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Despite advancements made toward diagnostics, tuberculosis caused byMycobacterium
africanum (Maf) and Mycobacterium tuberculosis sensu stricto (Mtbss) remains a major
public health issue. Human host factors are key players in tuberculosis (TB) outcomes and
treatment. Research is required to probe the interplay between host and bacterial
genomes. Here, we explored the association between selected human/host genomic
variants and TB disease in Ghana. Paired host genotype datum and infecting bacterial
isolate information were analyzed for associations using a multinomial logistic regression.
Mycobacterium tuberculosis complex (MTBC) isolates were obtained from 191 TB
patients and genotyped into different phylogenetic lineages by standard methods. Two
hundred and thirty-five (235) nondisease participants were used as healthy controls. A
selection of 29 SNPs from TB disease-associated genes with high frequency among
African populations was assayed using a TaqMan® SNP Genotyping Assay and iPLEX
Gold Sequenom Mass Genotyping Array. Using 26 high-quality SNPs across 326 case-
control samples in an association analysis, we found a protective variant, rs955263, in the
SORBS2 gene against both Maf and Mtb infections (PBH = 0.05; OR = 0.33; 95%
CI = 0.32–0.34). A relatively uncommon variant, rs17235409 in the SLC11A1 gene was
observed with an even stronger protective effect against Mtb infection (MAF = 0.06;
PBH = 0.04; OR = 0.05; 95% CI = 0.04–0.05). These findings suggest SLC11A1 and
SORBS2 as a potential protective gene of substantial interest for TB, which is an
important pathogen in West Africa, and highlight the need for in-depth host-pathogen
studies in West Africa.
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INTRODUCTION

Pulmonary tuberculosis (TB), a disease of public health
importance, is caused by pathogenic members of the
Mycobacterium tuberculosis complex (MTBC), such as M.
africanum (Maf) and M. tuberculosis sensu stricto (Mtbss).
Each species comprising several clades of specific strains show
variable virulence and disease-causing mechanisms (Yeboah-
Manu et al., 2011; Delogu et al., 2013; Reiling et al., 2013;
Brites and Gagneux, 2015). While Maf is restricted to West
African countries including Ghana, Mtb is responsible for TB
cases worldwide (Gagneux and Small, 2007). As a disease
transmitted through aerosol, (Delogu et al., 2013), it is
expected that susceptible immunocompetent individuals who
come into contact with aerosol(s) containing viable bacteria
will be equally infected. However, in about 90% of infected
individuals, the host immune system can wall off the site of
infection in a granuloma (Ghon complex) (Malik and Godfrey-
Faussett, 2005; Gagneux et al., 2008; Yeboah-Manu et al., 2011).
However, with the remaining 10%, only 5% will potentially
develop active TB disease within 2–3 years of infection, while
the remaining 5% may develop TB later in their life (Sakamoto,
2012; Fattorini et al., 2013; Narasimhan et al., 2013). This unique
differential infection propensity depends on the interplay
between the genetic makeup of the human host (Thye et al.,
2010; Oki et al., 2011; Thye et al., 2012; Chimusa et al., 2014;
Kinnear et al., 2017), the environment, and socioeconomic factors
(Cheng et al., 2017; Mohidem et al., 2018).

In recent years, genetic association studies between important
genes and susceptibility to infectious diseases such as TB, Malaria,
and HIV using linkage and genome-wide association (GWAS)
have been reported (Comstock, 1978; Pydi et al., 2013; McHenry
et al., 2020). With these studies, several genes have been reported
to be associated with TB, including Toll-like receptors (TLRs),
cytokines/chemokines, and their receptors leukocyte antigens
(HLAs), SLC11A1, major histocompatibility complex-(MHC),
mannose-binding lectin (MBL), vitamin D Receptor (VDR),
etc. (Søborg et al., 2003; Salie et al., 2013). For instance, in
2012, Pydi et al. reported on inhibitory genes, such as
KIR3DL1 and KIR2DL3, that confer susceptibility toward TB
in individuals.

