GM1 gangliosidosis Y NT Y NT Y NT 21

MUCOLIPIDOSES

MLII Y NT N Y Y Y 22

MLIII Y NT N Y Y Y 22,23

MLIV Y Y Y Y Y Y 24–26

CEROID LIPOFUSCINOSES

CLN10 Y NT NT NT NT NT 27

CLN 3 Y NT Y NT NT NT 28

†Number of autophagic vesicles (AV) quantified by electron microcopy or LC3-immunofluorescence, amounts of LC3-II by western blotting. 4Impaired
autophagosome-lysosome fusion, defective degradation of long-lived proteins. °MTOR downregulation, BECN1 activation "Poly-ubiquitinated proteins (poly-
ub) revealed by immunofluorescence or western blotting using anti-ubiquitin antibodies. 1Dysfunctional mitochondria revealed by western blotting using
mitochondrial markers. Np62/SQSTM1 protein revealed by immunofluorescence or western blotting using anti-p62 antibodies.
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macroautophagic pathway. However, it remains
unclear how the remaining glycogen is transported
to the lysosome. Yet another recent hypothesis
suggests that the intracellular glycogen trafficking
to lysosomes may proceed via a nonclassical
LC3-independent autophagy mediated by glycogen-
binding protein STBD1 (starch binding domain-
containing protein 1), which anchors glycogen
molecules to vesicular membranes.51

Danon disease. Danon disease (also called “gly-
cogen storage disease due to LAMP2 deficiency” or
“lysosomal glycogen storage disease with normal acid
maltase activity”) is a lysosomal glycogen storage
disease due to LAMP2 (lysosomal-associated mem-
brane protein 2) deficiency.52 The disease is inherited
as an X-linked trait and is extremely rare. The disease
phenotype is characterized by severe cardiomyopathy
and variable skeletal muscle weakness often associated
with mental retardation.

Danon disease was the first LSD in which an
involvement of autophagy was reported.52 Accumula-
tion of autophagic vacuoles is detected in several
tissues, particularly the muscle, from a mouse model
of the disease.13

Autophagy in Mucopolysaccharidoses

Multiple sulfatase deficiency (MSD) and mucopoly-
saccharidosis type IIIA (MPS IIIA). The mucopoly-
saccharidoses (MPSs) are a group of lysosomal storage
disorders caused by deficiency of enzymes catalyzing
the degradation of glycosaminoglycans (GAGs), which
are long, repeating chains of complex sugar molecules.
When one of several enzymes is absent, a progressive
buildup of GAGs occurs. Depending on the enzyme
deficiency, catabolism of dermatan sulfate, heparan
sulfate, keratan sulfate, chondroitin sulfate, or hyalur-
onan may be blocked, singly or in combination.53

Lysosomal accumulation of GAGs results in cell,
tissue and organ dysfunction. There are 11 known
enzyme deficiencies that give rise to 7 distinct MPSs.
MPS III, also referred to as Sanfilippo syndrome, is
caused by a deficiency of enzymes that are needed
to break down heparan sulfate. MPS III is classified
into four types (A,B,C and D), with each type caused
by a deficiency of a different enzyme. MPSIIIA is
due to deficiency of the heparan N-sulfatase
enzyme, and is characterized by profound mental
deterioration, hyperactivity, and relatively mild so-
matic manifestations.

Multiple sulfatase deficiency (MSD) is a rare but
very severe disorder in which affected individuals
present a complex multisystemic phenotype due to
the impaired activity of all sulfatases. It is caused
by mutations in the Sulfatase Modifying Factor 1
(SUMF1) gene, which is responsible for an essential

Figure 1. Representative examples of autophagy defects observed in LSDs. (A) Electron
microscopy (EM) provides evidence for the presence of autophagic accumulation in the fast
muscles (white part of the gastocnemius muscle) of a 5-mo-old Pompe knockout mouse.
(A’) Control. (B) Immuno-histochemical staining of ubiquitin-positive inclusions in the
cerebral cortex of 3-mo old MSD mice. (B’) Control. (C) EM showing aberrant mitochondria
in the liver of 1-mo-old MSD mice. (C’) Control. (D) Accumulation of autophagosomes in
MLIV. Fibroblasts from MLIV patients were grown in complete media, fixed, permeabilized
and immunostained with a polyclonal antibody to LC3. Scale bar, 10 mm. (D’) Control.
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post-translational modification of all sulfatases.54,55 Lack of
sulfatase activities in MSD patients leads to accumulation of
sulfated lipids and mucopolysaccharides resulting in a clinical
phenotype that combines the features of at least seven diseases,
five of which are mucopolysaccharidoses.56 The sumf12/2 KO
mouse model of MSD recapitulates most of the features of the
human disease.57

