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Abstract: Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later
stages of erythropoiesis are important cellular models for studying molecular mechanisms of human
erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells
(iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline
(dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used
extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic
targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases
is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or
their mobilization to peripheral blood using drugs. This study established a protocol for culturing
early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes.
We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells
(PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties
of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation
efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies
with high efficiencies without affecting its differentiation. This protocol is suitable for generating a
bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms
and drug discovery.

Keywords: erythroid; differentiation; immortalization; peripheral blood; HPV E6/E7

1. Introduction

Human erythropoiesis is a multistep process that involves successive differentia-
tion of hematopoietic stem cells (HSCs) into erythroid progenitors/precursors, reticu-
locytes, and red blood cells (RBCs). Several genetic diseases affect the differentiation,
proliferation, and normal physiological functions of erythroid cells. Sickle cell disease
(SCD) and β-thalassemia, two common genetic diseases, affect red cell development and
hemoglobinization [1]. Diamond Blackfan anemia (DBA) and congenital dyserythropoietic
anemia (CDA) affect normal erythropoiesis due to deficiencies in important molecular
processes in erythroid cells [2,3]. For understanding the molecular basis of normal versus
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pathological erythropoiesis, erythroid cells generated by in vitro erythropoiesis by differ-
entiating primary CD34+ hematopoietic stem and progenitor cells (HSPCs) are commonly
being used [4–9]. The main challenge in this approach is the requirement of multiple
donations of HSPCs from a single individual to generate adequate numbers of erythroid
cells for the downstream experiments. For many diseases, obtaining HSPCs by their mobi-
lization using drugs is impossible due to the pathology of the diseases. Although induced
pluripotent stem cells (iPSCs) generated from patients with erythroid diseases serve as a
stable source of erythroid cells [10,11], this strategy is tedious and expensive. Furthermore,
erythroid cells generated from iPSCs exhibit characteristics of primitive erythrocytes [12,13]
with inefficient terminal maturation [14–16] and expression of embryonic and fetal stage
proteins [13–17]. Generation of mouse models for human diseases is time-consuming and
expensive, and some human red cell diseases are not accurately mimicked in the mouse
models [18].

Recent studies have shown that immortalized erythroid progenitor cells (iEPCs) could
be generated by the lentiviral expression of HPV16 E6/E7 (HEE) genes in the erythroid
progenitor cells (EPCs) differentiated from CD34+ HSPCs [19,20]. iEPCs provide an unlim-
ited supply of erythroid cells, and they enable in vitro manipulation of molecular targets
to study mechanisms of erythropoiesis [21–24]. Two such iEPCs, HUDEP-2 [19] and BEL-
A [20], derived from cord blood and adult HSPCs, respectively, are currently available
for research applications. HUDEP-2 has been extensively used in basic research to under-
stand the mechanisms of erythropoiesis [25–27] and for validating the therapeutical targets
for hemoglobinopathies by gene manipulation using RNA interference (RNAi) or gene
editing [21,23,26,28–31]. BEL-A was used as a stable source of reticulocytes to study host-
parasite interaction in Plasmodium falciparum invasion [32]. This line was also engineered
by gene-editing to produce enucleated RBCs with enhanced transfusion compatibility [33].
Recently, an iEPC was generated using a similar approach from the HSPCs of a patient
with HbE/β-thalassemia for disease modeling [34].

Peripheral blood (PB) contains a small number of highly proliferative blast forming
unit-erythroid (BFU-E) erythroid progenitors [35–37], which can be expanded and dif-
ferentiated in culture [38–43]. Generation of iEPCs from the PB-EPCs will be extremely
valuable for disease modeling as it will avoid the challenges involved in obtaining CD34+

HSPCs from patients. We have successfully generated iEPCs from PB (PBiEPCs), and
they have been extensively characterized for their morphology and differentiation and
hemoglobinization potentials. One of the cell lines was found to be superior to HUDEP-2
and comparable to BEL-A for its enucleation potential. The PBiEPCs were also found to
be highly amenable for gene manipulations by lentiviral RNAi and clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9 mediated gene editing. We also
describe the kinetics of the immortalization process and the associated technical challenges
that need to be overcome for the successful immortalization of erythroid cells.

2. Materials and Methods
2.1. Production of Lentiviruses

HEK-293T cells were cultured in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin, and
100 µg/mL streptomycin (all the reagents were purchased from Thermo Fisher Scientific,
Inc., Grand Island, NY, USA). For the preparation of lentiviruses, HEK-293T cells were
transfected with TRE-HEE-UbC-hKO1-rtTA (CSIV-TRE-HEE-UbC-KT) encoding HPV16-
E6/E7 (HEE) genes (a kind gift from Yukio Nakamura) [19] and lentiviral envelope plasmid
pMD2.G (Addgene 12259) and the packaging plasmid psPAX2 (Addgene 12260) (gifts from
Didier Trono) using the Trans-IT LT1 transfection reagent (Mirus Bio LLC, Madison, WI,
USA), following the manufacturer’s protocols. The viral supernatants were collected at 48,
60, and 72 h, pooled and concentrated 100 times after ultracentrifugation, and aliquoted
and frozen at −80 ◦C.
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2.2. Generation of iEPCs from Peripheral Blood Mononuclear Cells (PBMNCs)

