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Mast cells (MCs) have long been mainly regarded as effector cells in IgE-associated

allergic disorders with potential immunoregulatory roles. Located close to the allergen

entry sites in the skin and mucosa, MCs can capture foreign substances such as

allergens, toxins, or noxious substances and are exposed to the danger signals produced

by epithelial cells. MC reactivity shaped by tissue-specific factors is crucial for allergic

responses ranging from local skin reactions to anaphylactic shock. Development of Th2

response leading to allergen-specific IgE production is a prerequisite for MC sensitization

and induction of FcεRI-mediated MC degranulation. Up to now, IgE production has

been mainly associated with proteins, whereas lipids present in plant pollen grains,

mite fecal particles, insect venoms, or food have been largely overlooked regarding

their immunostimulatory and immunomodulatory properties. Recent studies, however,

have now demonstrated that lipids affect the sensitization process by modulating innate

immune responses of epithelial cells, dendritic cells, and NK-T cells and thus crucially

contribute to the outcome of sensitization. Whether and how lipids affect also MC effector

functions in allergic reactions has not yet been fully clarified. Here, we discuss how

lipids can affect MC responses in the context of allergic inflammation. Direct effects

of immunomodulatory lipids on MC degranulation, changes in local lipid composition

induced by allergens themselves and changes in lipid transport affecting MC reactivity are

possible mechanisms by which the function of MC might be modulated.
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INTRODUCTION

Mast cells are long-living tissue-resident hematopoietic cells equipped with secretory granules
containing a broad spectrum of biologically active mediators such as histamine, proteases, and
cytokines (1, 2). Preferentially located in the skin and mucosa, MCs detect potentially dangerous or
noxious substances in concert with danger signals produced by epithelial cells at damaged barriers.
Extensive MC degranulation as an urgent response to different types of stimulation and its wide-
ranging local or systemic effects are the reasons why MCs are the main effector cells in allergies (3).
Here, we summarize recent findings describing how reactivity of MCs can be modulated by lipids
and discuss how interference with intracellular lipid transport could affect MC reactivity.
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LIPID STRUCTURE AND MOLECULAR
FEATURES

Lipids are overall hydrophobic or amphipathic molecules
consisting of a hydrophilic head group and a hydrophobic tail
group connected either by esters or ether bonds. Other lipids
like sterols consist of a ring structure with various modifications.
Lipids, in contrast to proteins and nucleic acids, are synthesized
by a series of specific interlinked enzymatic reactions generating
a high diversity of different lipid molecules. According to
their hydrophobic characteristics and chemically functional
backbones, lipids are categorized into eight main groups, namely
fatty acyls, glycerolipids, glycerophospholipids, sphingolipids,
sterol lipids, prenol lipids, saccharolipids, and polyketides (http://
www.lipidmaps.org). Lipids are essential in storage of energy,
arrangement of signaling complexes, participation in signal
processing as second messengers and building of membranes as
physical barriers. Membranes in mammalian cells consist mainly
of sphingolipids, glycerophospholipids, and cholesterol (4). They
are fluidic bilayers characterized by different lipid compositions
in their inner and outer sides where lipids together with
proteins form highly ordered structures essential for organization
of cellular compartments. An integral part of membranes is
cholesterol. It is synthesized in the endoplasmic reticulum (ER),
transported then to the Golgi complex, and further to the plasma
membrane which shows the highest cholesterol concentration.
Together with sphingolipids, cholesterol regulates the membrane
permeability and facilitates organization of ordered protein islets.
Glycerophospholipids and sphingolipids are also synthesized in
the ER and further modified in the Golgi complex as well as the
mitochondria (5–7). The lysosome, on the other hand, plays a
crucial role in lipid sorting and metabolism (8). Enzymatically
induced changes in the lipid composition of the membrane are
associated with a new ordering of membrane proteins and altered
membrane microdomains (9). In general, any change in the lipid
or protein compartment of a membrane affects both partners
and is therefore tightly controlled by the cell. MCs in particular
undergo dramatic membrane reorganization while degranulation
and recovery. The schematic structure of the different lipid
categories and exemplary representatives of these categories with
effects on MC functions are summarized in Table 1.

