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An easily accessible and non-invasive biomarker for the early detection of Alzheimer’s

disease (AD) is needed. Evidence suggests that metabolic dysfunction underlies the

pathophysiology of AD. While urine is a non-invasively collectable biofluid and a good

source for metabolomics analysis, it is not yet widely used for this purpose. This

small-scale pilot study aimed to examine whether the metabolic profile of urine from

AD patients reflects the metabolic dysfunction reported to underlie AD pathology,

and to identify metabolites that could distinguish AD patients from cognitively healthy

controls. Spot urine of 18 AD patients (AD group) and 18 age- and sex-matched,

cognitively normal controls (control group) were analyzed by mass spectrometry

(MS). Capillary electrophoresis time-of-flight MS and liquid chromatography–Fourier

transform MS were used to cover a larger range of molecules with ionic as well

as lipid characteristics. A total of 304 ionic molecules and 81 lipid compounds

of 12 lipid classes were identified. Of these, 26 molecules showed significantly

different relative concentrations between the AD and control groups (Wilcoxon’s

rank-sum test). Moreover, orthogonal partial least-squares discriminant analysis revealed

significant discrimination between the two groups. Pathway searches using the

KEGG database, and pathway enrichment and topology analysis using Metaboanalyst

software, suggested alterations in molecules relevant to pathways of glycerolipid

and glycerophospholipid metabolism, thermogenesis, and caffeine metabolism in AD

patients. Further studies of urinary metabolites will contribute to the early detection of

AD and understanding of its pathogenesis.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia,
accounting for 50–70% of cases. It is a slowly progressive
neurodegenerative disease that is thought to begin 20 years before
symptoms such as memory and language problems are noticed
by individual patients (1). Since there is no cure to date, a
preventative approach before clinical onset is emphasized (2).
Biomarkers that can predict the onset of AD are highly desirable,
and such biomarkers should ideally be non-invasive, easy to
apply to asymptomatic or very early-stage patients, and reflect
physiological changes associated with the disease.

The main neuropathological changes associated with AD
are the extracellular accumulation of β-amyloid plaques,
intracellular accumulation of neurofibrillary tangles of tau
protein, inflammation, and brain atrophy (1). However, the
disease etiology is not completely understood. Increasing
evidence indicates that both peripheral and central metabolic
dysfunction underly AD pathophysiology (3, 4).

Metabolomics is a discipline that comprehensively analyzes all
small molecules and metabolites in cells, tissues, and biofluids
under a given set of conditions (5). A concentration change
in certain sets of metabolites may provide a global overview
of multiple relevant biochemical pathways, reflecting changes
in downstream biological processes (6). Mass spectrometry
(MS) and NMR spectrometry are two primary platforms for
metabolomics analysis which can be used to measure various
molecules in biological materials, with MS being the more
commonly usedmodality (7, 8). InMS, the coverage of detectable
metabolites varies greatly depending on the separation analyzer
used to separate the sample and the type of mass spectrometer
used for subsequent detection (9).

Urine is a highly desirable source of disease biomarkers, as
it is collectable in large volumes non-invasively. Urine contains
components from plasma glomerular filtration and excretion
from the renal tubule and urogenital tract. Thus, it reflects the
metabolic and pathophysiological conditions of an individual
(10). Due to the glomerular filtration barrier, urine is largely free
from proteins and lipids that can interfere with measurements.
Consequently, compounds that are far below the limit of
detection in blood are well above the detection limit in urine
(11), providing a richer material for analysis. Metabolomics
has been used to explore urinary metabolic profiles of various
diseases, such as chronic kidney disease (12), urological and
non-urological cancers (13), polycystic ovary syndrome (14),
ischemic stroke (15), gestational diabetes mellitus (16), asthma
(17), mood disorders and schizophrenia (18), and Parkinson’s
disease (19, 20).