PBMNCs were isolated from normal healthy donors using Ficoll-Paque (GE Health-
care, Uppsala, Sweden). For the expansion of EPCs, PBMNCs were cultured for 24 h in the
erythroid progenitor medium (EPM) containing StemSpan SFEM-II (StemCell Technologies,
Vancouver, BC, Canada) supplemented with 3 U/mL erythropoietin (Epo) (Peprotech Inc.,
Rocky Hill, NJ, USA), 50 ng/mL stem cell factor (SCF) (ImmunoTools GmbH, Friesoythe,
Lower Saxony, Germany), 10 ng/mL interleukin-3 (IL-3) (ImmunoTools GmbH), 40 ng/mL
insulin growth factor-1 (IGF-1) (ImmunoTools GmbH), 1 µM dexamethasone (Sigma-
Aldrich, St. Louis, MO, USA), 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL
streptomycin. About two million cells were transduced with TRE-HEE-UbC-hKO1-rtTA
lentiviruses by spinfection at 2250 rpm for 1.5 h and were cultured in EPM, with half
medium change on every alternative day. From the fourth day, the cells were supplemented
with 1 µg/mL doxycycline (dox) (Sigma-Aldrich, St. Louis, MO, USA). Throughout the
culture, the cells were maintained at a density of 5–6 × 105 cells/mL at 37 ◦C, 5% CO2 with
complete medium change on alternative days.

2.3. Generation of iEPCs from CD34+ HSPCs

CD34+ HSPCs were isolated using a magnetic bead-based positive selection kit (Stem-
Cell Technologies, Vancouver, BC, Canada) from the PBMNCs of a hematopoietic stem cell
donor. The purified CD34+ cells were cultured in HSPC expansion medium composed of
StemPro-34 SFM (Thermo Fisher Scientific, Grand Island, NY, USA) containing 100 ng/mL
SCF, 100 ng/mL FLT3-Ligand (FLT3-L) (ImmunoTools GmbH), 20 ng/mL IL-6 (Immuno-
Tools GmbH), 20 ng/mL IL-3, 100 U/mL penicillin, and 100 µg/mL streptomycin. Two
days after initiating the culture, the cells were transduced with TRE-HEE-UbC-hKO1-rtTA
lentiviruses by spinfection at 2250 rpm for 1.5 h. After four days, the cells were transferred
to EPM containing 1 µg/mL of dox. Throughout the culture, the cells were maintained at a
density of 5–6 × 105 cells per mL of the medium at 37 ◦C, 5% CO2, with complete medium
change on alternative days.

2.4. Differentiation of iEPCs

For induction of the erythroid differentiation of iEPCs, a previously described protocol
was used with minor modifications [33]. Briefly, iEPCs cultured in EPM were seeded at a
density of 2 × 105 cells/mL in erythroid differentiation medium I (EDM I) for two days.
EDM I consisted of Iscove’s Modified Dulbecco’s Medium (IMDM) containing Glutamax
(ThermoFisher Scientific, Grand Island, NY, USA), 3% human AB serum (MP Biomedicals,
Solon, OH, USA), 2% Fetal Bovine Serum (ThermoFisher Scientific, Grand Island, NY,
USA), 200 µg/mL holotransferrin (Sigma-Aldrich, St. Louis, MO, USA), 3 U/mL heparin
(Sigma-Aldrich, St. Louis, MO, USA), 10 µg/mL insulin (Sigma-Aldrich, St. Louis, MO,
USA), 3 U/mL Epo (Peprotech Inc.), 10 ng/mL SCF (Immunotools GmbH), 1 ng/mL IL-3
(Immunotools GmbH), 1 µg/mL dox, 100 U/mL penicillin, and 100 µg/mL streptomycin.
On day 2, the cells were reseeded at a density of 3 × 105 cells/mL in EDM-I and cultured
for two days. On day 4, the cells were seeded at a density of 5 × 105 cells/mL in EDM-II
(EDM I without dox) and cultured for two days. On day 6, the cells were seeded at a density
of 1 × 106 cells/mL in EDM-III (EDM II with 500 µg/mL holotransferrin) for two days,
and on day 8, the cells were reseeded at 1 × 106 cells/mL in EDM-IV (EDM III without SCF
and IL-3) until the end of differentiation with medium change on every alternative day.

2.5. Morphology Analysis and Staining

Approximately 0.5 × 105 EPCs were washed with phosphate-buffered saline (PBS).
Cell smears were prepared on glass slides using Cytospin 3 (Thermo Fisher Scientific,
Waltham, MA, USA) and were fixed with methanol and then stained with Giemsa stain
(Sigma-Aldrich, St. Louis, MO, USA), following the manufacturer’s protocol. Cell mor-
phology was visualized under a light microscope.
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2.6. Flow Cytometry

A sample of 105 cultured erythroid cells was washed with PBS and suspended in
100 µL of PBS containing anti-CD71-FITC (dilution 1:50) and anti-CD235a PE-Cy7 (dilution
1:50) or anti CD235a Bv421 (dilution 1:50) antibodies (BD Pharmingen, San Jose, CA, USA).
The cells were incubated with the antibodies in the dark for 20 min, washed with PBS, and
then analyzed on the FACS AriaIII flow cytometer (BD Biosciences, San Jose, CA, USA)
or Cytoflex LX Flow Cytometer (Beckmann Coulter, Indianapolis, IN, USA). To analyze
F-cells (HbF expressing erythroid cells), the cultured erythroid cells from day 6 in EDM III
were harvested, washed with PBS/0.1% BSA, and fixed in PBS/0.1% BSA containing 0.05%
glutaraldehyde (MP Biomedicals, Solon, OH, USA). The fixed cells were permeabilized
with PBS/0.1% BSA containing 0.01% Triton-X-100 (Sigma Aldrich, St. Louis, MO, USA)
and stained with anti-HbF APC antibody (dilution 1:25) (Invitrogen Corporation, Camarillo,
CA, USA). The flow cytometry analysis was performed in a BD AriaIII flow cytometer (BD
Biosciences, San Jose, CA, USA).

