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Public health decision makers rely on hospitalization forecasts to inform COVID-19
pandemic planning and resource allocation. Hospitalization forecasts are most relevant
when they are accurate, made available quickly, and updated frequently. We rapidly
adapted an agent-based model (ABM) to provide weekly 30-day hospitalization forecasts
(i.e., demand for intensive care unit [ICU] beds and non-ICU beds) by state and region in
North Carolina for public health decision makers. The ABM was based on a synthetic
population of North Carolina residents and included movement of agents (i.e., patients)
among North Carolina hospitals, nursing homes, and the community. We assigned SARS-
CoV-2 infection to agents using county-level compartmental models and determined
agents’ COVID-19 severity and probability of hospitalization using synthetic population
characteristics (e.g., age, comorbidities). We generated weekly 30-day hospitalization
forecasts during MayeDecember 2020 and evaluated the impact of major model updates
on statewide forecast accuracy under a SARS-CoV-2 effective reproduction number range
of 1.0e1.2. Of the 21 forecasts included in the assessment, the average mean absolute
percentage error (MAPE) was 7.8% for non-ICU beds and 23.6% for ICU beds. Among the
major model updates, integration of near-real-time hospital occupancy data into the model
had the largest impact on improving forecast accuracy, reducing the average MAPE for
non-ICU beds from 6.6% to 3.9% and for ICU beds from 33.4% to 6.5%. Our results suggest
that future pandemic hospitalization forecasting efforts should prioritize early inclusion of
hospital occupancy data to maximize accuracy.
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1. Introduction

Coronavirus disease 2019 (COVID-19) hospitalizations are a crucial metric used to monitor and respond to the COVID-19
pandemic. COVID-19, the disease caused by SARS-CoV-2, has been associated with over 2.2 million hospitalizations and over
600,000 deaths in the United States as of June 2021 (Centers for Disease Control and Prevention, 2021b). Throughout the
COVID-19 pandemic, many U.S. health systems have struggled to meet the demand for patient care with limited resources of
hospital beds, ventilators, and qualified health care workers (Maxmen, 2020; Schenck et al., 2020). When these resources
become stretched, hospitals may be unable to deliver high-quality care to patients with and without COVID-19 (Daugherty
Biddison et al., 2019; Rosenbaum, 2020; Ventura et al., 2020). Projections of hospital bed demand, including when capac-
ity may be exceeded, can aid public health and health care stakeholders in planning for and responding to these scenarios
(Weissman et al., 2020). These forecasts can model capacity under a range of possible scenarios by varying the effective
reproduction number, or Re (Inglesby, 2020). Higher Re values correspond to faster spread of SARS-CoV-2, while lower Re
values correspond to slower spread (Petersen et al., 2020).

Researchers have developed a variety of models to forecast COVID-19 hospitalizations, including simple formulas (Cavallo
et al., 2020; Holmes et al., 2020), statistical models (Castro et al., 2020; Srivastava et al., 2020), deep learning models
(Rodríguez et al., 2020), compartmental models (Arik et al.,; Massachusetts General Hospital Institute for Technology
Assessment, 2020; Weissman et al., 2020), and agent-based models (ABMs) (No author, 2020). Others have used ABMs to
answer what-if questions related to COVID-19 interventions (Holmdahl et al., 2021; Naimark et al., 2021). Numerous publicly
available, routinely updated national and state models have accurately predicted COVID-19 cases and deaths (University of
Southern California, 2021). However, publicly available models offer limited flexibility to end users who want to apply
their own substantive, on-the-ground knowledge and unique data to obtain more customized model output. Most publicly
available forecasts do not consider changes in non-COVID-19 hospitalizations, locations of individual patients, or capacities of
individual hospitals (Centers for Disease Control and Prevention, 2021a; IMHE, 2021). Incorporation of population, geospatial,
and health system dynamics in forecasting models can enhance hospitalization forecasts.

