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Abstract

Gene set analysis allows the inclusion of knowledge from established gene sets, such as gene pathways, and potentially
improves the power of detecting differentially expressed genes. However, conventional methods of gene set analysis focus
on gene marginal effects in a gene set, and ignore gene interactions which may contribute to complex human diseases. In
this study, we propose a method of gene interaction enrichment analysis, which incorporates knowledge of predefined
gene sets (e.g. gene pathways) to identify enriched gene interaction effects on a phenotype of interest. In our proposed
method, we also discuss the reduction of irrelevant genes and the extraction of a core set of gene interactions for an
identified gene set, which contribute to the statistical variation of a phenotype of interest. The utility of our method is
demonstrated through analyses on two publicly available microarray datasets. The results show that our method can
identify gene sets that show strong gene interaction enrichments. The enriched gene interactions identified by our method
may provide clues to new gene regulation mechanisms related to the studied phenotypes. In summary, our method offers a
powerful tool for researchers to exhaustively examine the large numbers of gene interactions associated with complex
human diseases, and can be a useful complement to classical gene set analyses which only considers single genes in a gene
set.
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Introduction

The application of microarray technology has been stimulating

methodological development on data analysis that help biologists

to gain more insights into biological functions of genes.

Conventional statistical analysis methods for gene expression

data mainly aim to discover individual genes whose expression

changes are associated with a phenotype of interest [1–3]. An

extension and enhancement to these individual-gene analyses is

‘‘gene set analysis’’. Gene set analysis utilizes known knowledge of

gene sets, such as gene pathways [4], to discover gene sets the

expressions of which are associated with a phenotype of interest.

Focusing on sets of genes rather than individual genes has at least

two benefits: 1) integrating expression changes of genes inside the

same gene set can reduces the dimensionality of the dataset and

potentially achieve a greater power for detecting differentially

expressed genes, even when the expression changes of individual

genes are modest; 2) gene set analysis incorporates known

biological knowledge. This allows biologists to interpret the

microarray data in a manner that is not possible when it is viewed

as a collection of individual genes [4] and enhances our ability to

understand the functional mechanism that underlies complex

human diseases.

A number of gene set analysis methods have been introduced in the

last few years [5–10]. However, a major challenge for gene set analyses

is to discover the interactions among genes, hidden in gene expressions

data. Members of a gene set (e.g. a gene pathway) can interact with

each other, and these gene interactions can be associated with the

phenotype of interest [11]. Previous studies have demonstrated the

presence and importance of gene interactions in contributing to

complex human diseases [12–18]. Thus ignoring gene interactions in

gene set analyses can hinder our ability in understanding the gene

regulation mechanism underlying human complex diseases.

The purpose of this study is to identify gene interaction

enrichments that are associated with a phenotype of interest. We

propose a method of gene interaction enrichment analysis in the

framework of gene set analysis [8]. We refer to our proposed

method as ‘‘Interaction-based Gene Set Analysis’’ (IB-GSA). We

apply our method to two publicly available microarray datasets.

The results show that our method can identify the gene sets

enriched with gene interactions, which conventional methods of

gene set analysis ignore or are unable to discover. Identified gene

sets and corresponding gene interactions may highlight the

underlying gene regulation mechanism that contributes to

complex human diseases. Overall, our method provides a

complementary approach for identifying gene sets associated with

a phenotype of interest, when gene interactions in a gene set are

enriched and associated with the studied phenotype.

Materials and Methods

For simplicity, we focus on two-gene interactions in a

microarray experiment with expression profiles from samples in

two classes, e.g. presence and absence of a disease. For a gene set S
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(e.g. a gene pathway), assume that in class k (k = 0 or 1) its gene

expression profile consists of m genes and nk samples. These data

can be represented by a m6nk matrix X(S)k = (xivk) (i = 1,…, m;

v = 1,…,nk), where xivk is the gene expression level for the i-th gene

of the v-th individual in class k. Let Y (yvk = k) be a vector of the

phenotypes for samples.

Gene Interaction Enrichment Analysis
IB-GSA method is to test the null hypothesis that there is no

gene interaction enrichment in S. When multiple gene sets in a

database are evaluated, the estimated significance levels are

adjusted for multiple hypothesis testing. Three key steps of our

method are outlined as following:

Step 1: Measure of gene interaction information. For

genes i and j, neither may have effect on a phenotype of interest.

However, when they are jointly considered, they may have a

significant effect on the studied phenotype due to the gene-gene

interaction. In gene expression data, interaction between gene i

and gene j can be represented by the difference of co-variances or

correlations between gene i and gene j from two different classes.