2.7. Karyotyping

Karyotyping of the iEPCs was performed using standard protocols. Briefly, 2 × 106 cells
were treated with 200 µg/mL colcemid (Life Technologies, Grand Island, NY, USA) for
20 min. The cells were centrifuged and resuspended in a hypotonic solution (0.075 M
potassium chloride) for 12 min at 37 ◦C, and the cells were fixed with Carnoy’s fixative.
Chromosome spreads were made and stained with Leishman’s stain (Sigma Aldrich,
St. Louis, MO, USA). G-banded metaphases were analyzed using an AxioImager A1
microscope (Carl Zeiss Inc., Thornwood, NY, USA) and Ikaros Software (Metasystems
GmbH, Altlußheim, Germany).

2.8. High-Performance Liquid Chromatography (HPLC) for Globin Chain Analysis

Globin chain analysis was performed using a previously reported method [44], with
minor modifications. Briefly, 3 million differentiated iEPCs were resuspended in 100 µL of
distilled water and frozen and thawed thrice in −80 ◦C. The cell lysate was centrifuged at
14,000× g for 10 min at 4 ◦C, and the supernatant was transferred to vials for injection into
the HPLC system. Globin chains were quantified using a Shimadzu UFLC consisting of
binary gradient pumps, an autosampler, and a column oven coupled with UV detection (all
equipment from Shimadzu, Kyoto, Japan), and the data were analyzed using LC Solutions
software (Shimadzu, Kyoto, Japan). Chromatographic separation of the analytes was done
using an Aeris Widepore 3.6 lm XB-C18 25 cm, 4.6 mm column behind a Security Guard
UHPLC Widepore C18 4.6 mm guard column (Phenomenex, Torrance, CA, USA). The
gradient method was used for elution with mobile phases (Solvent A-0.1% trifluoroacetic
acid (TFA, Sigma-Aldrich, St. Louis, MO, USA), pH 3.0, and 40% Solvent B-0.1% TFA in
acetonitrile (Sigma-Aldrich, St. Louis, MO, USA)) at a flow rate of 1.0 mL/min and column
temperature maintained at 70 ◦C. The total run time was eight minutes. The UV detection
was set at 190 nm for globin chain detection.

2.9. Knockdown of BCL11A in iEPCs

The MND (myeloproliferative sarcoma virus enhancer, negative control region deleted,
dl587rev primer binding site substituted) promoter sequence was PCR amplified from
PTRip-MND-GFP (a gift from Francoise Pflumio) and cloned into pZIP-hCMV-ZsGreen-
Puro lentiviral vector (Transomics technologies Inc.) using ClaI and AgeI restriction sites
to generate pZIP-MND-ZsGreen-Puro. Short hairpin RNAs (shRNAs) against B-cell lym-
phoma/leukemia 11A (BCL11A) gene were obtained from the Sherwood shRNA design
algorithm [45]. The shRNA oligo was amplified and cloned into HpaI digested pZIP-
MND-ZsGreen-Puro using the NEBuilder Hi-fi DNA assembly cloning kit (NEB Biolabs
Inc., Ipswich, MA, USA) to generate the pZIP-MND-ZsGreen-Puro-shBCL11A plasmid.
PBiEPC-1, PBiEPC-2, and CD34iEPC were transduced with the lentiviruses in the presence
of 8 µg/mL polybrene (Sigma-Aldrich, St. Louis, MO, USA). After five days, the ZsGreen+
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cells were sorted using a BD FACS Aria III flow sorter (BD Biosciences). BCL11A knock-
down was analyzed by western blot and qPCR in the undifferentiated PBiEPC-1 cells. Fetal
hemoglobin (HbF) and γ-globin levels were measured in the differentiated PBiEPC-1 using
flow cytometry and HPLC, respectively.

2.10. CRISPR/Cas9 Based Gene Editing of BCL11A Exon 2 and Enhancer Regions

gRNAs targeting BCL11A exon 2 and enhancer regions were designed using the
CRISPR Design Tool [46] and CHOPCHOP [47]. The most specific and efficient gRNAs
(Table S1) were synthesized with modifications to improve RNA stability (Synthego Corp.,
Redwood City, CA, USA). Ribonucleoprotein (RNP) complexes containing a 2:1 ratio of
each gRNA and Cas9 protein (Takara Bio Inc., Kusatsu, Shiga, Japan) were incubated
for 10 min at room temperature and used for electroporation. A total of 2 × 105 cells
were suspended in 20 µL of electroporation buffer P3 (Lonza, Basel, Switzerland)), and
electroporation was performed using Lonza 4D nucleofector (Lonza, Basel, Switzerland)
and the program DZ100. After electroporation, the cells were suspended in 100 µL of
pre-warmed medium without antibiotics, incubated for 10 min, and then transferred to
cell culture plates. After five days, PCRs were carried out to amplify the genomic regions
flanking the gRNA binding regions, followed by Sanger DNA sequencing of the amplicons
using specific primers (Table S1) and Inference of CRISPR Edits (ICE) analysis [48] to
calculate the percentages of the mutations by gene editing.

2.11. Quantitative Real-Time PCR Analysis

Total RNA was extracted from iEPCs using RNAiso Plus (Takara Bio Inc., Kusatsu,
Shiga, Japan). One µg of total RNA was used for reverse transcription using the Primescript
RT reagent kit (Takara Bio Inc., Kusatsu, Shiga, Japan) using the manufacturer’s instructions.
Quantitative RT-PCR was set up with SYBR Premix Ex Taq II (Takara Bio Inc.) using specific
primers (Table S1) and analyzed with QuantStudio 6 Flex real-time PCR systems (Applied
Biosystems, Carlsbad, CA, USA).