Although these studies provide useful insights into the disease
etiology, very few of these studies investigated the association
between these gene variants and specificMTBC strains (McHenry
et al., 2020). For example, in a cohort study of 1,916 sputum-
positive Ghanaian TB patients genotyped for the ALOX5 g.760G
> A variant, individuals with heterozygous alleles were found to
be at increased risk for developing TB (Herb et al., 2008).
Through stratification by MTBC lineage, this association was
mainly driven by patients harboring the exonic variant (g.760A)
and infected with Maf [OR = 1.70 (95% CI: 1.2–2.6)] (Herb et al.,
2008). Conversely, a protective association [OR = 0.60 (95% CI:
0.4–0.9)] was identified among the occurrence of TB caused by
Maf but not Mtb and the mannose-binding lectin (MBL2) G57E
variant in another cohort of Ghanaian patients (Thye et al., 2011).
Moreover, this latter study also found that Maf binds human
recombinant MBL more efficiently, perhaps leading to an

improved uptake of Maf by macrophages and selection of
deficient MBL variants among human populations exposed
to Maf.

Comparative analysis of HLA alleles and the Mtb strains
isolated from pulmonary TB patients in a South African study
found a significant association of HLA-B27 allele with decreased
risk of TB caused by the Beijing strain (Salie et al., 2013). Using a
candidate gene approach, from a cohort of 237 adult Vietnamese
TB patients, Caws et al. concluded that individuals carrying the C
allele of the Toll-like receptor-2 (TLR2) T597C polymorphism
were significantly more likely to develop TB caused by
mycobacteria belonging to the East-Asian/Beijing strain family
[OR = 1.57 (95% CI 1.15–2.15)] (Caws et al., 2008). Similar
studies have been conducted to understand the coevolution of
MTBC and its human host, with regard to the association
between different MTBC strains and disease severity. Findings
from one such study in Uganda reported an interaction between a
single-nucleotide polymorphism (SNP) in SLC11A1 and the
lineage (L) L4 of Mtb with several IL12B polymorphisms
associated with disease severity (McHenry et al., 2020).

Even though the Sub-Saharan African continent is home to the
highest diversity of humans as well as the MTBC, studies to
explore the potential association of specific host gene variants and
susceptibility to strains of the MTBC are limited (Mboowa, 2014;
Omae et al., 2017; McHenry et al., 2020). Thus, host genetics and
susceptibility to distinct MTBC lineages cannot be overlooked.
Findings from two independent molecular epidemiological
studies by our group and other groups (Asante-Poku et al.,
2015; Asante-Poku et al., 2016) showed a strong association
between Maf (driven by lineage 5) and a native West African
ethnic group. To improve our understanding of the genetic
susceptibility to the MTBC clades, this current study thence
explored genotyping data from the host and pathogen to
screen for clade-specific genetic associations in cohorts
originating from Ghana.

MATERIALS AND METHODS

Ethical Approval
The study was performed in accordance with the Declaration of
Helsinki. Ethical approval for the study was obtained from the
Noguchi Memorial Institute for Medical Research Institutional
Review Board (NMIMR-IRB 097/15–16). Written and signed
informed consent was obtained from participants before
enrolment into the study.

Study Population
From July 1, 2016 to July 31, 2018, this case-control study
enrolled participants. The study population was in two
categories: One group was made up of only newly diagnosed
TB patients (cases), and the other group was made up of healthy
individuals serving as the control group (NTB). For the case
group, only newly diagnosed sputum smear-positive adult TB
cases, registered at the Department of Chest Disease, Korle-Bu
Teaching Hospital in Ghana, were recruited into the study before
the commencement of TB treatment. All patients were unrelated.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7297372

Asante-Poku et al. Genetic Analysis of TB

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Sample size for the study was computed using the EPITOOLS
webtool (https://epitools.ausvet.com.au/casecontrolss) for case-
control studies based on odds ratios. The parameters furnished to
the algorithm included the expected proportion exposed in
controls (5%), assumed (minimum) odds ratio, confidence
interval (95%), and desired power (80%). Based on these
values, a sample size of 348 was estimated, 174 for each
group. Therefore, 191 cases and 235 controls were recruited in
anticipation of quality filters.

For the control group, five sites of the community by the
national TB control program (NTP) were selected. These sites
included Korle-gonno (Ablekuma south sub metro), Bukom
(Ashiedu Keteke sub metro), Abossey-okai (Okaikoi south),
Glefe (Ablekuma West), and Amanfrom (Ga West District).
Medical outreaches were conducted in these sites and with a
new structured questionnaire, clinical characteristics [diabetes
(American Diabetes Association, 2016), HIV, hypertension], and
demography and epidemiological data were obtained from each
participant using a structure questionnaire. Only patients with no
history of TB were recruited into the study. Participants with
elevated stage 1 or 2 hypertension were transported to the nearest
hospital for immediate medical attention and excluded from
the study.