Revealing the urinary metabolic profile of AD is of particular
interest because it may provide global pathophysiologic
information on the disease and yield non-invasive biomarker
candidates. Several studies have reported on the urinary
metabolite profile of AD patients (21–24). For instance, Cui et al.
identified 12 metabolites significantly increased in AD patients
mainly reflecting metabolic changes in fatty acids and amino
acids, and identified urine 5-L-glutamylglycine as a candidate
biomarker (21). Yilmaz et al. identified 11 metabolites that

were significantly altered in AD patients (24). Kurbatova et al.
identified a set of 32 metabolites strongly associated with AD
which suggested the involvement of pathways of cholesterol
metabolism, gut microbiota, DNA methylation, polyamine
metabolism, and insulin resistance (23). Whiley et al. reported
significantly lower metabolite concentrations of tryptophan
pathway metabolites in AD patients relative to cognitively
normal controls (22). Nevertheless, given the diversity of
metabolites in urine, more research using various measurement
platforms is needed.

Since metabolites exhibit a variety of chemical and physical
properties, it is currently not possible to analyze the entire
metabolome on a single analysis platform. In this study, we used
capillary electrophoresis time-of-flight mass spectrometry (CE-
TOFMS) and liquid chromatography-Fourier transform mass
spectrometry (LC-FTMS) to cover a larger range of molecules
with hydrophilic (ionic) (25, 26) and hydrophobic (lipid)
characteristics (27, 28). This allowed us to explore and compare
a more comprehensive metabolome of urine samples from AD
patients and cognitively normal, age- and sex-matched controls.
The purpose of this pilot study was to examine whether the
metabolic profile of urine fromAD patients reflects the metabolic
dysfunction reported to underlie AD pathology, and to explore
possible metabolites that could discriminate AD patients from
cognitively healthy controls.

MATERIALS AND METHODS

Participants
This study was approved by the human research ethics committee
of Niigata University (approval number: 1836, 2015-2081). All
participants from Niigata University Hospital signed informed
consent forms, and all participants of the Murakami cohort (29)
were informed through a verbal consent process.

Participants were 18 AD patients and 18 cognitively healthy
individuals selected in an age- and sex-matched manner.
Participant recruitment was described previously (30). Briefly,
AD patients were recruited from among outpatients of
Niigata University Hospital who were diagnosed with the
disease based on criteria of the National Institute on Aging-
Alzheimer’s Association (NIA-AA) and took the Mini-Mental
State Examination (MMSE) (31) within a year of urine collection.
Cognitively normal, age- and sex-matched controls (MMSE score
>27) were selected from a subcohort (Sekikawa cohort) of the
Murakami cohort, a population-based cohort study targeting
areas of northern Niigata Prefecture (Murakami region) (29).
Participants provided spot urine samples at specific health
checkups held by the national health insurance of Japan (control
group) or during outpatient visits (AD group), and took the
MMSE within a year of urine collection. No restrictions on diet,
drinking, or exercise were required prior to urine sampling. The
procedures for urine collection and storage can be found in the
online Supplementary Material.

Participant characteristics were described previously (30),
and clinical characteristics of patients are summarized in
Supplementary Table 1. Briefly, mean ages of AD and control
groups were 72.9 ± 5.6 and 72.8 ± 5.2 years, respectively, and
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there were 8 males and 10 females in each group. Mean MMSE
scores were 21.6 ± 4.5 and 28.8 ± 0.7, respectively (p < 0.001,
t-test). Disease duration of the AD group was 4.8± 2.5 years. All
but one participant in the AD group had been prescribed anti-
AD drugs (cholinesterase inhibitors and/or N-methyl-D-asparate
receptor antagonist). Mean BMIs of the AD group and control
group were 21.2± 2.9 m/kg2 (n= 11) and 23.7± 2.5 m/kg2 (n=
18), respectively, (p= 0.022, t-test).

Urinary Metabolomics and Lipidomics
Detailed methods of urine sample collection, metabolomics
and lipidomics analysis, and data processing can be found
in the online Supplementary Material. Briefly, analyses of
ionic metabolites were performed at Human Metabolome
Technologies Inc. (HMT, Tsuruoka, Japan) using CE-TOFMS.
Lipidomics analysis was performed at Chemicals Evaluation and
Research Institute, Japan (CERI, Saitama, Japan) using LC-FTMS
(28, 32).

The peak area of each metabolite was normalized to the
creatinine concentration of each sample. Relative peak areas
(normalized to the creatinine concentration) from CE-TOFMS
and LC-FTMS, and information regarding the certainty of
identification of detected peaks from LC-FTMS, are available in
the Supplementary Datasets.