2.12. Western Blot Analysis

Whole-cell lysates from iEPCs were prepared using radioimmunoprecipitation assay
(RIPA) buffer (150 mM sodium chloride, 1% Triton X-100, 0.5% sodium deoxycholate,
0.1% SDS, and 50 mM Tris, pH 8) containing Halt Protease Inhibitor Cocktail (Thermo
Scientific, Rockford, IL, USA) and phenylmethanesulfonyl fluoride (PMSF) (Sigma Aldrich,
St. Louis, MO, USA). The lysates were quantitated using the Bradford Reagent (Biorad Inc.,
Richmond, CA, USA). A total of 30 µg of the lysate was loaded on a 7% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel and analyzed by western blot
using primary antibodies, anti-BCL11A (1:1000 dilution) (Cell Signaling Technologies,
Danvers, MA, USA), and anti-actin (1:5000 dilution) (BD Pharmingen, San Jose, CA, USA)
and secondary antibodies, anti-mouse IgG HRP (Cell Signaling Technologies, Danvers, MA,
USA) and anti-rabbit IgG HRP (Invitrogen Corporation, Camarillo, CA, USA). The signal
was detected using the Westar Supernova (Cyanagen, Bologna, Italy) and FluorChemE gel
documentation system (Protein Simple, San Jose, CA, USA).

3. Results
3.1. Generation of iEPCs from PBMNCs

In a culture medium containing the supporting cytokines, very early stage EPCs
including blast forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E)
cells present in the PB can be selectively expanded without preselection [36,49–51]. During
expansion, they also undergo progressive erythropoiesis to form the cells at the later stages
of differentiation, pro-, basophilic, polychromatic, and orthochromatic erythroblasts and
enucleated reticulocytes, with characteristic changes in cell morphology and expression
of surface markers. As HEE immortalizes early-stage proerythroblasts predominantly, a
culture protocol favoring slow in vitro differentiation will provide sufficient numbers of
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proerythroblasts for a prolonged duration in the culture for their transduction with HEE
lentiviruses and subsequent immortalization. Therefore, we standardized a modified EPC
culture protocol (Figure 1A) using a serum-free medium containing dexamethasone, which
has been shown to increase the number of early-stage EPCs in culture by slowing their
differentiation to later stages of erythropoiesis [52,53]. We observed CD71+CD235a– EPCs,
which resemble colony-forming unit erythroid (CFU-E) cells [50,51], emerged on days 6 or 7
of the culture (Figure 1B). In the following two weeks, these cells underwent differentiation
to form CD71highCD235a- (R1), CD71highCD235amedium (R2), CD71highCD235ahigh (R3)
and CD71lowCD235ahigh (R4) EPC populations (Figure 1B), which represent CFU-E, pro-,
basophilic, and polychromatic erythroblasts, respectively [50,51] (Figure 1C). A large
number of lymphocytes present in the initial days of culture disappeared due to the
selective expansion of EPCs. Starting with 5 × 106 PBMNCs, we could obtain up to
5 × 108 EPCs by day 20 using this protocol (Figure 1D). After day 20, there was a significant
reduction in the cell number (Figure 1D) as the medium did not support the proliferation
and differentiation of late-stage CD71low CD235ahigh orthochromatic EPCs. In this protocol,
erythroid differentiation was slow, and a significant number of proliferating CFU-E like
cells and proerythroblasts were obtained for a long period in the culture (~2 weeks). The
CD71high CD235a− (R1) cells ranged from 60–83.6% (73.1 ± 12) on day 8, 15–24% (18.6 ± 4.7)
on day-13, and 5.5–9.8% on day 17 (7.6 ± 2.1) (Figure 1B). The CD71high CD235alow (R2)
levels ranged from 14–33.1% (22.3 ± 9.7) on day 8, 6.4–22.4% (17 ± 9.2) on day 13, and
2.63–13.8% (9.2 ± 5.8) on day 17 (Figure 1B).