Prior to performing gene interaction analysis, the expression

profile of each gene is standardized by its mean and standard

deviation in each class. For example, for gene i in the gene set S, its

expression profile in class k is standardized as following:

x
0

ivk~
xivk{�xxik

sik

ð1Þ

where �xxik and sik are the mean and standard deviation of

expression profile for gene i in class k. After the standardization, a

gene interaction term of genes i and j 1ƒivjƒmð Þ in class k can

be defined as a cross product of expression profiles of genes i and j

as following [19]:

I i,jð Þvk~ x
0

ivk � x
0

jvk

� �
i,j[Sð Þ ð2Þ

When the phenotype is binary (i.e., has two classes), whether

there is an interaction between gene expression profiles is to test

whether the mean cross-products are different across these two

classes. Symbolically, this is to test whether
P

v I i,jð Þv0

�
n0 andP

v I i,jð Þv1

�
n1 are different. For the case with two genes (gene i

and j), the mean cross-product in a specific class is equivalent to

the correlations between the expression levels of the two genes in

this class:

P
v I i,jð Þvk

nk

~

P
v x

0

ivkx
0

jvk

nk

~cor i,jð Þk

That is, for the case with two genes, the interaction can also

tested by comparing the Pearson correlations of expression levels

for the two genes in the two classes.

Step 2: Calculation of gene set score. We adopt the

‘‘maxmean’’ statistic [8] to calculate a gene set score that reflects

the degree of gene interaction enrichment for the gene set S. The

procedure is briefly described below:

N Calculate the association between the studied phenotype and

each I i,jji,j[Sð Þ generated from step 1. In this study we use

t-statistic to test whether there is a difference betweenP
v I i,jð Þv0

�
n0 and

P
v I i,jð Þv1

�
n1, and then transform each

t-statistic value tij to zij i,j[S; 1ƒivjƒmð Þ. The transforma-

tion is zij~W{1 Fn{2 tij

� �� �
, where W is the cumulative

distribution function (cdf) for a standard normal distribution

and Fn-2 is the cdf for a t distribution with n-2 degrees of

freedom.

N Calculate the ‘‘maxmean’’ statistic T(S) for the gene set S,

which is defined as:

T Sð Þ~max �ss zð Þ, �ss {ð Þ
� �

ð3Þ

where

�ss zð Þ~
2

m m{1ð Þ
X
i,j[S
ivjð Þ

z
zð Þ

ij and �ss {ð Þ~{
2

m m{1ð Þ
X
i,j[S
ivjð Þ

z
{ð Þ

ij :

That is, �ss zð Þ and �ss {ð Þ are the averages of the positive and

negative z-values in the gene set S, respectively.

Step 3: Permutation test and multiple testing correction

for multiple gene sets. To determine if T (S) of the gene set S

is statistically significant, we implement a permutation method,

‘‘restandardization’’, proposed by Efron and Tibshirani (for

details, please refer to reference 8). A large number (B) of

restandardized permutations are carried out to generate the

nominal p value for each gene set. In this study we carry out 1,000

restandardized permutations. The empirical p-value of the gene set

S is the fraction of restandardized permutation values TB(S) that

exceed (or fall below) the observed value T(S):

p Sð Þ~# TB Sð ÞwT Sð Þ
� ��

B or p Sð Þ~# TB Sð ÞvT Sð Þ
� ��

B ð4Þ

When multiple gene sets are evaluated, we adjust the estimated

significance level to account for multiple hypothesis testing

through a standard Benjamini-Hochberg [20] FDR analysis.

Core Set Extraction for a Significant Gene Set
In reality, when we identify a gene set with enriched gene

interactions, it is likely that only a subset of genes in the gene set of

interest is associated with the studied phenotype [21,22]. Thus for

each identified gene set with enriched gene interactions, we will

extract a core set of gene pairs that chiefly contribute to the

statistical variation of a phenotype of interest. The ‘‘core set’’ for

the given gene set is a subset that are expected to be more likely

associated with the phenotype. Given a statistically significant gene

set S in gene interaction enrichment analysis, we first calculate the

association strength with the phenotype for each gene pair as

mentioned above, and then they are sorted in decreasing order of

the association strength with the phenotype, z1$z2$…$zs. Select

the first L genes (L = 1,…, s) to form a subset RL. The association

statistic with the phenotype for the subset RL is defined as

TRL
~

PL
j~1 zj

L
L~1, . . . , sð Þ ð5Þ

We define a p-value, pL for each subset RL based on the

permutation of phenotypic data. In this study we carry out 10,000

permutations, and we calculate the p-value for the L-th subset of

the observed data as

Gene Interaction Enrichment
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pL~
# TN

L §Traw
L or TN

L ƒTraw
L

� �
N

N~10,000ð Þ ð6Þ

The ‘‘core set’’ for the given gene set corresponds to the subset

with the minimum p-value over all the subsets [22].