PRODUCTION OF LIPID MEDIATORS IS
ASSOCIATED WITH CHANGES IN MAST
CELL REACTIVITY

Activated in settings of allergic responses, mainly through
stimulation of the high affinity receptor FcεRI complex
by IgE-recognizing specific antigens, MCs release pre-stored
biogenic amines, proteases, proteoglycans, chemokines as well
as cytokines. In addition, MCs are well-known producers
of different lipid mediators such as leukotrienes (LT) and
prostaglandins (PG) (14, 20, 35) and production of these lipid
mediators has in turn been shown to regulate MC functions.
For example, MC-produced lipid mediators have been found
to enhance inflammation in specific situations (36, 37) or

to limit inflammation in other circumstances associated with
reestablishment of tissue homeostasis (38, 39). Recent studies also
demonstrated that enzymes responsible for production of lipid
mediators belong to the MC-specific gene expression signature
(40). Furthermore, in vitro generated connective tissue-like MCs
and mucosal-like MCs differ in their eicosanoid patterns (41)
and skin MCs are unique in showing the lowest expression
levels of Alox5 gene encoding 5-lipoxygenase (40), indicating
that lipid mediator production is coordinated by tissue-specific
regulatory mechanisms. Production of eicosanoid mediators,
sphingolipid metabolites, and platelet-activating factor (PAF) by
MCs is extensively reviewed elsewhere (15, 42). Thus, during
allergic responses, MCs produce a variety of lipid mediators
acting in a paracrine and autocrine manner. In addition, MC
reactivity is modulated by lipid mediators produced by other cells
exposed to environmental challenges.

ENDOCANNABINOIDS AFFECT MAST
CELL REACTIVITY

Often overlooked regarding their modulatory effects on MC
function are endocannabinoids-a group of bioactive lipids
serving as secondary immune modulators participating in
down-regulation of inflammatory processes (17, 43). The best
characterized members of endocannabinoid lipid mediators
are N-arachidonoylethanolamine (anandamide, AEA) and 2-
arachidonoylglycerol (2-AG) (44, 45), which are derived from
membrane phospholipids in response to physiological or
pathological stimuli. Furthermore, new signaling mechanisms
for intracellular transport and storage of endocannabinoids
have been described (46–49). Endocannabinoids act through
type-1 (CB1) and type-2 (CB2) G protein-coupled cannabinoid
receptors, G protein-coupled receptor GPR55, transient receptor
potential channel of the vanilloid subfamily 1 (TRPV1), and
peroxisome proliferator-activated receptor γ (PPAR γ) (50). CB1
and CB2 are expressed on MCs (51) and initiate a series of
signal transduction events that converge at the transcriptional
level to regulate cell migration and production of cytokines
and chemokines (52, 53). Acting in concert with GPR55, CB2
mediates signals inhibiting MC degranulation and cytokine
synthesis (54). Described anti-fibrotic effects of cannabinoid
receptors in differentMC-related diseasemodels (55, 56) together
with the recently deciphered crystal structure of CB1 and
CB2 (57, 58) will allow development of selective agonists
and their implementation in novel therapeutic concepts for
allergic diseases.

ALLERGY-ASSOCIATED
IMMUNOMODULATORY LIPIDS ACT ON
MAST CELLS

One would expect that allergen-associated lipids of plants or
bacterial origin preferentially affect epithelial cells. Interaction
of lipids with MCs might rather be possible in tissues with a
damaged barrier (mainly by proteolytic activity of allergens)
or indirectly in individuals showing previous sensitization
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TABLE 1 | Lipid categories and examples of lipids affecting MC reactivity.