Sample Collection
Diagnosed Tuberculosis Patients Group
To confirm the initial diagnosis at the health facility and to
identify the infecting mycobacterial species, a sputum specimen
was collected from each TB study participant, following the NTP
guidelines. Samples were taken only after participants’ written or
thumb-printed consent. Clinical characteristics (previous history
of TB, diabetes, BCG vaccination, HIV) as well demography and
epidemiological data including age, sex, substance abuse,
education, education and ethnic origin were obtained from
each participant using a structured questionnaire.

Non-tuberculosis Patients Control Group and Chest
X-Ray Screening
The screening of eligible control individuals was done in a stepwise
manner. First, adults (>18 years) presenting at any of the outreach
centers were screened for diabetes and hypertension. Individuals
with no evidence of high body temperature (38°C or above)
diabetes or elevated hypertension were then taken through chest
x-ray (CXR) screening using CAD4TB (version 3.07, Diagnostic
Image Analysis Group, The Netherlands) for abnormalities
suggestive of pulmonary TB. The software has two abnormality
detection systems (textural abnormality and shape abnormality
systems), which analyze abnormalities in the unobscured lung
fields that have been segmented automatically (Zaidi et al., 2018). A
higher score is suggestive of TB. A CAD4TB threshold score of 60
was used for this population determined using previously collected
CXR data in a similar population. Sputum samples were collected
from all individuals with high CAD4TB scores (60 or greater) and
transported to the laboratory for further analysis. Individuals with
high CAD4TB scores were referred to the hospitals for further
clinical evaluation.Whole blood (5 ml) was collected from each TB
patient for host genetics analysis.

Laboratory Analysis
Isolation and Characterization of Mycobacterium spp.
Sputum samples obtained were decontaminated using 5% oxalic
acid (Yeboah-Manu et al., 2001) and inoculated on two pairs of
Lowenstein–Jensen (LJ) slants: one supplemented with 0.4%
sodium pyruvate to enhance the isolation of Maf and M.
bovis, and the other with glycerol for the growth of Mtb. The
cultures were incubated at 37°C and were observed weekly for
growth for a maximal duration of 16 weeks. MTBC strains were
identified by PCR detection of insertion sequence IS6110 as
previously described (Yeboah-Manu et al., 2004). Colonies
from positive cultures were purified and stored at −80°C in
2 ml of Middlebrook 7H9 supplemented with ADC
enrichment media until use. Pure bacteria DNA was extracted
for genotyping using a modified protocol (Otchere et al., 2016)
and stored at −20°C until further use.

All MTBC isolates were further typed by spoligotyping
(Kamerbeek et al., 1997). This was performed according to the
instructions of the manufacturer, using commercially available
kits (Isogen Bioscience BV Maarssen, The Netherlands). Briefly,
The DR-containing region was amplified by PCR using primers
DRa and DRb (GGTTTTGGGTCTGACGAC and
CCGAGGGGACGGAAAC). The amplified products were
hybridized to a set of 43 oligonucleotides each corresponding
to one spacer, immobilized on a nylon membrane. Detection of
hybridization was achieved using chemiluminescent ECL
(Amersham) liquid followed by x-ray exposure. The
spoligotyping patterns obtained were defined according to the
SITVITWEB database (http://www.pasteur-guadeloupe.fr:8081/
SITVIT_ONLINE). SITVITWEB-assigned shared type numbers
were used whenever a spoligotyping pattern was found in the
database, while families and subfamilies were assigned based on
the MIRU-VNTRplus database (http://www.miru-vntrplus)
(http://www. miru-vntrplus.org). Shared types were defined as
patterns common to at least two or more isolates. All patterns that
could not be assigned were considered orphan spoligotypes.

Host DNA Isolation
DNA was extracted within 24 h from peripheral blood, following
instructions on the available commercial kit Gentra Puregene
Blood Kit (QIAGEN) in accordance with the recommendations
of the manufacturer. All DNA samples were stored at 80°C prior
to genotyping. DNA quality was evaluated according to the 260/
280 ratio with a Nanodrop 2000 spectrophotometer (Thermo
Scientific). In total, 792 samples with concentrations of
5–851.87 µg/µl were selected and sent for single-nucleotide
polymorphism (SNP) typing.