To address this need, we adapted an existing ABM of the North Carolina health system (Rhea et al., 2019) by integrating a
COVID-19 module. The ABM was originally developed to model healthcare-associated infections. It modeled patient move-
ment among healthcare facilities and was calibrated to contemporary hospital discharge data (Jones et al., 2019). The existing
ABM provided a framework from which to realistically model movement of patients with COVID-19 into hospitals for fore-
casting purposes. This framework allowed us to consider disease dynamics on a local, individual scale (i.e., hospital), as well as
on a large, aggregate scale (i.e., state/region). In addition to model accuracy, this modeling effort had three overarching goals.
First, forecasts were needed as soon as possible for rapid decision support. However, generating forecasts early in the
pandemic was a challenge as ABMs are complex and require substantial development time. Second, forecasts needed to be
generated as close to real time as possible, minimizing the time between receiving data and returning forecasts. Other
modeling teams have reported the value of quick forecast turnaround by responding to the demand for SARS-CoV-2 forecasts
in as little as 2 days (Weissman et al., 2020). Third, because of the dynamic nature of the pandemic, forecasts needed to be
updated frequently.

We used our updated ABM to generate 30-day North Carolina hospitalization forecasts at weekly intervals during
MayeDecember 2020 to address these goals. By leveraging an existing ABM of the North Carolina health system, we focused
development efforts on the addition of a COVID-19module. This approach allowed us to provide beta-version forecasts within
2 days of the North Carolina state of emergency declaration on March 10, 2020, and validated weekly forecasts within 2
months of that date. Here, we describe our experiences developing and implementing the ABM with the COVID-19 module
throughout the early pandemic period. We provide an evaluation of our model's accuracy and evaluate the impact of major
model updates on forecast accuracy.
2. Methods

ABM with COVID-19 Module. The existing geospatially explicit ABM included the movement of agents (i.e., patients)
among 104 acute care hospitals (“hospitals” throughout), 10 long-term acute care hospitals (LTACHs), 421 licensed nursing
homes, and the community in North Carolina (Rhea et al., 2019). Agents were based on a synthetic population of North
Carolina residents (i.e., >10.4 million agents), each with unique characteristics, including age, county of residence, and
comorbidities (Jones et al., 2019). Within the ABM, hospital characteristics included location and number of licensed and
staffed intensive care unit (ICU) beds and non-ICU (i.e., regular inpatient) beds. Statewide, the ABM included a total of
approximately 17,900 non-ICU beds and approximately 3200 ICU beds. The exact bed counts varied as our methodology and
data evolved over the course of forecasting. Relevant COVID-19 parameters are in Table 1, with additional parameters and
model details available in the Overview, Design Concepts, and Details (ODD) protocol and eMethods (Jones et al., 2021).

We created a COVID-19 module consisting of county-level susceptible, exposed, infectious, recovered (SEIR) compart-
mental models for each of North Carolina's 100 counties. These SEIR models were used to produce 30-day SARS-CoV-2
infection projections (Fig. 1) under various Re ranges (Table 1). For each forecast, we based the SEIR models on the latest
available North Carolina county-level reported COVID-19 cases. We used official case data provided by the North Carolina
Department of Health and Human Services (NCDHSS), in contrast to many modeling efforts which rely on publicly available
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Table 1
Relevant COVID-19 parameters.a.

Parameter Value Source

R0 minimum and maximum value bound [1e1.2], [1.2e1.4], [1.4e1.6] (COVID Act Now, 2021; Ferguson et al., 2020 March 16;
Gu, 2020; Imperial College London, 2020; Institute of
Global Health, 2021; Li et al., 2020; Rees et al., 2020;
Rosenberg et al., 2020; Rt.live, 2020; Sun & Achenbach,
2020 June 25; Wake Forest Baptist Health, 2021; Zeek,
2020 May 13)

COVID-19 agent length of stay (days) [median ¼ 5], [mean ¼ 3], [standard
deviation ¼ 5], [minimum ¼ 0],
[maximum ¼ 50]; truncated normal
distribution

Rees et al. (2020)

Proportion of population that remains
susceptible when the simulation starts

0.9 Wake Forest Baptist Health (2021)

Infectious period (days) 6 (Ferguson et al., 2020 March 16)
Incubation period (days) 5 (Ferguson et al., 2020 March 16)
Length of infection (days) used for SEIR model

and for calculating recovery days among
COVID-19 agents not admitted to a hospital

14

Initial case multiplier representing ratio of
unreported infections to reported cases prior
to the start of the model

10 (Li et al., 2020; Rosenberg et al., 2020; Sun & Achenbach,
2020 June 25; Zeek, 2020 May 13)