Lipid category Schematic structure Examples of lipids with

effects on MC reactivity

References

Fatty acyls

α-Linolenic acid

Fatty acids, Omega 3, and 6

polyunsaturated fatty acids

PG, TX, LT, LX

AEA

(10–13)

(14–16)

(17)

Glycerolipids

Triglyceride

2-AG (17)

Glycerophospholipids

Phosphatidylethanolamine

PC, PE, PI, PS, PAF (18–20)

Sphingolipids

Sphingomyelin

Ceramide

C1P, S1P

(21)

(22, 23)

Sterol lipids

Cholesterol

Cholesterol

Steroids

Vitamin D3

(24–27)

(28)

(29, 30)

Prenol lipids

Vitamin A

Carotenoids

Vitamin E

(11)

(31)

Saccharolipds

Lipid A -disaccharide-1-phosphate

LPS (32, 33)

Polyketides

Griseorhodin A

Antibiotics

Flavonoides

(34)

(11)

http://www.lipidmaps.org is a source for structure of lipids. TX, thromboxane; PI, phosphatidylinositol.
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and presence of specific IgE and active transport of IgE-
antigen complexes containing lipids. MCs are regulated by
lipids associated with different allergens, as extensively reviewed
elsewhere (59, 60). Interestingly, epithelial cells from healthy
donors sense allergens differently than epithelial cells from
allergic patients (61). Therefore, enhanced reactivity of MCs
could be the result of a combined action of allergen-lipid
complexes and pro-allergic inflammatory mediators produced
by epithelial cells (Figure 1). Degranulation of human lung
MCs has been shown to be inhibited in coculture with
bronchial epithelial cells (62), substantiating the hypothesis
that epithelial cells can provide the inhibitory signals to
MCs as well. Attractive candidates potentially limiting MC-
reactivity are specialized pro-resolving mediators (SPMs) crucial
for the resolution of inflammatory processes (63, 64). Four
classes of SPMs have been characterized so far. Lipoxins
(LX) are biosynthetic products of arachidonic acid. Resolvins,
protectins, and maresins are products of eicosapentaenoic acid
(EPA), docosapentaenoic acid (n-3DPA) or docosahexaenoic
acid (DHA) (64). The epithelial cell-derived resolvins D1, D2,
and lipoxin A4 have been found to suppress IgE-mediated
histamine release from MCs via G-protein-coupled receptors
(65). Furthermore, airway inflammation, mucus production, and
airway hyperresponsiveness in vivo as well as MC degranulation
and cytokine release were decreased by lipoxin B4 application
(16), indicating therapeutic potential of pro-resolving lipid
mediators in regulation of MC reactivity. Whether SPMs could
be produced by MCs themselves, is unknown.

One major class of allergen-containing particles represent
plant pollens, where pollen grains are coated with different lipids

FIGURE 1 | Modulation of MC reactivity by allergen-associated lipids and lipid

mediators.

essential for plant fertilization (66). By interacting with immune
cells and epithelial cells, pollen lipids may play an important
role in immunoregulation. Two classes of pollen-associated lipid
mediators (PALMs) have been described so far, namely LTB4-like
mediators, which are monoxydroxylated derivatives of linoleic
acid, and phytoprostanes generated from α-linolenic acid in
response to oxidative stress (67). Effects of PALMs on MC
degranulation have been reported for aqueous pollen extracts
(APE) derived from birch pollen and for APE from Ambrosia
artemisiifolia (68). Here, degranulation was induced in skin MCs
of C57BL/6 mice by intradermal injection of APE in the absence
of specific IgE. It is not known whether MC degranulation can
be induced by APE themselves in the presence of an intact skin
barrier. In experiments with RBL cells, it has been shown that
Ambrosia pollen extract induces histamine release by a ROS-
dependent mechanisms, but not β-hexosaminidase release (69).
In experiments with mountain ceder (Juniperus ashei) pollen
extract, release of both serotonin and β-hexosaminidase was
induced in RBL cells in an IgE-independent, but ROS-dependent
manner. Added to suboptimal IgE/AG concentrations, pollen
extracts enhanced degranulation of RBL cells (70), although
lipid components in particular extracts were not analyzed.
Interestingly, persistent contact with grass pollen in early
childhood has been found to represent one of various allergy-
protective factors (71). However, whether lipids are essential for
tolerance induction and whether MCs are directly involved in
tolerance development remains to be investigated.