Results

In this section, we explore the ability of our method to detect the

gene sets in which gene interactions are enriched and associated

with a phenotype of interest in two microarray data sets: ‘‘p53

cancer data’’ and ‘‘lung cancer data’’. The predefined gene sets

are obtained from ‘‘The Molecular Signatures Database’’

(MSigDB), which includes 639 sets containing genes whose

products are involved in specific metabolic and signaling

pathways, as reported in 12 publicly available, manually curated

databases. In our analyses, we only use gene sets with at least 15

members observed in microarray data [4]. We perform two types

of analyses: 1) detecting the enrichment of gene interactions in

gene sets without considering gene marginal effects, as described in

the method section and referred as ‘‘gene interaction analysis’’. 2)

detecting the gene marginal effects in gene sets without gene

interactions, as proposed by Efron and Tibshirani [8] with the

‘‘maxmean’’ statistic and referred as ‘‘main gene analysis’’.

p53 Data Set
The p53 data set contains 50 cell lines. In each cell line, the

expression profiles with 10,100 transcripts were obtained after

quality control. Out of 50 cell lines, 17 cell lines were classified as

normal p53 status while the remaining 33 cell lines carried

mutations in the gene of p53. The protein p53 is a transcription

factor and acts as a cancer suppressor preventing the development

of cancer cells [23]. It regulates genes involved in many key events

of cell life such as those regulating cell cycle checkpoints, DNA

repair, cell growth, differentiation, apoptosis, and senescence [24].

Results for our analyses are summarized in Table 1. At FDR

0.20 level, in ‘‘gene interaction analysis’’ we identify five gene

pathways as significantly associated with p53 mutation status: (i)

VEGF signaling pathway; (ii) Gamma hexachlorocyclohexane

degradation pathway; (iii) Urea cycle and metabolism of amino

groups; (iv) Ether lipid metabolism pathway; and (v) Insulin

signaling pathway. These five pathways, however, do not reach the

significant level in ‘‘main gene analysis’’. It suggests that gene

regulation patterns of these five pathways may be mainly

dependent on the gene interactions (gene correlation changes

across two classes), not on the changes of gene expression levels.

Thus, when two gene regulation patterns, one mainly dependent

on gene interactions and the other on gene expression changes,

exist in the p53 dataset, ‘‘gene interaction analysis’’ and ‘‘main

gene analysis’’ can complement to each other and give us much

biological insights into the genetic regulatory mechanisms of p53

in cancer development.

Taking VEGF signaling pathway as an example, we further

extract a core set of gene pairs that chiefly contribute to the

variation of p53 status. VEGF signaling pathway is involved in

vasculogenesis (e.g. cancer angiogenesis), arteriogenesis, and

lymphangiogenesis as well as in both physiological and patho-

physiological angiogenesis [25]. By our method, we derive a core

set (p,1.00e-4) for VEGF signaling pathway, including 187 gene

pairs. We illustrate the four gene pairs with top gene interaction

effects from VEGF signaling pathway are: 1) KDR and MAPK1;

2) AKT2 and NFATC1; 3) PLA2G10 and PLA2G1B; and 4)

PLA2G10 and PLA2G5. As pointed out above, a two-gene

interaction effect reflects the change of correlation coefficients of a

gene pair in different groups. For the four identified gene pairs,

they show strong positive correlations in the normal group, but

lower negative or no clear correlation in the mutation group, as

shown in Figure 1. For example, for genes KDR and MAPK1,

their correlation coefficient is 0.63 in p53 normal group, but 0.01

in the p53 mutation group. Certain genes in these identified gene

pairs have been linked to p53 status in the cells by previous studies.

Table 1. Summary of ‘‘Gene interaction analysis’’ and ‘‘Main gene analysis’’ for p53 data set.

Gene interaction analysis Main gene analysis

Gene set name FDR Gene set name FDR

VEGF signaling pathway ,0.01 HSP27 pathway ,0.01

Gamma hexachlorocyclohexane degradation pathway 0.09 P53 Hypoxia pathway ,0.01

Urea cycle and metabolism of amino groups pathway 0.09 P53 pathway ,0.01

Ether lipid metabolism pathway 0.09 SA G1 and S phases pathway ,0.01

Insulin signaling pathway 0.15 FMLP pathway ,0.01

NGF pathway ,0.01

RAS pathway ,0.01

doi:10.1371/journal.pone.0008064.t001

Figure 1. Correlation coefficients of four gene pairs from the
VEGF signaling pathway in two different classes.
doi:10.1371/journal.pone.0008064.g001
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For instance, MAPK1 activation has an important role in DNA-

damage induced apoptosis. Gene p53 acts as one of the upstream

regulators of MAPK1 activation for the induction of apoptosis in

cancer cells, and the p53 status can affect the activation MAPK1

[26,27].