As for other types of LSDs, the pathogenic mechanisms that
lead from enzyme deficiency to cell death in MSD and MPS IIIA
are not completely understood. An impairment of autophagy is
postulated to play a major role in disease pathogenesis.14 LC3
immunofluorescence reveals a higher number of autophagosomes
in several brain regions of mouse models of MSD and MPS
IIIA compared with wild-type mice. A decreased colocalization
of LAMP1 with the autophagosomal marker LC3 in MSD and
MPS IIIA cells compared with wild-type cells in vitro suggests
the possibility of impaired lysosome-autophagosome fusion. A
defective autophagic flux was also demonstrated by the accumula-
tion of autophagy substrates, such as polyubiquitinated proteins
and dysfunctional mitochondria (Fig. 1B and C), both of which
are significantly increased in tissues from MSD and MPS IIIA
mice.14 In addition, MSD cells show a decreased ability to degrade
exogenously expressed aggregate-prone proteins, such as expanded
huntingtin and mutated a-synuclein, which are responsible for
Huntington and Parkinson disease, respectively.14 Similarly,
during skeletal development, chondrocytes from MSD mice
suffer from a severe lysosomal storage defect and display a
defective autophagosome digestion leading to a defect in energy
metabolism and to cell death.58

Studies aimed at the identification of the
mechanisms underlying the impairment of the
fusion between lysosomes and autophagosomes in
MSD and MPS IIIA point to abnormalities of
membrane lipid composition and SNARE (Soluble
NSF Attachment protein REceptor) protein distri-
bution.15 In particular, a significant accumulation
of cholesterol is found in the lysosomal membranes
of both MSD and MPS IIIA cells. This is asso-
ciated with a disorganization of the endolysosomal
membrane and with disruption of “lipid rafts.”
Interestingly, wild-type cells “loaded” with choles-
terol in vitro mirror the fusion defects observed in
LSD cells. Conversely, lowering cholesterol by the
use of methyl β-cyclodextrin in MSD and MPS
IIIA cells rescues normal lysosomal function. The
SNARE proteins, which are key components of
the cellular membrane fusion machinery, are
found aberrantly sequestered within cholesterol-rich
regions of LSD lysosomal membranes. This abnor-
mal distribution appears to lock these proteins
in complexes and to impair their function and
recycling, thereby directly affecting lysosomal
membrane fusion capacities.15

These studies provided evidence that a global
lysosomal dysfunction leads to the impaired auto-
phagy observed in the pathogenesis of MSD and

MPS IIIA and possibly in other types of LSDs. A possible model
for disease pathogenesis is depicted in Figure 2. According to this
model, lysosomal accumulation of undegraded substrates results
in impaired lysosome-autophagosome fusion and a block of the
autophagic flux. This figure depicts a generalized mechanism that
may apply to several LSDs, even though a reduced efficiency of
autophagic degradation may not necessarily be due to impaired
lysosomal fusion. The secondary accumulation of autophagic
substrates, such as polyubiquitinated proteins and dysfunctional
mitochondria, are a consequence of this block. This model places
the emphasis on the secondary accumulation of autophagy
substrates as a key determinant of cell death, rather than on the
primary accumulation of lysosomal substrates.