Lipid Nomenclature
Lipids were abbreviated as follows: acyl carnitine (AcCa),
bis-methyl phosphatidic acid (BisMePA), phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS),
triacylglycerol (TG), ceramides phosphate (CerP), ceramides
(Cer), sphingomyelin (SM), diacylglycerol (DG), fatty acid (FA),
and monohexosylceramide (Hex1Cer). Acyl-chain structures are
denoted as carbon chain length:number of double bonds, and
are provided for each chain. Alkenyl bonds (plasmalogen type
linkage) and alkyl bonds identified in glycerophospholipids were
denoted with the ‘p’ suffix and ‘e’ suffix, respectively.

Statistical Analysis
Wilcoxon’s rank-sum test was used to compare levels of
compounds between the AD group and control group. SAS
software was used for statistical analyses (release 9.13, SAS
Institute Inc., Cary, NC, USA, RRID:SCR_008567). P < 0.05 was
considered statistically significant. The false discovery rate was
controlled using Storey’s method.

To identify metabolites which can discriminate the AD
group from the control group, orthogonal partial least-
squares discriminant analysis (OPLS-DA) was applied using
SIMCA software (version 14.0, Umetrics AB, Umea, Sweden,
RRID:SCR_014688). OPLS-DA performs supervised clustering
which classifies AD patients and controls into two groups.
Before OPLS-DA, data that were not normally distributed were
logarithmically transformed accordingly with the automatic
transformation criteria of the software. Data were then mean-
centered and scaled to unit variance for equal metabolite
weighting. The reliability of the models was determined by
analysis of variance testing of cross-validated predictive residuals
(CV-ANOVA). The cross validation was performed seven times.

Variable importance in the projection (VIP) provides the
influence of every variable in the model. A higher VIP value
represents a stronger contribution to discrimination among
groups. Variables with VIP > 1 have an above average influence
on the model.

Pathway and Heatmap Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) compound
database entries (RRID:SCR_012773) were searched for
metabolites and mapped on KEGG pathways using KEGG
Mapper (KEGG PATHWAY Database, RRID:SCR_018145).

MetaboAnalyst was used for pathway enrichment analysis
and pathway topology analysis. KEGG ID was used for
compound name mapping. Concentration data of significantly
differentiated metabolites were uploaded, log-transformed, and
auto-scaled prior to analysis. The selected pathway enrichment
analysis method was Global test. Selected node importance
measure for the topological analysis was relative betweenness
centrality. AcCa, Mannosamine, and Hex1Cer were not included
in the analysis, as they were not registered in the software
internal database. When metabolites share the same KEGG ID,
metabolites with earlier list order, that is, metabolites with smaller
p-values in the bivariate analysis, were adopted.

Data processed for OPLS-DA analysis were used for
heatmap-graph presentation. Graphs were made using
GraphPad Prism (version 9, GraphPad Software, LLC., CA,
USA, RRID:SCR_002798).

Processed data for bivariate analysis, and auto-transformed
and scaled data for OPLS-DA analysis are available as
Supplementary Datasets.

RESULTS

Urinary metabolites including both ionic and lipid molecules
were identified, and their relative concentrations were compared
between the AD group and control group. A total of 304 ionic
molecules and 81 lipid compounds of 12 lipid molecular classes
were identified using CE-TOFMS and LC-FTMS, respectively.
Compounds with >50% missing values were excluded, and
missing values were replaced by 1/5 of the minimum positive
value for each compound, resulting in 198 ionic molecules and
81 lipids for further analysis. Twenty-six of the 279 metabolites
showed significantly different relative concentrations between the
two groups (p < 0.05), with 21 having lower concentrations
in the AD group than in the control group, and five having
higher concentrations in the AD group than in the control group
(Table 1).

PC and PE classes included molecules with diacyl, alkyl,
and alkenyl side chains. These molecules were subclassified
as diacyl, alkyl, and alkenyl groups, and total amounts of
molecules in each lipid class and subclass were compared
(Supplementary Table 5), provided that the main ions of the
lipid molecules identified in each lipid class were identical
(Supplementary Table 6). Total amounts of AcCa, DG, and FA
were significantly lower in AD urine, and that of alkenyl PE was
significantly higher in AD urine.
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TABLE 1 | Correlation coefficients for SC thickness values calculated by five different methods.