Figure 1. The modified PBEPC culture protocol that yields a high number of early-stage EPCs for a prolonged duration in
culture. (A) Schematic representation of the erythroid culture protocol of PBMNCs. SCF: stem cell factor, IL-3: interleukin-3,
Epo: erythropoietin, IGF-1: insulin growth factor 1. (B) (Left) A representative flow cytometry result of CD71 and CD235a
expression from day 15 of the culture and designation of R1, R2, R3, and R4 populations. (Right) The percentages of R1, R2,
R3, and R4 populations on different days of the culture using the modified erythroid culture protocol. CD71- and CD235a-
lymphocytes present until day 9 of the culture are not shown. (C) Percentages of the EPCs representing the different stages
of erythropoiesis (pro-, basophilic, polychromatic, and orthochromatic erythroblasts) on different days of the erythroid
culture. (D) The number of erythroid cells generated from 5 × 106 PBMNCs on different days of erythroid cultures. Data
from day 6 of the erythroid culture is shown.
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Since we could obtain a large number of early EPCs (CFU-like cells and proery-
throblasts) for two weeks in the culture, and the lentiviral expression of transgenes could
be achieved in less than five days after transduction, we decided to test the possibil-
ity of immortalizing these cells from the initial days of the culture by HEE lentiviruses.
We isolated PBMNCs from two healthy donors, and the cells were transduced with
HEE viruses and cultured in EPM for the selective expansion of EPCs (Figure 2A). On
day 4, before CD71+CD235a− EPCs emerged, the medium was supplemented with dox
to induce HEE expression. Flow cytometry analysis of the constitutively expressed
hKO1 fluorescent protein from the lentiviral vector showed 30–32% hKO1+ cells on
day 7 (Figure S1). After 30–35 days, almost all the cells in the culture (>90%) were
hKO1+CD71+CD235a+ (Figure S1), which suggested the initiation of immortalization
of the transduced cells. After ~100 days, the cells presented the properties of immortal-
ized erythroblasts [19,20,54], a stable doubling time (Figure 2B), and consistent expression
of CD71 and CD235a (Figure 2C). We designated these iEPCs derived from peripheral
blood as PBiEPC-1 and PBiEPC-2. We observed a difference in the erythroblast stage of
these iEPCs; PBiEPC-1 consisted of 79–87% (81.6 ± 4.6) proerythroblasts, 8–9% (8.3 ± 0.5)
of basophilic erythroblasts, and 5–13% (10 ± 4.3) of polychromatic erythroblasts, while
PBiEPC-2 consisted of 76–84% (80.6 ± 4.1) proerythroblasts, 5–8% (6 ± 1.7) of basophilic
erythroblasts, 11–14% (12 ± 1.7) of polychromatic erythroblasts, and 0–2% (1.33 ± 1.15)
orthochromatic erythroblasts (Figure 2D). Altogether, these results showed that prolonged
maintenance of early-stage EPCs in culture helps generate iEPCs from PB successfully,
without using CD34+ HSPCs from the donors.

Figure 2. Generation of iEPCs from PBMNCs and CD34+ HSPCs. (A) Illustration of the steps involved in the generation of
iEPCs from PBMNCs (top) and CD34+ HSPCs (bottom). (B) Graph showing the doubling times of PBiEPC-1 and PBiEPC-2
generated from PBMNCs and CD34iEPC generated from CD34+ HSPCs. (C) Flow cytometry analysis of the expression of
erythroid surface markers, CD71 and CD235a, in the undifferentiated iEPCs. (D) Percentages of different types of EPCs
present in the undifferentiated iEPCs (data from three different passages are shown).
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3.2. Variegation in HEE Expression Causes Lag in Immortalization of EPCs

Our protocol for the generation of PBiEPCs is suitable for generating cell lines from
patients with red cell diseases. Immortalization with stable cell proliferation could be
achieved only after ~15–18 weeks (>100 days), although >90% of the cells on day 30 of the
culture were hKO1+. This significant delay to establish immortalization in EPCs has been
previously reported [55]. Analysis of the expression of HEE genes and CD71 and CD235a
markers in the cells in the pre-immortalization stage (from the day of transduction until
immortalization) could help understand the kinetics of erythroid cell immortalization and
in developing efficient and faster protocols for establishing immortalized EPCs.

In a dox-inducible vector, the expression of constitutively expressed genes correlates
with the expression of the inducible genes [56]. Therefore, we measured the expression of
hKO1 to monitor the relative expression of HEE in the cells undergoing immortalization.
On day 35 and day 80 of the pre-immortalized stage, the cells had heterogeneous expression
levels of hKO1 (Figure S1A) and CD71 and CD235a (Figure S1B) compared to those from
the immortalized stage (Figure 2C). We flow-sorted hKO1bright, hKO1medium, and hKO1low

populations from day 50 of the culture and performed flow cytometry analysis of the
percentages of R1, R2, R3, and R4 populations. We found that the hKO1bright population
consisted of early-stage EPCs, whereas hKO1medium and hKO1low populations consisted of
the late-stage EPCs (Figure S2). The hKO1bright cells were cultured in EPM to understand
whether they would achieve stable cell proliferation and immortalization faster due to
the high expression of HEE in these cells. However, after two weeks, a large number of
CD71high CD235ahigh and CD71low CD235ahigh late-stage EPCs were formed in the culture,
resulting in a significant reduction in the total cell number. After ~100 days, stable cell
proliferation (Figure 2B) and CD71 and CD235a expression (Figure 2C) were attained
when the cells with homogenous hKO1 expression (Figure S1) without further transgene
silencing and differentiation persisted in culture.

We concluded from these results that the lag in achieving the immortalization with
stable cell proliferation is due to the variegated expression of the lentivirally transduced
HEE genes and transgene-silencing in a large number of EPCs during immortalization. The
cells with low expression of HEE genes differentiated to form late-stage EPCs, resulting in
a reduced cell number and delay in achieving a population of cells with stable proliferation.
Immortalization is finally achieved when the cells with high hKO1 expression alone persist
in the culture. Although monitoring the transduced cells for high and uniform expression
of hKO1 enables identifying cells that are successfully immortalized, we found that the
immortalization of EPCs is a slow process requiring a long period of continuous culture
of cells.

3.3. Generation of an iEPC Line from CD34+ HSPCs

We wanted to compare the kinetics of the immortalization process and the proper-
ties of the iEPCs obtained from PB with those from CD34+ HSPCs. CD34+ cells from
a normal donor were transduced with HEE lentiviruses and cultured for five days in
the HSPC expansion medium. Subsequently, the cells were cultured in EPM contain-
ing dox to induce erythroid differentiation and expression of HEE genes (Figure 2A).
CD71+CD235a− cells emerged in the culture after 5–6 days, and they differentiated to
CD71+CD235low and CD71highCD235high EPCs gradually (Figure S1A). We observed a
similar pattern of immortalization kinetics as observed during the generation of PBiEPCs,
a long pre-immortalization stage for ~100 days with a heterogeneous expression of hKO1
and a significant reduction in cell number due to the formation of late-stage EPCs with low
HEE expression. The immortalized cells with stable cell proliferation and hKO1 expression
were observed from day 120, and this CD34 derived iEPCs was designated as CD34iEPC.
Flow cytometry analysis of CD71 and CD235a expression showed that CD34iEPC is similar
to PBiEPCs and other previously reported iEPCs [57,58] (Figure 2C). Morphology anal-
ysis showed that this cell consisted of 82–85% (83.3 ± 1.5) proerythroblasts and 10–13%
(11.6 ± 1.5) of basophilic and 5% polychromatic erythroblasts (Figure 2D).
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3.4. Differentiation of iEPCs