Mucopolysaccharidosis type VI (MPS VI). Mucopoly-
saccharidosis VI (MPS VI), also known as Maroteaux-Lamy
syndrome, is caused by deficiency of the lysosomal enzyme
N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ARSB).59

ARSB hydrolyzes sulfate esters from GAGs, mainly dermatan
sulfate (DS), and a deficiency of the enzyme prevents the
sequential degradation of DS leading to its accumulation in
various cells and tissues.53 Clinically, MPS VI is characterized by
coarse faces, short stature, dysostosis multiplex, stiffness and
functional impairment of joints, hepatosplenomegaly, cardiac
valve anomalies and corneal clouding.53 No evidence of CNS
involvement is evident in clinically severe MPS VI,59 although
scattered neuronal storage is evident in animal models lacking
ARSB activity.60

Studies using fibroblasts from MPS VI patients demonstrated
that lysosomal storage in these cells results in impaired autophagy,
accumulation of polyubiquitinated proteins and mitochondrial

Figure 2. Model depicting disease pathogenesis in LSDs.
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dysfunction.16 These studies also demonstrated that the extent
of LAMP2-LC3 colocalization is similar between MPS VI and
normal fibroblasts, indicating that that autophagosome-lysosome
fusion is not completely blocked in MPS VI fibroblasts. Since
glycosaminoglycans are reported to inhibit cathepsin activity61

and cathepsin-activity deficiency results in impaired autophagy,62

Tessitore et al. suggest that this mechanism might play a role in
autophagy impairment in MPS VI. Impaired autophagy is also
observed in vivo in a rat model of MPS VI.16 Electron microscopy
in livers from affected rats shows an accumulation of autophagic
vacuoles, abnormal ubiquitination and abnormal mitochondrial
function. Interestingly, gene transfer of wild-type ARSB results
in the prevention of derman sulfate accumulation and in the
rescue of the defects observed in the autophagic pathway,
ubiquitination and mitochondrial function.16

Autophagy in Sphingolipidoses

The sphingolipidoses are a heterogeneous group of inherited
disorders of sphingolipid metabolism that often affect the nervous
system. These diseases predominantly occur in the pediatric
population, and the resulting neurodegeneration produces
psychomotor retardation and myoclonus due to diffuse and pro-
gressive involvement of neurons, or weakness and spasticity due
to involvement of white matter tracts. The underlying genetic
defects are diverse and variably result in accumulation of
sphingomyelin, glycolipids, glucocerebrosides, gangliosides,
unesterified cholesterol and sulfatide compounds.63,64 In some
instances, this storage material results from hydrolytic enzyme
deficiency, whereas in others its occurrence is less well under-
stood and may be secondary to the accumulation of other lipids.
In either case glycosphingolipids can alter macroautophagy.
Recent studies demonstrate that loading cells with glycosphingo-
lipids, simply by adding them to the culture media, leads to
autophagy induction, decreased clearance of autophagosomes,
and an accumulation of autophagy intermediates.65 Strikingly,
many of these same changes are observed in model systems used
to study the sphingolipidoses, suggesting that an accumulation of
one or more glycosphingolipids may alter the function of the
autophagic pathway in these disorders.

Niemann-Pick type C disease (NPC). Niemann-Pick type C
disease (NPC) is caused by mutations in the NPC1 or NPC2
genes,66,67 whose protein products are thought to act cooperatively
in the efflux of cholesterol from late endosomes and lysosomes.68

NPC1 encodes a multipass transmembrane protein that contains
a sterol sensing domain, similar to that found in the regulators
of cholesterol biosynthesis, HMG-CoA reductase, SCAP and
7DHCR;69 an N-terminal cholesterol binding domain on the
lumenal side of the membrane, and several lumenal loops of
unknown function.70,71 NPC2 is a soluble protein primarily
localized to the late endosome/lysosome lumen,67 where it binds
cholesterol in an orientation opposite that of the NPC1
N-terminal domain. NPC2 is capable of extracting cholesterol
from lipid bilayers, and then transferring it to another bilayer
or to the NPC1 N-terminal domain.70,72 As a result of NPC1
or NPC2 deficiency, unesterified cholesterol derived from

receptor-mediated endocytosis of low-density lipoprotein (LDL)-
cholesterol accumulates widely in cells throughout the body. A
broad array of glycosphingolipids accumulates as well73 although
it is uncertain whether this latter phenomenon is attributable to
a direct role for NPC1-NPC2 in glycosphingolipid trafficking or
is secondary to cholesterol accumulation.74