Compounds KEGG compound ID Median fold change (AD/control) p-value (Wilcoxon) Q-value VIP (Model 1)

Compounds significantly lower in AD urine compared to control urine

Glycerol 3-phosphate C00093 0.44 0.001 0.111 2.732

Caffeine C07481 0.05 0.002 0.142 2.158

Ethanolamine phosphate C00346 0.51 0.002 0.142 2.379

Paraxanthine C13747 0.46 0.004 0.197 2.112

Pimelic acid C02656 0.65 0.007 0.285 2.492

AcCa (11:1) C02301 0.45 0.010 0.296 2.535

AcCa (9:0) C02301 0.54 0.013 0.340 2.035

DG (18:2_21:0) C00165, C00641 0.46 0.018 0.375 1.533

Taurine C00245 0.68 0.018 0.375 1.770

TG (16:0_16:0_16:0) C00422 0.67 0.022 0.375 1.639

Mannosamine C03570 0.74 0.033 0.375 2.058

Indole-3-acetaldoxime, indole-3-acetamide C02937, C02693 0.63 0.036 0.375 1.725

TG (10:0_20:1_20:5) C00422 0.53 0.038 0.375 1.431

Leucine C00123, C01570, C16439 0.81 0.041 0.375 1.903

Piperidine C01746 0.40 0.045 0.375 1.320

FA (21:0) C00162, C00638 0.50 0.045 0.375 1.596

FA (14:0) C00162, C06424 0.68 0.045 0.375 1.487

FA (36:0) C00162 0.51 0.048 0.375 1.581

FA (33:0) C00162 0.52 0.048 0.375 1.620

FA (30:0) C00162 0.53 0.048 0.375 1.581

4-Guanidinobutyric acid C01035 0.72 0.050 0.375 1.096

Compounds significantly higher in AD urine compared to control urine

Hex1Cer (m19:0_21:2) C05005 1.99 0.009 0.296 1.839

PE (16:0p_20:4) C04756 1.39 0.028 0.375 1.445

PC (18:0_20:3) C00157 1.50 0.035 0.375 1.583

PE (18:0p_20:4) C04756 1.50 0.035 0.375 1.904

cAMP C00575 1.26 0.037 0.375 0.857

To clarify the metabolic profile characteristics of AD urine,
we attempted to discriminate between the AD group and
control group using OPLS-DA. First, the relative concentration
of all 279 metabolites were analyzed, resulting in a considerable
separation between the AD group and control group (p =

0.045 in CV-ANOVA, Model 1) (Figure 1A). Next, the model
which included 26 molecules significantly higher or lower in
AD urine was able to more effectively discriminate the two
groups in OPLS-DA (p < 0.001 in CV-ANOVA, Model 2)
(Figure 1B). Further removal of metabolites did not increase
model efficiency.

To assess the biological relevance of the 26 metabolites
which significantly differed by relative amount between the two
groups, these metabolites were annotated to KEGG compound
IDs (Table 1) and mapped on KEGG pathways. KEGG IDs
for some molecules were redundant due to the limitation in
isomer separation and limited coverage of the database. The
list of KEGG pathways that include four or more of the
significantly differentiated metabolites in AD urine are shown
in Table 2. The location of these metabolites in each pathway
map and a heatmap representation of all metabolites included
in each pathway are shown in Supplementary Figures 1 and
2, respectively.

Pathway enrichment and pathway topology analysis using the
relative concentration values of metabolites was performed using
Metaboanalyst to identify pathways that are highly relevant to
the components of AD urine. AcCa, Mannosamine, and Hex1Cer
were not included in the analysis because they were not in
the software database. Pathways that were significantly enriched
after adjustment by the Holm-Bonferroni method are shown
in Table 3. Among these significantly enriched pathways, the
caffeine pathway had the strongest impact (Table 3).

DISCUSSION

In this study, we analyzed the comprehensive metabolome of
ionic and lipid molecules in urine samples from AD patients and
cognitively normal, age- and sex-matched controls. This allowed
us to develop a metabolic profile of AD urine. Five molecules had
a significantly higher concentration, and 21 had a significantly
lower concentration, in AD urine compared with control urine.
These 26 molecules effectively discriminated the AD group from
the control group in the OPLS-DA model. Results of pathway
searches with the KEGG database, and pathway enrichment
and topology analysis with Metaboanalyst software, suggested
alterations in molecules relevant to pathways of glycerolipid and
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FIGURE 1 | Scatter plot of OPLS-DA analysis. (A) Model 1: model constructed from all 279 metabolites identified (Model 1). (B) Model 2: model constructed from 26

metabolites that significantly differed in Wilcoxon’s rank-sum test (P < 0.05).
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TABLE 2 | List of KEGG pathways that include 4 or more of the significantly

differentiated metabolites in AD urine.