The iEPCs generated by HEE expression significantly differed in their terminal differ-
entiation potential to form enucleated reticulocytes [55,57,58]. We differentiated PBiEPC-
1, PBiEPC-2, and CD34iEPC using the protocol described by Hawksworth et al. [33]
(Figure 3A). The differentiation was terminated when a significant reduction in cell num-
bers and cell death was observed due to the apoptosis of orthochromatic EPCs that failed
to enucleate. Although all three cell lines proliferated extensively from day 2 to day 8
of the differentiation, they had a significant difference in their proliferation rate and ki-
netics of differentiation (Figure 3B,C), which correlated with the stages these iEPCs were
immortalized. PBiEPC-1, which is immortalized at an earlier stage of erythropoiesis, had
the highest proliferation rate (30-fold on day 8 of differentiation, which gradually de-
creased to 2-fold on day 16), and PBiEPC-2, which is immortalized at a later stage, had
the lowest cell proliferation (Figure 3B). PBiEPC-1 exhibited the slowest differentiation
with a significant number of cells in culture for up to 18 days and highest enucleation rate
18–21% (mean = 19.5 ± 2.1) (Figure 3C). Differentiation of CD34iPEC lasted for 13 days,
yielding 11–17% (mean = 14 ± 4.2) reticulocytes. PBiEPC-2 survived only for nine days
in the differentiation medium, and it had only 2–5% (mean = 3.5 ± 2.1) enucleated cells.
The addition of mifepristone, an antagonist of glucocorticoid that induces enucleation
in erythroid differentiation [59], did not show any significant change in the enucleation
potential of the three iEPCs.

Figure 3. Differentiation of iEPCs. (A) Schematic representation of the differentiation protocol for iEPCs. SCF: stem
cell factor, IL-3: interleukin-3, Epo: erythropoietin, HT: holotransferrin and dox: doxycycline. HT+ indicates increased
holotransferrin concentration in the medium. (B) Extrapolated cell count of iEPCs during the different days of erythroid
differentiation. (C) Morphology of the iEPCs during erythroid differentiation as analyzed using Wright Giemsa staining.
(D) Representative reverse-phase HPLC analysis of iEPCs showing the contribution of the individual globin chains in
the differentiated iEPCs. (E) Cell pellet colors of undifferentiated iEPCs (UD) and differentiated iEPCs from day 8 of
differentiation (D8).

Centrifuged iEPCs produced white pellets before differentiation and red pellets after
differentiation, indicating efficient hemoglobin synthesis in these cells upon differenti-
ation (Figure 3E). We measured the expression of genes that were upregulated during
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erythropoiesis in the iEPCs undergoing differentiation. Hemoglobin genes, HBB and
HBA, were highly upregulated in the cells from day 6 of differentiation compared to the
undifferentiated cells (Figure S3). Erythroid transcription factors, BCL11A, GATA1, and
KLF1, were also increased significantly after differentiation (Figure S3). HPLC analysis
of globin chains showed adult α- and β-globin chains predominantly in PBiEPC-1 and 2.
(Figure 3D). However, CD34iEPC had a very high-level expression of Aγ and Gγ globins
(Figure 3D). Our data clearly showed a significant difference in the differentiation kinetics
and enucleation potential of iEPCs, and they also exhibited a difference in the expression
of erythroid proteins such as hemoglobins.

3.5. Karyotype Analysis of iEPCs

Similar to the findings in HUDEP2 and BEL-A [54,58], all three iEPCs that we gener-
ated had numerical and structural anomalies, which included whole or partial trisomies,
chromosome anomalies, translocations, and partial or whole chromosome losses (Table 1)
(Figure S4). PBiEPC-1 has a modal chromosome number of 45 (range: 44–45), which was
less than 51 (range 49–53) in HUDEP-2 [54] and 48 (range 44–48) in BEL-A [58]. PBiEPC-2
had two predominant clones with chromosome numbers, 48 and 49. CD34iEPC had very
complex karyotypes with a modal chromosome number 84 (range: 79–92). We did not
observe any significant similarities among the numerical and structural abnormalities
among the different iEPCs (Table 1).

Table 1. Karyotypes of the iEPCs on different days of culture.