A marked accumulation of autophagosomes occurs in the
brains of NPC mice and in skin fibroblasts from NPC
patients.17,75,76 This is attributable, in part, to the induction of
autophagy through BECN1,75 a critical regulator of macroauto-
phagy that binds class III phosphatidylinositol 3-kinase and is
both required for the initiation of autophagosome formation
and contributes to autophagosome maturation.77 Notably,
BECN1 and LC3-II levels in wild-type fibroblasts are increased
by U18666A, a small molecule that induces NPC-like lipid
trafficking defects, suggesting that an accumulation of unesterified
cholesterol or sphinogolipids may act as a proximal trigger.71 This
induction is accompanied by a relatively modest increase in
autophagic flux as measured by the degradation of long-lived
proteins, as well as by the accumulation of the autophagic
substrate p62/SQSTM1 in RIPA-insoluble fractions of brain
lysates18,75 and by an accumulation of ubiquitinated proteins,78

preferentially in the endosomal/lysosomal fraction of npc12/2

mouse brain lysates.76 Taken together, these findings suggest that
NPC1 deficiency leads to both an induction of autophagy and
an impairment of autophagic flux, similar to the effects triggered
by loading cells with glycosphingolipids. The impairment in
degradation of autophagic substrates may contribute to several
aspects of NPC neuropathology, including the accumulation of
ubiquitinated proteins and the generation of reactive oxygen
species.

Gaucher disease. As in NPC, models of Gaucher disease show
both an induction of autophagy and an accumulation of auto-
phagosomes and autophagic substrates. Gaucher disease is caused
by mutations in either glucocerebrosidase, the lysosomal enzyme
that degrades glucosylceramide and glucosylsphingosine, or its
activator protein saposin C. Fibroblasts from some patients
deficient in saposin C show increased autophagy induction.79

Mice homozygous for mutant V394L glucocerebrosidase and
deficient in saposin C, used to model neuronopathic Gaucher
disease, exhibit punctate p62/SQSTM1 accumulations in neurons
and astrocytes, and sequester undigested material in vesicles
within axons, consistent with an accumulation of autophagic
substrates.19 These observations suggest that degradation of
autolysosome cargo is deficient in Gaucher disease cells.
Interestingly, an impairment of lysosomal protein degradation
due to glucocerebrosidase haploinsufficiency was recently sug-
gested to occur in carriers of the Gaucher disease mutation,
leading to increased risk for Parkinson disease due to diminished
a-synuclein degradation.80

Fabry disease and GM1 gangliosidosis. Increased basal expres-
sion of the autophagosome marker LC3-II is observed in models
of other sphingolipidoses as well, including GM1-gangliosidosis21

and Fabry disease.20 GM1-gangliosidosis is an autosomal recessive
lysosomal lipid storage disorder caused by mutations of the
lysosomal β-galactosidase (β-gal) and results in the accumulation
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of GM1 ganglioside. The disease phenotype is characterized by
severe CNS dysfunction, visceromegaly and skeletal dysplasia. An
increased number of autophagosomes, as detected by the LC3
marker, elevated BECN1 levels, and dysfunctional mitochondria
are observed in brains from GM1 gangliosidosis mice.21 In Fabry
disease, deficiency of the lysosomal enzyme a-galactosidase A
leads to an accumulation of its substrate globotriaosylceramide
(Gb3) throughout the body. Measurement of LC3 in cultured
cells from Fabry patients reveals increased basal levels compared
with wild-type cells and a larger increase in response to starvation.
Treatment of starved Fabry disease fibroblasts and lymphocytes
with lysosomal protease inhibitors reveals a block in autophagic
flux, demonstrating a more severe disruption of degradation
through macroautophagy than that observed in other sphingoli-
pidoses. Furthermore, increased staining of p62/SQSTM1 and
ubiquitin in renal tissues and in cultured fibroblasts from Fabry
patients further supports impairment of autophagic flux.20 For
Fabry disease and other sphingolipid storage diseases, defining
where and how the impairment of autophagic flux occurs, and
establishing the extent to which alterations in macroautophagy
contribute to the disease phenotype remain important research
objectives.