Host Genetic Analysis: Genotyping of Targeted
Single-Nucleotide Polymorphisms in Tuberculosis
Disease-Related Host Genes
Targeted genotyping was conducted in the Division of Human
Genetics Laboratory, Faculty of Health Sciences, at the University
of Cape Town, South Africa. Genetic variants that are potentially
associated with MTB were identified from the recent literature.
Once the SNPs of interests were identified, we investigated their
allele frequencies in African populations present in the 1000
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Genomes project (http://www.internationalgenome.org/home)
and further narrowed the selection to SNPs that showed high
frequency among African populations. This resulted in the
selection of 29 SNPs from MTBC-related genes that were
investigated in the present study (Supplementary Table S1).
SNPs were genotyped using a TaqMan® SNP Genotyping Assay
and TaqMan® Universal Master Mix (Life Technologies,
Carlsbad, CA, USA), at the Division of Human Genetics,
Faculty of Health Sciences, University of Cape Town and by
iPLEX Gold Sequenom Mass Genotyping Array (Inqaba Biotec,
Pretoria, South Africa). Validation was done in a subset of
samples (10%) by Sanger sequencing using BigDye terminator
mix (Promega, Madison, WI, USA).

Quality Assessment
The genotype dataset was captured in Excel and transformed to
PLINK ped + map format using a custom script. SNP coordinates
were obtained by querying the ENSEMBL GRCh38 web browser.
PLINK binary format files (bed + bim + fam) were then generated
using PLINK2, while aligning against the human reference
genome in GRCh38 coordinate. Quality checks involved
removal of samples for which one or both parents were non-
Ghanaians, SNPs with genotyping call rate <90%, individuals
with missing genotype >10%, and SNPs with minor allele
frequency <0.01.

Data Analysis
Determination of Axes of Genetic Variation
Epidemiological data for this study was double entered into
Microsoft© Access and validated to remove duplicates. To
determine whether there were significant genetic differences
among the different ethnicities based on the typed SNPs that
could impair association analysis, 10 (Kinnear et al., 2017)
principal components (axes of genetic variation) were
computed using PLINK2. A generalized linear model (GLM)
was then run using the R statistical package to determine which
axes of genetic variation were significantly associated with case-
control status (i.e., presence or absence of TB infection). A GLM
of case-control status against age, height, and weight was also run
to determine their influence on association analysis.

Association Analysis
Association tests of SNPs with case-control status were run using
PLINK1.9 with the maximum permutation test procedure used to
correct for multiple testing and to determine empirical
significance levels. The --logistic command of PLINK was used
with 100,000 maximum permutations to test for significant SNPs
under different models of inheritance/association (i.e., additive,
dominant, recessive, heterozygote/homozygote, and genotypic),
while adjusting for sex, age, weight, and height (the variable that
showed significant association with case-control status by the
GLM test). The association analyses were run on three separate
datasets: all controls versus all cases irrespective of the infecting
MTBC genotype, all controls versus cases with Maf, and all
controls versus cases with Mtb TB. Association testing was
run on each chromosome separately. The quality of the
variants was assessed, and association analysis was run with

26 high-quality variants for the controls against all the cases
put together. A total of 326 participants (145 cases; 181 controls),
of which 156 were males and 170 were females, were included in
the association analysis.

RESULTS

Characteristics of Study Cohorts
The study population consisted of 426 individuals (191 TB
individuals and 235 controls). The odds of any gender being
associated with active TB in univariate logistics regression was
greater for young male patients (less than 24 years; n = 73) and
patients older than 65 years (n = 7) [odds ratio (OR) 12.8, 95%
confidence interval (CI). 7.9–20.9, p = 0.001], (Table 1). Analysis
of risk factors revealed that 34%, 11.6%, and 5.8% of the patients
were registered as alcohol abusers, cigarette users, and substances
abusers, respectively. Participants who have a pattern of drinking
that interferes with their day-to-day activities were considered
alcohol abusers, cigarette users were people who smoke at least
once daily, and substances abusers were people who use legal and
illegal drugs. Among the TB patients with available clinical data
(185/191), the vast majority had pulmonary TB only (97.0%)
followed by pulmonary TB with anemia (2.0%) and TB with lobar
pneumonia (1.0%). At the time of sampling, 16.7% (n = 32) of the
patients were hospitalized, and 10.9% of the patients (n = 21) had
a previous history of TB. Analysis of risk factors revealed that
1.6% of the patients were registered diabetic TB patients. HIV-
positive patients accounted for 6.8% of the study population, and
9.4% were notified as suffering from malnutrition. Sputum
bacillary load at presentation was significantly higher in the
Mtb group with n = 90 patients having sputum grades of 2+
compared with (n = 28) patients in the Maf group (p < 0.001.).
Analysis of the cohort showed contributing ethnicities from the
Akan, Ga-Adangbe, Ewe, and several other ethnic groups from
northern Ghana.