Cell Line Days Karyotype

PBiEPC-1
162 45,XY,-10,der(10),add(21)(q22)[20]

169 45,XY,-10,der(10),add(21)(q22)[18]

PBiEPC-2
174 48,XY,+8,-18,+19,+21[10]/49,XY,+8,del(18)(p11.2),+19,+21[7]

181 44~48,XY,-Y,+8,-18,+19,+21[cp6]

CD34iEPC
143

80~87<4n>,XXX,der(X),-3,add(4)(p13),del(4)(q21),der(4;11)(p13;q23),der(5;11)(q35;q23),-7,
add(7)(p14), der(8;15)(p23;p10),-9, add(9)(q34),der(10),-12, der(13;15)(p10;p10),-14,-17, i(17)(q10),

add(21)(p10), add(21)(q21), +mar[cp20]

157 79~92<4n>,XXX,der(X),-3,add(6)(p23),-7,t(7;10)(q32;q24),add(8)(p27), der(8),-9, -10,-11,-11,-12,
der(13), -14,-15,der(15),-16,der(17),i(17)(q10),der(21),+mar,+mar[cp20]

3.6. Gene Manipulation of PBiEPC-1

Among the three lines we generated, PBiEPC-1 was immortalized at the earliest stage
of erythropoiesis with a large number of R1 population cells (Figure 2C), which represent
CFU-E cells [51]. It exhibited slow progressive erythroid differentiation, which lasted up to
18 days with all the stages of erythroid differentiation, generating a large number of cells
during differentiation. It had fewer chromosomal abnormalities than HUDEP-2 and BEL-A.
Therefore, this cell line is the most suitable iEPC line for studying the sequential molecular
changes in erythropoiesis after gene manipulation. We performed experiments to illustrate
the utility of this cell line for in vitro gene manipulation. We performed knockdown and
knockout experiments to downregulate the expression of BCL11A, a protein that represses
the expression of γ-globin gene in adult erythroid cells and is considered a therapeutic
target for β-hemoglobinopathies [60].

For the RNAi experiment, PBiEPC-1 was transduced with pZIP-MND-ZsGreen-
Puro-shBCL11A, which expresses an shRNA to downregulate the expression of BCL11A
(Figure 4A). In the flow-sorted ZsGreen+ undifferentiated PBiEPC-1 cells, > 90% reduction
in BCL11A protein expression was observed (Figure 4B). Globin chain analysis in the dif-
ferentiated edited cells showed upregulation of γ-globin levels by 17.8–19.6% (18.7 ± 1.2)
(Figure 4C). The PBiEPC-1 cells transduced with BCL11A shRNA showed ~41% more F-
cells than those transduced with scrambled shRNA (49 ± 2.8% vs. 7.5 ± 3.5%) (Figure 4D).
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For gene editing, we performed CRISPR-Cas9 based approach with the guide RNAs
(gRNAs) that target the transcription enhancer and exon 2 of BCL11A. PBiEPC-1 was nu-
cleofected with ribonucleoprotein (RNP) complexes containing Cas9 protein and gRNAs,
the editing efficiencies at the target regions were determined by ICE analysis [48], and
the percentage of F-cells was analyzed in the edited cells after differentiation (Figure 5A).
High-efficiency gene-editing of the target genomic regions was observed in PBiEPC-1 at the
levels comparable to that obtained with HUDEP-2 cells and at the AAVS1 control genomic
site (Figure 5B). The BCL11A enhancer edited PBiEPC-1 cells showed a ~10% increase in
the F-cells compared to the AAVS1 site edited cells (19.1 ± 0.3% vs. 9.75 ± 0.3) (Figure 5C).
The gene-editing efficiency and F-cells% in the BCL11A exon 2 edited PBiEPC-1 were
compared with those from HUDEP-2 cells edited at the same locus. Similar efficiencies of
gene editing at the BCL11A exon 2 were observed in the two cell lines (>95%) (Figure 5B).
In the BCL11A exon-2 edited PBiEPC-1 cells, the F-cells increased by ~8% compared to
the unedited PBiEPC-1 cells (12.1 ± 0.6% vs. 3.8 ± 0) while in the edited HUDEP-2 cells,
there was ~5% increase in the F-cells (8.7 ± 0.6% vs. 3.8 ± 0.6%) (Figure 5D). These results
indicate that the PBiEPCs are amenable for gene manipulation, and the generation of such
cell lines from patients with erythroid diseases is a valuable tool for functional studies of
the genes of interest.

Figure 4. Knockdown of BCL11A in PBiEPC-1. (A) Schematic representation of the experimental setup for BCL11A
knockdown in PBiEPC-1. (B) Western blot analysis of BCL11A knockdown in PBiEPC-1. Data were compared with the
cells transduced with the scrambled shRNA. (C) (Left) An HPLC chromatogram showing β, α, Gγ, and Aγ globins in the
cells transduced with shBCL11A and shScrambled lentiviruses. (Right) Gγ + Aγ% in the differentiated erythroid cells
transduced with shBCL11A and shScrambled lentiviruses. (D) Flow cytometry analysis of F-cells after knockdown of
BCL11A. Numbers indicate mean ± standard deviation (SD) from two independent experiments.
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Figure 5. CRISPR-Cas9 mediated gene editing of BCL11A enhancer and exon 2 in PBiEPC-1. (A) Schematic representation
of the CRISPR/Cas9 experiment in PBiEPC-1. (B) Inference of CRISPR Edits (ICE) analysis results of gene editing at the
BCL11A enhancer and exon 2. The percentages of different types of mutations are shown. “+” indicates insertions, and
“–“ indicates deletions of nucleotides. “WT” indicates wild type sequence, and “others” indicates rare insertions and
deletions. (C) Flow cytometry analysis of F-cells in the cells edited at BCL11A enhancer and AAVS1 (control genomic region).
Numbers indicate mean ± standard deviation (SD) from two independent experiments. (D) Flow cytometry analysis of
F-cells after editing at BCL11A exon 2 in PBiEPC-1 and HUDEP-2. Numbers indicate mean ± standard deviation (SD) from
two independent experiments. RNP: ribonucleoprotein complex containing Cas9 protein and gRNA.