Autophagy in Mucolipidosis

Mucolipidosis type IV. Mucolipidosis type IV (MLIV) is an
autosomal recessive disorder characterized by acute psychomotor
delays, achlorydria and visual abnormalities including retinal
degeneration, corneal clouding, optic atrophy and strabismus.81-83

Lysosomal inclusions are found in most tissues in MLIV patients.
The composition of the storage material is heterogeneous and
includes lipids and mucopolysaccharides forming characteristic
multiconcentric lamellae, as well as soluble, granulated pro-
teins.84-87 MLIV is caused by mutations inMCOLN1 (mucolipin 1,
also known as TRPML1), an endolysosomal cation channel
belonging to the transient receptor potential (TRP) superfamily
of ion channels.87-90 Whole cell patch clamp, as well as recording
of native endolysosomal membranes, have led to the conclusion
that MCOLN1 functions as an inwardly (from lumen to
cytoplasm) rectifying channel permeable to Ca2+, Na+, K+ and
Fe2+/Mn2+ whose activity is potentiated by low pH.91-93

Although the cellular role of MCOLN1 is still under investi-
gation, the current model suggests that this protein mediates Ca2+

efflux from late endosomes and lysosomes.94,95 Localized Ca2+

release from such acidic stores is required for fusion between
endocytic vesicles and to maintain organelle homeostasis, thus
suggesting that MCOLN1 is a key regulator of membrane
trafficking along the endosomal pathway. In agreement with
this model, delivery of cargo from the cell surface to the lyso-
some and fusion of lysosomes with the plasma membrane are
impaired in MCOLN1-deficient cells.24,96-99 Autophagosome
turnover is also defective in fibroblasts derived from MLIV
patients. The degradation of the autophagosome content requires
fusion of autophagosomes with the late endocytic pathway. In
MCOLN1-deficient fibroblasts both degradation of the auto-
phagosome content and fusion of autophagosomes with late

endosomes/lysosomes are delayed compared with control cells.24

This leads to a dramatic accumulation of autophagosomes in
the cytosol of MLIV cells as demonstrated by indirect immuno-
fluorescence (Fig. 1D), LC3-II/LC3-I immunoblot and electron
microscopy.24 Impairment of the autophagic pathway has
detrimental consequences for the cell leading to inefficient
degradation of protein aggregates and damaged organelles. In
particular, accumulation of p62/SQSTM1 inclusions and abnor-
mal mitochondria has been described in MLIV fibroblasts.24,100

Findings suggest additional roles for MCOLN1 in the regula-
tion of autophagy. MCOLN1 interacts with HSPA8 (HSC70)
and DNAJB1 (HSP40), two components of the chaperone-
mediated autophagy (CMA) molecular machinery.25 MLIV fibro-
blasts show defective CMA and decreased levels of LAMP2A
resulting in increased levels of oxidized proteins.25 Finally,
MCOLN1 has the ability to form heteroligomers with the two
other members of the mucolipin family, MCOLN2 and
MCOLN3.101,102 Depletion of endogenous MCOLN3 or expres-
sion of a channel-dead dominant negative MCOLN3 mutant
inhibits starvation-induced autophagy.102,103 Therefore, MCOLN1
might also play an indirect role in the initiation of autophagy.

Autophagy has also been shown to be defective in primary
neurons cultured from a murine model of MLIV. The mcoln12/2

mice provide an excellent phenotypic model of the human disease,
and all of the hallmarks of MLIV are present in the mice with
the exception of corneal clouding.104 At birth, the knockout
animals display no obvious behavioral or morphological pheno-
types when compared with wild-type littermates, but as they age
they show progressive limb weakening, eventual limb paralysis,
and death at approximately eight months. Analysis of the brain
at 8 mo shows lysosomal inclusions in multiple cell types,
including neurons, astrocytes, oligodendrocytes, microglia and
endothelial cells, with larger inclusions present in neurons. The
MLIV inclusions are unusual in their combination of dense
lamella and granular matrices, and they do not resemble those
typically seen in the glycosphingolipidoses, the mucopolysacchar-
idoses, or most other types of lysosomal disease.104,105 Electron
microscopy of primary cerebellar neurons from Mcoln1-deficient
mouse embryos demonstrates significant membranous intracyto-
plasmic storage bodies, despite the lack of gross phenotype at
birth.26 Evaluation of macroautophagy in neurons by LC3-II/
LC3-I immunoblot shows increased levels of LC3-II, similar
to what is seen in human MLIV fibroblasts. LC3-II clearance is
also defective, as treatment of the mcoln12/2 neuronal cultures
with protease inhibitors to stimulate autophagy does not result
in increased LC3-II levels.26 Demonstration of defective auto-
phagy in MCOLN1-deficient neurons suggests a possible
mechanism underlying neurodegeneration, whereby increased
protein aggregation and organelle damage lead to autophagic
stress and eventual neuronal death.24 The MLIV mouse model
provides an important tool for evaluating the complicated
interplay between chaperone-mediated autophagy and macro-
autophagy and their role in neurodegenerative disease.