Proportion of hospitalized COVID-19 agents
requiring an ICU bed

0.25 (Ferguson et al., 2020 March 16), Expert opinion

Proportion of infected agents that are tested 0.1 Inverse of initial case multiplier
Proportion of agents with asymptomatic, mild, or

moderate symptoms that seek hospitalization
0 Expert opinion

Distribution of positive COVID-19 reported cases
by age

[Age 0e49: 0.396], [50e64: 0.328], [65þ:
0.276]

Bayesian calculation1

Probability of hospitalization by age given a
positive, tested SARS-CoV-2 infection with
comorbidities

[Age 0e49: 0.0], [Age 50e64: 0.4609], [Age
65þ: 0.411]

Bayesian calculation1

Probability of hospitalization by age given a
positive, tested SARS-CoV-2 infection without
comorbidities

[Age 0e49: 0.0367], [Age 50e64: 0.035],
[Age 65þ: 0.1213]

Bayesian calculation1

Probability of hospitalization by age given a
positive, untested SARS-CoV-2 infection with
comorbidities

[Age 0e49: 0.0], [Age 50e64: 0.0651], [Age
65þ: 0.058]

Bayesian calculation1

Probability of hospitalization by age given a
positive, untested SARS-CoV-2 infection
without comorbidities

[Age 0e49: 0.0052], [Age 50e64: 0.0049],
[Age 65þ: 0.0171]

Bayesian calculation1

a For a comprehensive list of parameters and details on Bayesian calculations (Jones et al., 2021).

Fig. 1. Integration of susceptible-exposed-infectious-recovered (SEIR) models with an agent-based model (ABM) for hospitalization forecasts by state and region
in North Carolina.
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data (Patel et al., 2021). To account for under-reporting, reported case counts weremultiplied by a fixedmultiplier of 10 (Table
1).

SARS-CoV-2 infection status was assigned to agents in the ABM's community node using the infection projections (Fig. 1).
Subsequently, COVID-19 severity and probability of hospitalization for agents in the ABMwith SARS-CoV-2 were determined
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by agent-specific characteristics (e.g., age, comorbidities) (Jones et al., 2021). Other agent hospitalizations in the ABM were
according to previous calibrations (Jones et al., 2021; Rhea et al., 2020). The code base for the ABM is open source and
available on GitHub (RTI International, 2021).

Model Output. Every model run generated estimates of multiple variables for each day of the 30-day forecast, including
new and cumulative SARS-CoV-2 infections, new agents seeking a hospital bed, census of hospitalized agents, and hospital
demand (the number of agents in need of a hospital bed). Hospitalization variables were disaggregated by COVID-19 status
and ICU status (Jones et al., 2021). Hospital demand could be larger than the number of hospitalized agents when the model
predicted that hospital bed capacity was reached.

For each weekly forecast, we conducted 100 simulations per Re range. We summarized output variables from the 100
simulations bymean and by 25th and 75th percentiles. Forecasts were produced at various geographic levels.We performed a
series of validation checks on model output for each run (eMethods).

Major Model Updates. During MayeDecember 2020, we produced forecasts approximately once weekly. Over this period,
we made three major model updates, as described below.

Adjustment of county-level Re values for SEIR models. Prior to August 2020, we adjusted county Re values based on each
county's case counts (eMethods). Although the assumption of homogeneous mixing might not be applicable to small and
sparse populations, it has been shown that Re adjustments can lead to a reasonable approximation of a detailed model with
complex contact matrices (Rahmandad & Sterman, 2008). However, this approach led to some smaller counties seeing un-
realistic Re values. To avoid spurious estimates caused by an occasional local outbreak, beginning in August 2020, we adjusted
each county-level Re using the following equation designed to dampen extreme Re values:

County corrected Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CountyRe
StateRe

3

s
*ModelRe (1)
The correction value generally ranged between 0.8 and 1.2 (Fig. 2). Without this correction, some calculated county-level
Re values were too large or too small to be realistic.

Better initialization of non-COVID-19 hospitalizations. Prior to September 2020, we applied an estimated mean hospital
occupancy of 56% across all modeled hospitals. Beginning in September 2020, we used the latest available, near-real-time
North Carolina hospital occupancy data to initialize hospitalized agents for each hospital in the ABM.