4. Discussion

There is a huge demand for models to study normal and disease erythropoiesis. Al-
though erythroid cells can be generated by ex vivo differentiation of HSPCs, this approach
has a limitation of restricted expansion of the cultured erythroid cells resulting in repeat
collections of HSPCs for obtaining the substantial number of cells for performing experi-
ments. Differentiation of iPSCs provides a sustainable source of erythroid cells, but they
have poor yield, incomplete differentiation, and predominant fetal/embryonic protein
expression [13–17]. Recent advances in the immortalization methods have generated
iEPCs, which can mimic human erythropoiesis efficiently. HUDEP-2 [19] and BEL-A [20]
generated by lentiviral transduction of HEE genes in cord blood and adult CD34+ cells
have been extensively characterized for their erythroid progenitor properties, including
erythroid differential potential. The method used for the generation of these iEPCs is
suitable for creating an iEPC cell bank from patients with erythroid diseases for disease
modeling and potential drug screening [34]. However, the major challenge for creating
an iEPC bank using this method using HEE lentiviral vectors for immortalization is the
requirement of bone marrow aspirates from the patients or treatment with drugs such as
granulocyte-macrophage-colony-stimulating factor (GM-CSF) to obtain a sufficient number
of CD34+ HSPCs. Although cord blood HSPCs are easier to obtain, it is uncertain whether
the newborns have any red cell diseases. Other limitations of the erythroid cells derived
from cord blood CD34+ cells have a fetal rather than adult phenotype, and they have low
terminal differentiation potential [61,62].

Using a protocol that facilitated the expansion and maintenance of early-stage EPCs
and lentiviral transduction of HEE genes, we could generate iEPCs from PB. The PBiEPCs
were similar to the previously reported iEPCs, HUDEP-2 and BEL-A, generated by the
expression of HEE genes, with respect to their morphology, expression of erythroid-specific



Cells 2021, 10, 523 13 of 17

surface markers, stable cell proliferation, and the potential to differentiate to late-stage
progenitors and enucleated reticulocytes [58]. The enucleation rates of PBiEPCs were
~10% more than HUDEP-2 [19], the most extensively used iEPC line in the literature, and
comparable to the recently reported BEL-A cell line [20].

The fact that we could generate PBiEPCs from the few very early stage PB-EPCs
suggests that our protocol is highly suitable for generating erythroid cell lines from patients
with red cell disorders, without the necessity of HSPCs from the patients. Diseases that
cause defective erythropoiesis like CDA and those that cause hemolytic anemias by muta-
tions that affect the red cell membranes could be effectively studied using PBiEPCs derived
from the patients with these diseases. As the PBiEPCs express adult hemoglobin, a bank
of these cell lines can be generated from a large number of patients with β-thalassemia
and sickle cell disease, which will enable studies to analyze the molecular basis of the
phenotypic heterogeneity in these diseases. The PBiEPCs generated from patients can
also be used for drug screening and identification of new therapeutic targets using high
throughput analysis involving RNAi and CRISPR libraries.

As iEPCs can be maintained in culture as early erythroid progenitors and can be
induced to differentiate to the cells of late stages of erythropoiesis, they have also been
extensively used for studying the mechanisms of human erythropoiesis [63,64] and for
identifying genetic factors involved in globin gene switching [26,28,65–67] by genetic
manipulations of these cells by RNAi [20,67,68] and gene editing [23,26,28,69,70]. Genetic
mutations were recently introduced in the genes associated with erythroid diseases to
generate disease models [71,72]. Our PBiEPCs could also be efficiently transduced with
lentiviral vectors for gene knockdown and gene-edited using CRISPR/Cas9 for studying
the functions of the target genes.

It is important to note that the iEPCs generated by HEE expression have a difference
in the erythroid stage at which they are immortalized and in their terminal differentiation
potential. It has been reported earlier that even iEPCs generated in replicates from the
same donor can exhibit differences in their properties [55]. The previously described
iEPCs, HUDEP and BEL-A, significantly differed in the immortalization stage and differ-
entiation potential. The PBiEPC-1 line, which was immortalized at a very early stage of
erythropoiesis, yielded a large number of terminally differentiated cells with enucleation
similar to BEL-A. However, the other two cell lines had poor cell survival and enucle-
ation potential. This technical challenge is an important factor to consider when a bank
of iEPCs is generated for disease modeling. Immortalization of erythroid progenitors
is a very long process, and we found that this was primarily because of the expression
variegation and transgene-silencing of the lentivirally expressed HEE genes. A lentiviral
vector containing robust promoters, which do not exhibit significant expression variegation,
for the constitutive and inducible expression of reverse tetracycline transactivator (rtTA)
and HEE, respectively, may facilitate faster immortalization. A major drawback of the
immortalization of erythroid cells is that they have chromosome abnormalities. However,
they do not seem to affect the differentiation potential of iEPCs. It is not clear whether
these chromosome abnormalities also contribute to the immortalization of erythroid cells.

In conclusion, our results showed that iEPCs could be generated successfully from
PB-EPCs without the use of CD34+ HSPCs. PBiEPC-1 is superior to the HUDEP-2 line,
which is currently being extensively used by researchers. This cell line can be easily gene
manipulated for the evaluation of genes involved in erythropoiesis. Generation of such
lines from patients with red cell diseases will help develop a cell bank of iEPCs for disease
modeling and drug screening.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/3/523/s1, Figure S1: Expression of hKO1 fluorescence protein at different stages of immortal-
ization, Figure S2: Percentages of R1, R2, R3, and R4 EPC populations in the flow-sorted hKO1bright,
hKO1medium, and hKO1low cells from the pre-immortalized stage, Figure S3: Gene expression
analysis of erythroid genes in the iEPCs by real-time PCR, Figure S4: Representative karyotypes of
iEPCs on different days after immortalization, Table S1: Details of the oligos used in the study.
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