ALLERGENS INDUCE CHANGES IN MAST
CELL LIPID COMPOSITION

Interaction of honeybee venom phospholipase A2 (PLA2)
with membrane lipids is an example how allergen-induced
modification of lipids could tune MC reactivity. Insect venom,
particularly Hymenoptera venoms, induces a pronounced Th2
response by coopting evolutionary conserved immunological
and neurological mechanisms (3, 72). A mixture of different
substances, including enzymes, toxic peptides, lipids, and
biogenic amines, is transported into the skin by the insect
sting and induces a local inflammatory reaction, leading to
sensitization and IgE production. Phospholipase A2 is one of
the two major honeybee (Apis mellifera) venom allergens (73,
74). Cleaving cell membrane phosphodiacylglycerides, PLA2
induces the release of lysophospholipids, particularly lysopho
sphatidylcholine (LPC), together with fatty acids. This local
lipid remodeling can affect MC reactivity per se and lead to
MC degranulation (75, 76) (Figure 1). The stimulatory effect
on MCs is absent if the enzymatically inactive form of PLA2 is
used (77). PLA2 enzymatic activity is also required to induce
a Th2 response (78). Generated neoantigens in the skin are
presented by the CD1a molecules of antigen-presenting cells
(APCs) and then induce a polyclonal T cell response (79).
Interestingly, the stimulatory effects of PLA2 were observed
only in the presence of lipids, either venom- or host-derived,
indicating that lipid and protein components act in concert to
induce a T cell response (79). PLA2 activity has also been detected
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in house dust mite extracts (80), indicating that generation
of lysophospholipids could be a part of allergic sensitization
program. Moreover, an interaction between MCs and dendritic
cells (DCs) has been demonstrated in contact hypersensitivity
models (81, 82), where MCs were “cross-dressed” with DC
MHC class II complexes. How the local changes of lipid
composition, induced by e.g., PLA2 activity, modulate the MC-
DC interaction and which functional consequences this would
have for the T cell response in allergic settings remains to be
further elucidated.

MEMBRANE LIPID ORGANIZING
ENZYMES ARE TARGETS TO MODULATE
MAST CELL ACTIVATION

Organization of membrane lipids plays an important role
in regulation of MC degranulation. The inner leaflet, facing
the inside of the cell, contains negatively charged amino-
phospholipids, and phosphatidylethanolamine (PE). The
outer leaflet, facing the outside environment, contains
phosphatidylcholine (PC) and sphingomyelin. Asymmetric
distribution of phospholipids in the plasma membrane
plays an essential role in regulation of MC exocytosis (83).
Interestingly, one of the earliest events in MC degranulation
is a redistribution of phosphatidylinositol 4,5-bisphospate
[PtdIns(4,5)P2] disappearing from the plasma membrane
within seconds after stimulation (84). Furthermore, MC
degranulation is associated with reversible phosphatidylserine
(PS) translocation to the plasma membrane (85), in contrast
to various other cell types, in which the PS translocation
represents an apoptotic “eat-me” signal. PS exposure can
implicate endocytosis, acquisition of membrane curvature,
regulation of transmembrane proteins, interactions with
cytoskeletal elements as well as involvement in PS signaling
(19). Lipid transporting phospholipid scramblase 1 (PLSCR1),
floppase ABCA1 or transmembrane protein TMEM16F are
the candidates responsible for PS translocation (19, 86).
Interestingly, PS translocation in MCs could be induced
not only by FcεRI-mediated activation. Crosslinking of
glycosylphosphatidylinositol-anchored proteins by specific
antibodies or lectins also induce PS externalization, using
probably a different Ca2+-independent mechanism (87). It
seems that the context in which MCs recognize PS is important,
since free PS and lyso-PS enhance FcεRI-mediated degranulation
(88) and phosphatidylserine-specific phospholipase A1, released
e.g., by activated platelets, generates lyso-PS and strongly
enhances MC histamine release (75). However, recognition of
PS on the surface of apoptotic cells by the inhibitory receptor
CD300a leads to a downregulation of inflammatory cytokine
and chemokine production (89). Also, rodent MCs express
α-galactosyl derivatives of the ganglioside GD1b (90). Antibodies
recognizing this ganglioside inhibit degranulation and histamine
release by modulating FcεRI endocytosis (90, 91) but in
contrast, are also able to promote release of cytokines and lipid
mediators (92).