Genetic Structure of Pathogen Lineages
and Correlation of Participants’
Demographic Variables
The 191 TB isolates after spoligotyping (S1) were identified as
78.5% (n = 150) Mtb and 21.5% (n = 41) Maf. Through
stratifying by lineages (L), 86.6% (n = 130/150) of the Mtbss
strains belonged to the Euro-American lineage (L4), with
sublineages Cameroon (72.3%), Ghana (15.4%), and
Haarlem (4.6%), with Uganda 11 (4.6%) being the most
prevalent followed by Maf, L5 (58.5%) (n = 24/41). A total
of 66 spoligotypes were detected; 170/191 isolates (89.0%) had
previously defined shared type number (SIT). The remaining
21 isolates could not be defined by the SITVIT database and,
thus, were defined as “orphan.” There was a significant
correlation between case-control status and each of the
demographic variables age, height, and weight-based on a
generalized linear model (Table 1). None of the 10
(Kinnear et al., 2017) principal components computed
showed a significant correlation with cases-control status
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(Table 2). On the other hand, age, height, weight, and sex
showed statistically significant associations with case-control
status and were, therefore, included as covariates in
association tests.

Genetic Association Between Tuberculosis
Cases and Controls
Of the 426 samples, 10 were removed due to a questionable
ethnicity status (i.e., either father or mother, or both were non-
Ghanaians). Using PLINK for quality assessment of the
remaining 416 samples and 29 variants (SNPs), 90 samples
were removed due to missing genotype data (--mind 0.105), 1
variant (rs1616723) was removed due to missing genotype data
(--geno 0.105), and 2 variants were removed due to the
Hardy–Weinberg exact test—performed on control samples
only (--hwe 0.001). No SNPs were removed as a result of
minor allele frequency threshold (--maf 0.01). Upon alignment
to the human reference genome (build 38 - GRCh38), 9 variants
were changed due to allele mismatch, while the remaining 14
variants were validated for reference/alternate allele assignment.
A total of 326 samples (145 cases and 181 controls; 170 females,
156 males) and 26 SNPs were retained for further analysis with a
total genotyping rate of 99%.

Table 3 shows association tests results after adjustment for sex,
age, height, and weight, and correction for multiple testing. All
p-values reported are Benjamin–Hochberg adjusted (PBH) after
100,000 permutations. SNPs located on chromosome 4
(rs955263) in the SORBS2 gene and on chromosome 2
(rs17235409) in SLC11A1 encoding mannose-binding lectin

TABLE 1 | Demographic characteristics of patients.

Characteristics (TB patients)
N = 191

(NTB) N = 238 p-Value OR 95% CI

Gender
Male 151 54 <0.0001 12.8 7.9–20.9
Female 40 184 <0.0001 0.1 0.05–0.13

Age
13–24 42 31 0.0195 1.9 1.1–3.2
25–34 42 41 0.2213 1.4 0.8–2.3
35–44 47 45 0.1577 1.4 0.8–2.3
45–54 40 48 0.9044 1.1 0.6–1.7
55–64 13 32 0.0270 0.5 0.2–0.9
65+ 7 41 <0.0001 0.2 0.1–0.4

Risk factors
BCG
Yes 120 156 0.6123 0.9 0.6–1.4
No 71 82 — — —

Substance abuse (cigarette, alcohol, etc.)
Yes 112 74 <0.0001 3.1 2.1–4.8
No 79 164 — — —

Diabetes
Yes 3 0 0.0875 Inf 0.5-Inf
No 188 238 — — —

HIV
Yes 13 0 <0.0001 Inf 3.9-Inf
No 178 238 — — —

Education
Primary 33 70 0.0043 0.5 0.3–0.8
Secondary 106 112 0.0985 1.4 0.9–2.1
Tertiary 27 9 0.5610 1.4 0.5–3.4
None 25 47 0.0701 0.6 0.3–1.1
Ethnicity
Akan 70 39 <0.0001 2.9 1.8–4.8
Ewe 28 36 0.0004 0.4 0.2–0.6
Ga 61 144 <0.0001 0.3 0.2–0.5
others 32 19 0.0065 2.3 1.2–4.5

TABLE 2 | Generalized linear model (GLM) of case-control status against age,
ethnicity, weight, height, sex, and principal components.