Implementation of updated location transition probabilities. Location transition probabilities in the original ABM were
determined using pre-pandemic hospital discharge data (Rhea et al., 2020). However, during the pandemic, non-COVID-19
related hospitalizations decreased (Stradling, 2021). We used the near-real-time hospital occupancy data for North Car-
olina to recalculate transition probabilities each week. These updated transition probabilities ensured that a steady state of
non-COVID-19 agent hospitalizations occurred during a 30-day model run (i.e., non-COVID-19 agent hospital occupancy
remained at a consistent level). These updates were fully integrated by October 2020.

Forecast Accuracy. We assessed accuracy by retrospectively comparing our state-level Re ¼ 1.0e1.2 forecasts to North
Carolina hospitalization data, as reported daily by 104 North Carolina hospitals to the NCDHHS. In this assessment, we
included all state-level Re¼ 1.0e1.2 forecasts produced duringMayeDecember 2020 inwhich at least 80% (i.e., 24 days) of the
forecast values could be compared with NCDHHS hospitalization data (eMethods). The Re ¼ 1.0e1.2 rangewas chosen for this
assessment because statewide Re estimates during the forecast production period fell within this range (Rt.live, 2020).

We compared the means and interquartile ranges (IQRs) (across the 100 simulations) of forecasted demand for ICU beds
and non-ICU beds to reported hospitalizations by date. We also compared the means and IQRs of forecasted change in bed
demand by COVID-19 agents to the change in reported hospitalizations by COVID-19 patients by date. This change in demand
Fig. 2. Example of Re correction multipliers used during the project. These values were multiplied by the modeled Re value of the corresponding county to
generate county corrected Re values.
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for a model run was measured by the difference in beds needed between Day 1 and Day 30 of the forecast. We quantified
forecast accuracy using mean absolute error (MAE) and mean absolute percentage error (MAPE). MAE measures the absolute
difference between the predicted value and the observed value. MAPE measures the percentage difference between the
predicted value and the observed value. Smaller MAE and MAPE values indicate higher forecast accuracy.
3. Results

During MayeDecember 2020, we produced 31 weekly forecasts. Of these, 21 state-level Re ¼ 1.0e1.2 weekly forecasts,
from June 26 to November 20, 2020, had comparison data for at least 80% of the forecast values and were included in the
accuracy assessment. Across all included forecasts, the average MAPE was 7.8% for non-ICU beds and 23.6% for ICU beds.
Following full implementation (by October 2020) of near-real-time hospital occupancy data in the model (i.e., initialization of
non-COVID-19 agents in hospitals and updates to location transition probabilities), the average MAPE was reduced to 3.9% for
non-ICU beds and 6.5% for ICU beds.

Themean non-ICU bed demand forecasts were generally lower than reported non-ICU hospitalizations, particularly during
AugusteSeptember 2020 (Fig. 3). In 4 of the 21 forecasts, the IQR of non-ICU bed demand included the reported non-ICU
hospitalizations. The mean ICU bed demand forecasts were generally higher than reported ICU hospitalizations until early
October 2020, when the forecasts became better aligned with reported values. In 5 of the 21 forecasts, the IQR of ICU bed
demand included the reported ICU hospitalizations. Among the three major model updates, initialization of non-COVID-19
agents in hospitals (September 11, 2020) and implementation of updated location transition probabilities (October 9,
2020) had the largest impact on improving bed demand forecast accuracy.

For the forecasts produced during JuneeSeptember 2020, the forecasted changes in non-ICU bed demand and ICU bed
demand by COVID-19 agents were higher than the changes in reported hospitalizations for patients with COVID-19 (Fig. 4).
The JulyeAugust 2020 timeframe is particularly notable because the forecasted change in demand increased while the re-
ported change in demand decreased. Among the three major model updates, adjusting the county-level Re correction values
to avoid unrealistically extreme Re values (August 28, 2020) had the largest impact on improving the accuracy of forecasted
changes. This update resulted in fewer projected SARS-Cov-2 infections and, subsequently, a smaller change in demand for
hospital beds by COVID-19 agents for the duration of the forecast period.