Pathway ID Description (Number of included metabolites)

Included metabolites

hsa01100 Metabolic pathways (15)

Glycerol 3-phosphate, Leucine, PC, Taurine, Ethanolamine

phosphate, TG, cAMP, DG, 4-Guanidinobutyric acid, Pimelic acid,

Indole-3-acetaldoxime, Indole-3-acetamide, Ethanolamine

plasmalogen, Caffeine, Paraxanthine

hsa04714 Thermogenesis (5)

AcCa, TG, DG, FA, cAMP

hsa00561 Glycerolipid metabolism (4)

Glycerol 3-phosphate, DG, TG, FA

hsa00564 Glycerophospholipid metabolism (4)

Glycerol 3-phosphate, Ethanolamine phosphate, PC, DG

hsa05231 Choline metabolism in cancer (4)

Glycerol 3-phosphate, PC, FA, DG

hsa04923 Regulation of lipolysis in adipocytes (4)

FA, DG, TG, cAMP

TABLE 3 | Significant pathways as determined by pathway-enrichment analysis.

Pathway Total Hits Raw p Holm p Impact

Glycerophospholipid metabolism 36 4 0.000 0.001 0.204

Glycerolipid metabolism 16 4 0.001 0.017 0.154

Caffeine metabolism 10 2 0.001 0.019 0.692

Sphingolipid metabolism 21 1 0.002 0.026 0.014

Total corresponds to the total number of compounds in the pathway.

Hits correspond to the actually matched number from uploaded data.

Raw p is the original p-value calculated from the enrichment analysis.

Holm p is the p-value adjusted by the Holm-Bonferroni method.

glycerophospholipid metabolism, thermogenesis, and caffeine
metabolism in AD urine.

Metabolomics studies of blood and brains of AD
patients found altered levels of glycerolipids and
glycerophospholipids (7, 33–38). G3P initiates the first step
in the biosynthesis of glycerolipids and glycerophospholipids
(Supplementary Figure 3) (39). G3P and FA generate
glycerolipids, including lysophosphatidic acid, phosphatidic acid,
monoacylglycerols, diacylglycerols (DG), and triacylglycerols
(TG). Hydrolysis of these acylglycerols results in FA release.
PC is generated from DG, and PE from CDP-choline and
CDP-ethanolamine (Supplementary Figure 3).

In the present study, G3P and ethanolamine phosphate
were significantly lower in AD urine in bivariate analysis and
contributed to the discriminant model with a high rank, and
choline levels tended to be lower in AD urine (p = 0.06,
see the ‘Processed data’ sheet of the Supplementary Datasets).
Furthermore, the total amount of FA and DG was significantly
lower in AD urine (Supplementary Table 6), and 5 FA, 2 TG,
and 1 DG molecules were also significantly lower in AD urine,
implying dysfunction in glycerolipid and glycerophospholipid
metabolism in AD patients.

Previous studies have reported on changes in PC levels
in brains and blood of AD patients. Specifically, lower
levels of PCs with polyunsaturated fatty acid (PUFA) side

chains were repeatedly observed (40–42). Essential PUFAs such
as docosahexaenoic acid (DHA, 22:6) and arachidonic acid
(AA, 20:4) provide structural functionality as phospholipid
components in bilayer membranes (42). Meanwhile, Huo et al.
reported that higher levels of some PC species containing
saturated FA side chains are associated with future cognitive
impairment (33). González-Domínguez et al. reported that PCs
containing saturated and short-chain FAs in the serum of AD
patients tended to increase, while PCs with PUFA side chains
tended to decrease (43). Mapstone et al. reported that lower
PC levels predict future cognitive impairment most acutely,
but do not adequately discriminate between MCI/AD patients
and cognitively normal controls (41). No significant changes
were observed in most of the PC species found in the present
study which contained saturated FA or non-essential PUFA side
chains. This might be due to the cross-sectional design of our
study to compare AD patients with older adults with normal
cognitive function.