Lipid content and distribution in membranes are
regulated by different enzymes. Three types of phospholipid
transportation enzymes are responsible for maintenance
of the phospholipid asymmetry in membranes: (1)
flippases that catalyze translocations of phospholipids
between membrane leaflets in an energy-dependent or-
independent manner, primarily from the external to the
internal leaflet, (2) floppases that transport lipids from the
cytoplasmic leaflet to the external membrane leaflet, and (3)
scramblases that move lipids between the two leaflets [as
reviewed in Pomorski and Menon (93)]. Potential effects of
flippases, floppases, and scramblases on MC function are
outlined in Figure 2.

Flippases are members of the P4-type ATPase family with
a similar structure containing 10 transmembrane domains,
an actuator domain, a phosphorylation domain, and a
nucleotide-binding domain associating with an accessory
subunit Cdc50, forming a heterodimeric complex. In mammals,
14 different P4-ATPases have been identified as heterodimers
consisting of a catalytic subunit in association with one
member of the Cdc50 family (94). Many P4-ATPases are
ubiquitously expressed and have been implicated in different
metabolic diseases (95). P4-ATPases are also involved in
the phospholipid transport between different subcellular
compartments and are responsible for maintenance of
phospholipid asymmetry in different cell types. Lipid
transport by P4-ATPases is lipid-specific, head group-, and
backbone-dependent (96). P4-ATPases regulate vesicular
trafficking and the bidirectional vesicular transport between

FIGURE 2 | Potential effects of flippases, floppases, and scramblases on MC

function. Lipid transporting enzymes could be involved in regulation of different

cellular processes. Granule biogenesis (A), endocytosis (B), and exocytosis

(C) could be regulated by flippases. Floppases are participating in transport of

lipid mediators (D) and could be involved in regulation of MC exocytosis (E).

Scramblases regulate FcεRI-mediated signaling and MC degranulation (F),

could be potentially involved in TLR-signaling in endosomes (G) and regulation

of gene transcription (H).
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the Golgi complex and early endosomes, but also vesicle
biogenesis by enriching specific phospholipids in yeast cells,
formation of post-Golgi vesicles in plant cells, as well as
maintenance of membrane integrity and secretory processes
(95, 97). Involvement of this class of lipid transporters in MC
granule biogenesis and exocytosis is obvious. Genetic models
with MC-specific P4-ATPase inactivation/overexpression
could help to better understand essential regulatory steps in
granule development, maturation and degranulation of MCs.
Improvement of the knowledge on MC granule organization
will also help to develop new strategies to interfere with
MC degranulation.

Lipid transporters, shipping lipids from the inner membrane
leaflet to the outer leaflet, are ATP-biding cassette (ABC)
proteins, originally identified as multidrug resistance gene
products in tumor cells. ABC proteins are encoded as single
polypeptides, which can form homo- or heterodimers, contain
an ATP-binding site, a nucleotide-binding domain and up
to 17 transmembrane domains (98). Leukotriene C4 was the
first lipid mediator described, transported by ABCC1/MRP1
(99). Different other lipid mediators such as prostaglandin A2
(PGA2) and 15-deoxy-1 (12,14) PGJ2, lysophosphatidylinositol
(LPI) are also transported by specific ABC proteins (100,
101). In MCs with downregulated ABCC1/MRP1 expression,
transport of S1P was strongly reduced, indicating an ABC-
dependent regulation of MC chemotaxis and migration (102).
How the lipid transport can be modulated by targeting
other ABC proteins and how this will affect MC function
is currently unknown. Mutations of ABC lipid transporters
are responsible for several human diseases, such as neonatal
surfactant deficiency (ABCA3 mutation) or Tangier disease
(ABCA1 mutation), characterized by decreased removal of
cholesterol from peripheral tissues (103).