MAE was higher for non-ICU bed demand forecasts than for ICU bed demand forecasts, reflecting the larger number of
non-ICU beds (Fig. 5). MAPE was generally higher for ICU bed demand forecasts. During the forecasting period, the lowest
MAPE and MAE for non-ICU and ICU bed demand forecasts occurred after the implementation of updated location transition
probabilities in October 2020. After this improvement, the average MAPE value for non-ICU bed demand forecasts was less
than two-thirds of the average initial MAPE value. The averageMAPE value for ICU bed demand forecasts was nearly one-fifth
of the initial average (Table 2).
Fig. 3. Mean forecasted demanda for non-intensive care unit (ICU) beds and ICU beds by date of model run and retrospectively compared to reported demand,b

North Carolina, June 26, 2020eNovember 20, 2020
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Fig. 4. Change in forecasted demanda by COVID-19 agents for non-intensive care unit (ICU) beds and ICU beds by date of model run and retrospectively compared
to reported demand,b North Carolina, June 26, 2020eNovember 20, 2020

Fig. 5. Mean absolute error (MAE) and mean absolute percentage error (MAPE) for non-intensive care unit (ICU) beds and ICU beds under an effective repro-
duction number range of 1.0e1.2 and by date of model run, North Carolina, June 26, 2020eNovember 20, 2020.a.

Table 2
Averagemean absolute error (MAE) andmean absolute percentage error (MAPE) by hospital bed type (non-intensive care unit [ICU] bed and ICU bed) before,
during, and after integration of the near-real-timea hospital occupancy data.b

Hospital Occupancy Data Time Period Bed Type Average

MAE MAPE

Not available June 26, 2020eSeptember 4, 2020 Non-ICU 859 6.6%
ICU 490 33.4%

Used to initialize non-COVID-19 agents in hospitals in the ABM September 11, 2020eOctober 2, 2020 Non-ICU 1804 13.1%
ICU 212 11.7%

Used to determine updated location transition probabilities in the ABM October 9, 2020eNovember 20, 2020 Non-ICU 514 3.9%
ICU 128 6.5%

a Typically from the day before the model run.
b Hospital occupancy data as reported by hospitals to the North Carolina Department of Health and Human Services and provided for model input.

A. Preiss, E. Hadley, K. Jones et al. Infectious Disease Modelling 7 (2022) 277e285
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In May 2020, a full deployment of the ABM and COVID-19 module took 20 h on a local server with 40 cores. After
implementing model efficiencies (i.e., cloud computing, GNU parallel processing (Tange, 2020), code refactoring), we reduced
model runtime from 20 h to approximately 15 min and typically turned around forecasts within 1 business day.

4. Discussion

Public health and health care stakeholders can use hospital bed demand forecasts for COVID-19 pandemic planning and
response. We adapted an existing ABM to address this need by adding a COVID-19 module of county-level SEIR models. We
generated the forecasts using near-real-time data and updated the forecasts weekly duringMayeDecember 2020. During this
time, we made numerous model updates, including three major updates: (a) adjustment of county-level Re values for SEIR
models; (b) better initialization of non-COVID-19 hospitalizations; and (c) implementation of updated location transition
probabilities. The addition of near-real-time hospitalization data, enabling updates b and c, had the largest impact on our
model's forecast accuracy.

After the hospitalization data were fully integrated, MAPE and MAE values decreased and both non-ICU and ICU demand
forecasts were more accurate. After incorporating the hospitalization data, the average MAPE was 3.9% for non-ICU beds and
6.5% for ICU beds. These relatively small (though not negligible) MAPE values provide useful context for stakeholders when
interpreting the potential accuracy of future forecasts. This was themost substantial change for the project and highlights that
obtaining relevant data through close collaboration with stakeholders can improve model output considerably.

Forecasts shared with public health decision makers included information about the assumptions, parameters, and lim-
itations of the model. Making this information transparent supported open dialog about parameter updates. In addition, the
transparency and open dialog helped support model development and enabled adding hospital occupancy data when they
became available. This approach improved our forecasts and helped us collect end-user feedback, which supported trust in
the model and the output.

Employing a variety of technical best practices, including cloud computing and automation, greatly improved the model's
speed. This allowed us to provide results regularly and rapidly to stakeholders, while still permitting integration of new
features and data sources that were often requested by stakeholders. This development framework was crucial in a public
health crisis, where stakeholders required immediate information that could adjust to changing circumstances.