Mucolipidosis type II and Mucolipidosis type III. Muco-
lipidosis type II (MLII) and Mucolipidosis type III (MLIII)
are autosomal recessive diseases caused by deficiency of the
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enzyme N-acetylglucosamine 1-phosphotransferase (GlcNAc-
phosphotransferase).106,107 This enzyme modifies newly synthesized
lysosomal hydrolases by attaching a molecule of mannose-6-
phosphate (M6P) that functions as a tag for delivery to lyso-
somes.108 Mutations in GlcNAc-phosphotransferase result in the
missorting and cellular loss of lysosomal enzymes and lysosomal
accumulation of storage material.109,110 MLII is characterized by
skeletal abnormalities, short stature, cardiomegaly and develop-
mental delays. MLIII is a late onset, milder form of MLII.111

Alterations in autophagy have been reported recently in MLII
and MLIII fibroblasts. This includes accumulation of auto-
phagosomes, p62/SQSTM1, ubiquitin and fragmented mito-
chondria. In contrast, no variations in the levels of BECN1 are
observed, suggesting that formation of autophagosomes is not
increased in these disorders.22 Accumulation of LC3-positive
structures and ubiquitin aggregates is also reported in neuronal
cells of dorsal root ganglions in a MLIII patient.23 Importantly,
inhibition of autophagy restores mitochondrial alterations in
MLII and MLIII cells, thus suggesting that increased autophagy
might be detrimental for proper mitochondrial function.22

Autophagy in Neuronal Ceroid-Lipofuscinoses

The neuronal ceroid lipofuscinoses (NCLs) are the most com-
mon cause of neurodegeneration among children. These dis-
orders typically manifest with blindness, seizures, progressive
cognitive defects and motor failure. NCLs are both genetically
and phenotypically heterogeneous.112 The juvenile onset NCL
(JNCL), also known as Batten disease, is the most common form
of NCL and is due to mutations in the CLN3 gene.113 The
congenital form of NCL is due to mutations in the cathepsin D
gene (CTSD/CLN10).114 A significant increase in the number of
autophagosomes is observed in patients affected by these two
types of NCLs and in the murine models of these diseases.27,28

In addition, accumulation of dysfunctional mitochondria and
downregulation of the MTOR pathway, a sign of activation
of autophagosome formation, are detected in JNCL due to
mutations of the Cln3 gene.28

Concluding Remarks

Autophagy has been analyzed in a variety of LSDs with different
severities of the phenotype, different tissues involved, and
different types of storage molecules. Table 1 shows the main
findings obtained and Figure 1 displays some examples of the
results obtained by these studies. In spite of all the above-
mentioned differences among the diseases and samples analyzed,
a common theme can be recognized (see also ref. 115 for a
further review). In most cases there is an impairment of auto-
phagic flux, causing a secondary accumulation of autophagy
substrates such as polyubiquitinated proteins, p62/SQSTM1 and
dysfunctional mitochondria, on one end, and an increase in
factors involved in autophagosome formation, such as BECN1,
as an attempt to compensate for the impaired autophagic flux,
on the other. Accordingly, LSDs can be seen primarily as “auto-
phagy disorders.”10 Interestingly, a defect in autophagic lysosome