Levels of plasmalogen-type PE (ethanolamineplasmalogen,
PlsPE), i.e., alkenyl PE, are reportedly reduced in brains and
blood of AD patients (44). In the present study, levels of two
PlsPEs were higher in AD urine, and the alkenyl side chain of
each PlsPE was AA. To our knowledge, two studies have analyzed
PlsPE in the blood of AD patients, including differences in their
acyl chains (45, 46). Yamashita et al. reported that levels of plasma
PlsPE containing DHA were significantly lower in AD patients,
but no significant difference was observed in levels of PlsPEs
containing other types of unsaturated fatty acids, including AA
(45). On the other hand, Goodenowe et al. reported reductions
of both PlsPEs that contain DHA and AA (46). Further analysis
of differences in the dynamics of PlsPEs in AD patients based
on their FA components, as well as the relationship between the
amount of phospholipids discharged into urine and the amount
of phospholipids in the blood, is warranted.

Acylcarnitines (AcCas) are made from FAs esterified to
carnitine molecules, and are produced on the outer surface of the
mitochondrial membrane by carnitine palmitoyl transferase 1 to
facilitate the transport of long chain FAs across the mitochondrial
membrane for breakdown by β-oxidation (47). TG, FA, and
AcCa are essential metabolites in lipid metabolism, energy
homeostasis, and thermogenesis (39). In the present analysis,
both the total amount of FA and AcCa molecules identified were
significantly lower, and TGs tended to be lower, in AD urine
(Supplementary Figure 3 and Supplementary Table 5). Levels
of AcCas in the plasma or serum of AD patients or individuals
with cognitive impairment have been examined in cross sectional
settings, with inconsistent results. Two studies reported lower
levels of some AcCas in AD patients compared to healthy elderly
individuals (48, 49), while two other studies reported a significant
increase in certain AcCas in AD patients (50, 51). In prospective
study settings, lower levels of some AcCas were found to predict
future cognitive impairment or AD (33, 41). Since AcCas are
not easily reabsorbed in the renal tubules (52), urinary AcCa
concentrations reflect AcCa concentrations in the blood. On the
other hand, levels of AcCas are affected by diet (52, 53). Studies
that take into account subject body size (e.g., BMI) and food
intake will be needed in the future.
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Caffeine is a purine alkaloid that is consumed mainly from
coffee and tea. Paraxanthine is the preferential product of caffeine
metabolism in humans (54). In epidemiological studies, data
on the protective effects of caffeine on cognitive decline and
dementia have been mixed. A meta-analysis of eight prospective
studies found no significant association between the amount of
caffeine intake and AD risk (55), whereas another systematic
review reported a positive association between caffeine intake
and the risk of dementia/cognitive decline (56). A more recent
meta-analysis found that mild coffee consumption is linked to a
reduced risk of cognitive deficits (57). Therefore, caffeine intake
may be associated with a decreased risk of dementia. However,
we did not assess the amount of caffeine consumption in the
present study.

In the present study, taurine and leucine were significantly
lower in AD urine. Taurine is the most abundant sulfur-
containing amino acid, with many functions in the nervous
system (58). Lower serum levels of taurine are associated with
a higher risk of dementia (41, 59–62). An association between
increased levels of leucine, an essential amino acid, and a lower
risk of dementia was reported in a recent study (63). Circulating
levels of these amino acids are largely determined by dietary
intake, and reduced levels might indicate reduced nutritional
intake in AD patients. Weight loss later in life is known to
be associated with a higher risk of dementia (64); thus, these
metabolites may serve as potential markers for AD.

Given the diversity of lipid species, currently available
methods can only analyze a subset of the full lipidome. Here,
we took advantage of LC-FTMS for lipidomic analysis. LC-FTMS
enables high mass resolution and highly selective detection of
lipid species (27, 32, 65). To our knowledge, few reports have
touched on the molecules identified in this study, such as FAs
with very long chains (C27–C36) and sphingolipids with an
atypical sphingoid base.