Public health stakeholders in North Carolina used the model's results in a variety of ways. First, stakeholders used results
to reinforce trends seen from other data sources. For example, when hospitalization rates were increasing but hospitals were
not reporting concern that they were likely to hit capacity in the next several weeks, it was reassuring to see that the models
showed the same thing. Second, stakeholders used regional forecasts to identify which regions were most likely to face
hospital capacity challenges and prepare accordingly. This helped inform discussions regarding which regions could take
transfers from other regions if necessary. Finally, stakeholders used state and regional forecasts to predict upcoming need for
personal protective equipment (PPE) and inform PPE purchasing and allocation.

In a period of extreme uncertainty, with numerous tactical and strategic decisions to be made each week in the face of
uncertainty and ever-changing conditions, this model complemented other sources in enabling data- and science-driven
policy. If a similar situation is encountered in the future, researchers should prioritize acquiring and integrating relevant
and up-to-date hospitalization data into the model, deploying cloud computing resources, automating time-consuming
processes, and ensuring transparent communication with stakeholders.

5. Limitations

Our approach to modeling SARS-CoV-2 transmission and COVID-19 illness was subject to several limitations. Foremost,
agents were infected with SARS-CoV-2 using estimates from the SEIR models rather than by explicitly modeling SARS-CoV-2
transmission within the ABM. Additionally, SARS-CoV-2 infections were only assigned to agents in the ABM's community
node who had not previously been infected. Finally, once infected with SARS-CoV-2, agents did not move among COVID-19
severity states (e.g., mild, moderate, severe). Death associated with COVID-19 was not explicitly modeled because hospi-
talization was the public health priority of this modeling effort. Furthermore, since SARS-CoV-2 transmission was modeled
with SEIR models, mortality in the ABM would not affect transmission. Therefore, we did not expect COVID-19 mortality to
have a practically significant effect on hospitalization outcomes.

Missing data also affected our model. Actual available ICU bed and non-ICU bed counts in North Carolina varied over the
course of forecasting. Although the ABM was updated with the latest values as they became available, outdated bed counts
could have affected transition probabilities and hospital demand estimate accuracy. Although we did not assess changes to
individual model parameters for each weekly forecast, we performed weekly comparisons of model output to reported
COVID-19 cases from the previous week (eMethods).

Bias in underlying data could also affect model results. In particular, the SEIR models relied on reported COVID-19 cases to
produce projected COVID-19 cases. Although we accounted for under-reporting with a 10x multiplier, the true rate of under-
reporting was unknown and likely varied over time. We ran sensitivity analysis on this multiplier at two points during this
project to determine how sensitive projected cases were to under-reporting. Larger under-reporting multipliers decreased
the number of “susceptible” individuals in the SEIR models over time, and thus led to slightly smaller case estimates. Both
analyses showed that the multiplier had a small impact on our forecasts for COVID-19 reported case counts, especially at the
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beginning of the pandemic. Bias in underlying data compounded over time, because knowledge of the number of cumulative
cases, and thus susceptible individuals, was critical to estimate future cases. We accounted for this uncertainty by varying Re
ranges to model a range of scenarios, including worst-case scenarios. By running a variety of Re values we also captured the
uncertainty in the under-reporting multiplier.

Future model updates may include the ability to directly implement policy changes in the model and to include indicators
for warning signs at certain thresholds (e.g., 85% capacity reached). Ensemble forecasting may be beneficial for reducing the
variability and uncertainty inherent in a single-model approach (Ray et al., 2020).

6. Conclusion

Forecasts of hospital demand during the COVID-19 pandemic can be powerful tools for intervention planning and resource
allocation. We adapted an ABM of the North Carolina health care system to create state and regional hospital demand es-
timates for public health stakeholders. By varying Re input parameters, we provided multiple hospital capacity estimates that
corresponded to theoretical changes in COVID-19 spread. The technical best practices we used facilitated rapid development
and deployment.

We draw two conclusions from this modeling effort. First, the accuracy of our forecasts improved over time, particularly
with the inclusion of near-real-time hospitalization data. As researchers have shown in myriad contexts, improving the
underlying data is often the most effective way to improve a model. Rapid response modeling projects should make every
effort to secure crucial data as early as possible. Second, this project demonstrates how an ABM can be built rapidly and
continually improved to support public health decision makers in the COVID-19 pandemic. An iterative modeling process and
collaborative relationship between modelers and public health decision makers was crucial to continually improve this
model. This close relationship also enabled modelers to communicate thorough and realistic information about the limita-
tions and assumptions of the forecasts to public health decision makers.
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