Lung Cancer Data Set
The lung cancer data set consists of samples from 86 patients, of

which 24 were dead and 62 survived. The gene expression profile

of each sample contains 5,217 probes. Our analysis results are

summarized in Table 2. At FDR 0.20 level, we identify two

pathways by ‘‘gene interaction analysis’’: (i) GSK3 pathway; and

(ii) Androgen and estrogen metabolism pathway, which do not

reach the significant level in ‘‘main gene analysis’’, indicating that

these two pathways are mainly dependent on two-gene interac-

tions to involve in gene regulation of lung cancer.

To illustrate the effects of gene interactions, we focus on the

GSK3 pathway. By our method, we extract a core set (p,1.00e-4)

for the GSK3 pathway, including 39 gene pairs. The four pairs

with top gene interaction effects from it: 1) APC and NFKB1; 2)

AKT1 and NFKB1; 3) DVL1 and MYD88; and 4) PPP2CA and

WNT10B. As shown in Figure 2, these four gene pairs show

negative correlation in the dead group, and lower positive

correlation or no clear correlation in the survival group. For

example, for genes APC and NFKB1, their correlation is -0.60 in

the dead group, but 0.03 in the survival group. Biologically,

previous studies have shown that APC is associated with cancer

recurrence [28], and AKT1 are associated with several different

cancers, such as breast, colorectal, and lung cancers [29]. Thus

those gene interactions identified by our method may provide new

clue for the gene regulatory mechanisms which are associated with

lung cancer.

Discussion

Although a number of gene set analysis methods have been

proposed, they provide little information on gene interactions.

However, as gene interactions in a gene set may be associated with

the studied phenotype, it is useful for finding potential gene

regulation patterns from gene expression data. A computational

and statistical challenge in identifying gene interactions in

microarray data is that the number of possible gene interactions

increases exponentially with the number of genes and that a large

number of tests are involved.

In this study, our method not only tests gene interactions in the

framework of gene set enrichment analysis, but also extracts core

sets of gene interactions that contribute to the variation of a

phenotype of interest. More importantly, our method provides a

way to integrate these three analyses for identifying target genes

and gene interactions related to the trait of interest. Using two

publicly available datasets, we have shown how our method can be

applied to analyze gene interaction enrichment. The results

indicate that our method can discover gene sets with enriched

gene interactions hidden in microarray data. In addition, our

method is advantageous in that the use of the minimum p-value

can reduce the irrelevant gene combinations and extract core sets

of gene interactions that chiefly contribute to the statistical

variation of a phenotype of interest. Exploration of core sets of

gene interactions is a useful step towards further understanding

biological mechanisms underlying the gene-set association with the

phenotype of interest. The identified gene interactions can be used

in the gene regulation construction to investigate a fine structure of

the gene regulation patterns that are associated with studied

phenotype.

In our method, cross products of gene expression profiles are

adopted to identify gene interactions in a gene set. Using cross

product term of gene expression profiles, it has two main

advantages: 1) this general idea can be extended straightforwardly

to test higher-order interaction effects among gene expression

profiles for gene expression data. For example, we can test three-

gene interactions by using cross-products of three gene expression

profiles. Different patterns of gene interactions may produce

further insights in the analysis of gene regulation structures; 2) this

method can be not only applied to a binary trait, but also a

continuous trait for gene interaction analyses. Thus our method

provides a general methodology for gene interaction enrichment

analysis for gene expression data.

In summary, gene interaction enrichment analysis is a natural

exploration step forward for methodologies of gene set analysis.

With gene interactions being a basis for the very active field of

regulatory network construction [31,32], our method can give

researchers the ability to extract potentially disease-related gene

sets and related genes from microarray data, and thus is helpful to

delineate the sophisticated knowledge of relevant molecular

pathways of disease pathogenesis. Our method can be a useful

complement to classical gene set analysis which only considers the

single genes in a gene set.

Web Resources
The URLs for data presented herein are as follows:

P 53 and Lung cancer datasets: http://www.broad.mit.edu/

gsea/index.jsp

MSigDB: http://www.broad.mit.edu/gsea/msigdb/index.jsp

Table 2. Summary of ‘‘Gene interaction analysis’’ and ‘‘Main
gene analysis’’ for lung cancer data.

Gene interaction analysis Main gene analysis

Gene set name FDR Gene set name FDR

GSK3 pathway ,0.01 Ceramide pathway ,0.01

Androgen and estrogen
metabolism pathway

0.16 AMI pathway ,0.01

CSK pathway ,0.01

doi:10.1371/journal.pone.0008064.t002

Figure 2. Correlation coefficients of four gene pairs from the
GSK3 pathway in two different classes.
doi:10.1371/journal.pone.0008064.g002
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