FAs in biological systems contain typically between 14 and 24
carbon atoms (66), and FAs with carbon chains of 26 or longer
are often classified as ultra-long chain FAs (ULCFAs) (67). In
the present study, saturated ULCFAs were observed and their
levels were lower in AD patients. Saturated ULCFAs are found in
small amounts in the brain, but are present in large amounts in
skin and meibomian glands (67, 68). Significant amounts of wax
esters, which are esters of FA and fatty alcohols, are contained in
meibomian gland secretions and sebum (69–71). Depending on
the analysis method, including that used in the present study, it
is difficult to discriminate isomers between FA and wax esters.
To our knowledge, no other study has reported on saturated
ULCFAs in urine, and we cannot exclude the possibility that most
(but not all) saturated ULCFAs identified in the present study are
wax esters. Further investigation on urine metabolomics using a
similar method is warranted.

Sphingolipids are characterized by the presence of a
common sphingoid backbone structure, such as sphingosine
(d18:1), sphinganine or dihydrosphingosine (d18:0), and
phytosphingosine or 4-hydroxysphinganine (t18:0) as sphingoid
bases in humans (72). The sphingoid bases of m19:0, m17:1,
and t17:1 identified in Hex1Cer, Cer, and CerP were atypical. To

our knowledge, this is the first report to identify these species
in urine.

Hex1Cer is a cerebroside that includes glucosylceramide and
galactosylceramide, a member of a group of glycosphingolipids
that are highly abundant in the vertebrate brain (73). In
the present study, the level of Hex1Cer (m19:0_21:2) was
significantly higher and the total amount of Hex1Cer tended
to higher, in AD urine. In mammals, glucosylceramide and
galactosylceramide are catabolized by glucocerebrosidase and
galactocerebrosidase, respectively, with the assistance of saposin
A and saposin C, respectively, (74). Interestingly, we previously
reported that levels of prosaposin (PSAP), the precursor of
saposins, were significantly lower in AD urine relative to control
urine (30).

The influence of medication on our present results cannot
be ruled out. Donepezil, a representative drug used to treat AD,
may potentially interact with drugs metabolized via CYP1A2-
, CYP2D6-, and CYP3A4-related enzymes (75), and CYP1A2
is a major enzyme catalyzing the metabolism of caffeine. Wan
et al. compared blood metabolites of AD patients treated with
donepezil for at least 3 months and reported that blood G3P
levels were significantly lower in the donepezil responsive group,
although no difference was found in blood G3P levels between
individuals newly diagnosed with AD and healthy controls (76).
In the AD group of the present study, an average of 4 years had
passed since diagnosis and 10/18 participants were being treated
with donepezil.

This study has some limitations worth noting. Urinary
metabolites and lipidomes are highly influenced intra- and
inter-individually by factors such as diet, alcohol consumption,
exercise, drugs, sex, and age. The small sample size and use of spot
urine samples without any restrictions prior to urine collection
are primary limitations of this study.

Second, BMI differed between the AD and control groups.
The AD group had significantly lower BMI, although 7 of 18
participants had missing BMI data. Reduced appetite and weight
loss are common symptoms of AD (64, 77) and may explain the
lower urinary levels of AcCas, FAs, TGs, taurine, and leucine
observed in the study, as well the increase in PC (18:0_20:3). The
acyl group of PC (18:0_20:3) is presumably derived from stearic
acid and mead acid. Mead acid is reported to be produced in
the absence of essential FAs (78–80). Our results suggest that AD
patients may have reduced food intake, although we cannot rule
out the possibility that intracellular energy metabolism might be
impaired in these patients.

Third, there was limited clinical information on our
participants. The diagnosis of AD was based on NIA-AA criteria,
whereas their cognitive function was determined only by the
MMSE; no other cognitive function tests (e.g., CDR) were
employed. Based on their MMSE scores, however, we estimated
that they had a relatively wide range of dementia severity, with
CDRs ranging from 0.5 to 2 (mainly no MCI).

Finally, the present study used a cross-sectional, case-control
design, which did not allow us to evaluate causality. Prospectively
designed studies that include detailed information on cognitive
changes and lifestyle habits will be necessary in the future.
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In conclusion, we demonstrated differences in the urinary
metabolome between AD patients and cognitively normal
individuals, and identified a panel of molecules that can
discriminate between the two groups. Urinary metabolite profiles
of AD mainly suggested alterations in glycerolipid and FA
metabolic pathways. Advances in technology are expected
to reveal more metabolites in urine, and urinary biomarker
discovery will contribute to early detection and an understanding
of AD pathogenesis.
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