formation, due to abnormal MTOR activation, is reported in
several LSDs.3

Impairment of autophagy and accumulation of autophagy
substrates in LSDs suggest that at least some mechanisms
underlying the LSD phenotype may be similar to other diseases
in which defective autophagy has been observed. In particular,
many neurodegenerative diseases that affect the aging popula-
tion including Alzheimer, Parkinson and Huntington diseases,
exhibit the presence of intraneuronal accumulations of protein
aggregates as key elements of their pathogenic cascades. Yet the
potential importance of macroautophagy as a critical player in
the formation of these aggregates was largely unappreciated prior
to studies in which key autophagy regulatory proteins were
conditionally knocked out in mouse models. Genetic ablation
in the CNS of Atg5 and Atg7, each critical for the formation
of autophagosomes in cells, was found to cause progressive
neurological disease in mice accompanied the accumulation of
protein aggregates and inclusion bodies, and by neuron
death.116,117 Subsequent studies further revealed the critical role
of ATG5 and ATG7 in maintaining normal integrity of axons,
particularly for Purkinje cells, which develop early and progres-
sive neuroaxonal dystrophy characterized by accumulation of
autophagosome-like membrane structures in swellings along the
length of the axon.117,118

A further link between LSDs and neurodegenerative disorders
comes from studies showing accumulation of phosphorylated-
tau aggregates and neurofibrillary tangles, which are typically
detected in patients with Alzheimer disease, in LSDs such as
Niemann-Pick type C119 and mucopolysaccharidoses,120 and
deficient degradation of amyloid precursor protein (APP) in
sphingolipidoses.65 Parallels between the neuropathology of
Niemann-Pick C and several age-dependent protein aggregation
neurodegenerative disorders are striking, and include the
accumulation of phosphorylated tau and a-synuclein,121-124 and
in some cases amyloid β.125 The recent identification of a defect
of lysosomal acidification in a murine model of Alzheimer
disease126 and of pathogenic lysosomal depletion in a mouse
model of Parkinson disease127 further support a connection
between lysosomal dysfunction and neurodegenerative diseases.

The acknowledged importance of autophagy in maintaining
normal bulk protein recycling in these diseases has led to interest
in whether pharmacological stimulation of autophagy could
provide therapeutic benefit by delaying or preventing protein
aggregate accumulations in disorders such as Huntington
disease.128 Rapamycin was demonstrated to protect against
neurodegeneration in a fly model of Huntington and to improve
neuropathology in a mouse model of Huntington disease by
enhancing autophagy-mediated clearance of huntingtin accu-
mulation.129 Rapamycin was also shown to have a clearing effect
on a variety of aggregate-prone proteins with polyglutamine or
polyalanine expansions, leading to an improvement in cellular
phenotype.130 These data suggest that enhancement of auto-
phagy can be an effective approach to reduce toxic protein
accumulation and cell death also in LSDs. Trehalose, a dis-
accharide present in many nonmammalian species, is an mTOR-
independent autophagy activator, that has an anti-apoptotic effect
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in cultured neurons and accelerates the clearance of mutant
hungtintin and a-synuclein.131 However, one should also take
into consideration that the defect observed in most LSDs is not
a dysfunction in the formation of autophagosomes, but a block
in autophagic flux. Therefore, activation of autophagy in this
scenario may have detrimental effects. This would be consistent
with the observation that suppression of autophagy has a
beneficial effects on ERT for Pompe disease.43

Recently, it was shown that cholesterol accumulation in the
endolysosomal membranes in LSDs changes their organization
and composition and reduces their fusion capacity.15 It is possible
that drugs aimed at reducing cholesterol in membranes, such as
methyl-β-cyclodextrin (MβCD), can restore the fusion capacity of
lysosomal membranes and release the block of autophagy in
LSDs, as recently described for MSD and MPS IIIA.15 This
compound is toxic in vivo, but FDA approved cyclodextrins (e.g.,
Kleptose, Trappsol and Captisol) may be used. Indeed, chronic
treatment using hydroxypropyl β-cyclodextrin in mice with NPC
disease results in cholesterol and ganglioside storage reduction,
normalization in the autophagy marker LC3-II and significantly

increased survival, although similar studies in MPS IIIA and GM1
gangliosidosis mice do not show similar benefit.132 Finally, a
potentially attractive possibility would be to induce a global
enhancement of both the lysosomal and autophagic pathways by
acting on the master gene TFEB.9,99 Further studies are needed to
explore the effects of modulators of autophagy, which operate at
different steps of the autophagic flux, on the LSD phenotype in
cell culture and in animal models. Hopefully, these studies will
lead to the development of effective treatments for several LSDs.
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