Scramblases are structurally related proteins, containing a
DNA-binding domain, a palmitoylation motif, a Ca2+-binding
motif, transmembrane domains and a nuclear localization signal.
Located in the plasma membrane, scramblases are involved in
the Ca2+-dependent distribution of phospholipids (scrambling)
(104). In 2008, the group of Benhamou identified phospholipid
scramblase 1 (PLSCR1) as specific regulator of FcεRI signaling
(105). Initially, PLSCR1 was only marked responsible for the
rapid redistribution of phospholipids between two leaflets of the
plasma membrane after cell activation or apoptosis, leading to
the disruption of their asymmetric distribution (106–108). In the
meantime, however, it is known that PLSCR1 serves numerous
functions beyond the redistribution of phospholipids, such as
the regulation of cell proliferation, differentiation, apoptosis, and
tumor development (109–112). PLSCR1 requires palmitoylation
to be stabilized at the plasma membrane. In the absence of
palmitoylation, it is found in the nucleus, where it can bind DNA
and activate the transcription of the inositol phosphate-3 (IP3)
receptor (113, 114). When palmitoylated and localized at the
plasma membrane, it participates in the epidermal growth factor
signaling (115) by amplifying activation of the tyrosine kinase
Src (116).

Knock-down of PLSCR1 in RBL-2H3 cells significantly
impaired FcεRI-mediated degranulation and release of vascular

endothelial growth factor (105). Earlier, Pastorelli had already
observed that phosphorylation of PLSCR1 is increased following
the engagement of FcεRI in RBL-2H3 cells (117). Tyrosine
phosphorylation of PLSCR1 following FcεRI aggregation relies
on Lyn and Syk tyrosine kinases and partially also on calcium
mobilization. In contrast, Fyn signaling negatively regulated
PLSCR1 phosphorylation, suggesting a complex modulation
of FcεRI-dependent MC activation by PLSCR1 (105, 118).
In vivo studies using Plscr1−/− mice showed reduced FcεRI-
dependent passive systemic anaphylaxis and serum histamine
levels compared to wild-type mice (119), demonstrating the
involvement of PLSCR1 in IgE-mediated anaphylaxis without
affecting the phenotype or tissue distribution of resting MCs.
Surprisingly, anaphylactic reactions induced by direct injection
of histamine were slightly increased in Plscr1−/− animals,
indicating that PLSCR1 also counter-regulates IgE-dependent
anaphylaxis at later stages.

The modulatory ability of PLSCR1, allowing increased as well
as decreased biological responses, might serve to sophisticatedly
regulate inflammation, host defense, tissue remodeling and
homoeostasis and provide a rationale for exploiting PLSCR1
as therapeutic target in allergies (119, 120). Interestingly, in
plasmacytoid DCs, PLSCR1 interacts with TLR9, and regulates
the type I IFN response by modulating endosomal trafficking of
TLR9 (121). Also, scramblase 2 (PLSCR2) has been found to be
involved in the antiviral response. PLSCR2 binds to STAT3 and in
this way also participates in downregulating the type I interferon
response (122). Whether comparable effects will be observed in
MCs and whether the antiviral response of MCs is compromised
in the absence of scramblases remains an open question for
future investigations. Mice deficient for scramblase 3 developed
metabolic syndrome and lipid accumulation in abdominal fat
pads (123).

Modulation of MC degranulation by affecting the lipid
composition of the cell membrane or the enzyme activity
modulating the lipid distribution of the membrane are
potential emerging therapeutic strategies for the treatment of
allergic diseases.

CONCLUSION AND PERSPECTIVES

The rapidly emerging field defining modulation of MC
reactivity by lipids, in addition to proteins, reveals novel and
unprecedented targets, which may serve to preclude MC effects
in allergic reactions. Active substances secreted by MCs have
already been studied extensively, but data on the overall lipid
composition of MCs and on stimulus-specific as well as sub-
cell type-specific lipidomic data are still missing. Direct effects
of immunomodulatory lipids on MC degranulation, changes
in MC lipid composition induced by allergens themselves
and changes in lipid transport and metabolism in MCs
have not yet been comprehensively investigated. Furthermore,
current studies investigating MC lipids are often limited by
use of non-physiologic conditions or narrow restriction of
the lipids that were analyzed. Therefore, addition of modern
lipidomic approaches to the toolbox of immunology and cell
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biology is crucial. Hereby, the added knowledge of lipid
production and regulation together with deep understanding
of MC biology will help find new mechanisms regulating
MC responses. Coupled with this, an in-depth knowledge will
be considerably advantageous for patients with anaphylaxis,
asthma, allergic rhinitis, eczema, urticaria, mastocytosis, and
other allergic diseases.
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