Variable Estimate Std error Z-value p-Value

Age −0.022710 0.009715 −2.338 0.0194 *
Sex −2.043298 0.352763 −5.792 6.94 × 10−9 ***
Ethnicity 0.031137 0.170864 0.182 0.8554 —

Weight −0.123708 0.015236 −8.119 4.69 × 1016 ***
Height 8.599426 1.993078 4.315 1.60 × 105 ***
PC1 −70.33 130.19 −0.540 0.589 —

PC2 −152.71 151.35 −1.009 0.313 —

PC3 −22.75 135.21 −0.168 0.866 —

PC4 114.29 148.67 0.769 0.442 —

PC5 71.78 123.69 0.580 0.562 —

PC6 −32.11 54.66 −0.588 0.557 —

PC7 22.90 51.79 0.442 0.658 —

PC8 68.93 103.28 0.667 0.505 —

PC9 −14.26 32.14 −0.444 0.657 —

PC10 46.72 57.52 0.812 0.417 —

Note. ***0 < p-value < 0.001.
*0.01 < p-value < 0.05.
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were found tending to confer apparent protection (PBH = 0.05)
and (PBH = 0.06), respectively, against TB infection irrespective of
the genotype of the infecting bacteria under a recessive model of
inheritance. Additionally, whereas SNP rs17048476 (on
chromosome 3) tends to increase the risk of TB infection by
twofold (PBH = 0.07), SNPs rs8028149 (on chromosome 15) and
rs5030737 decreased the risk of TB infection under a dominant
model of inheritance (Table 3).

Association Analysis Between
Mycobacterium tuberculosis sensu stricto
Lineages and Controls
Similar association test procedures were performed for Mtb cases
only and controls as described with 289 samples (108 cases and
181 controls) and 26 variants that passed all the aforementioned
filters. Table 4 shows the association test results when
considering TB caused by Mtbss. A single significant missense
variant, rs17235409 in the SLC11A1 gene, under a homozygous
recessive model of inheritance appeared to confer protection
against TB infection (PBH = 0.04), whereas another SNP
(rs8028149), under a dominant model of inheritance, was
found tending to decrease the risk of Mtbss infection
(PBH = 0.09).

Association Analysis Between
Mycobacterium africanum Lineages and
Controls
A single-variant rs2681052 in the gene THSD7A, which encodes
the transmembrane protein called thrombospondin type

1 domain-containing 7A, was found tending to confer
marginal protection against TB caused by Maf (EMP2 = 0.09)
under a heterozygote model of inheritance.

DISCUSSION

Host factors are increasingly being recognized as critical for TB
control considering the diversity of the outcome of interaction
between MTBC and distinct human host populations. This
study sought to explore potential host genetic factor (s) that
may confer susceptibility or protection to distinct MTBC
lineages, toward understanding crucial mechanisms of
host–pathogen interaction. From this study, the most
significant findings of the association analysis were two
statistically significant protective SNPs: rs17235409 in
SLC11A1 against Mtb only and rs955263 in SORBS2 against
Mtb and Maf together. In addition, we found multiple
marginally significant protective variants including in
SLC11A1 and MBL2, and younger patients <35 years and
patients >65 years are associated with active TB in Ghana.

Solute carrier family 11A Member 1 (SLC11A1) (OMIM:
600266), formerly NRAMP1, a bivalent antiporter located on
chromosome 2q35, delivers metal cations from the cytosol into
acidic endosomal and lysosomal compartments where Fenon and
Haber–Weiss reaction generates toxic antimicrobial radicals for
direct antimicrobial activity against infectious microorganisms
such as mycobacteria (Mulero et al., 2002; Sobota et al., 2016).
SLC11A1 also appears to have multiple functions, having a role in
both the resolution of infections; thus, any polymorphism in the
gene may influence the function of the gene, primarily affecting the

TABLE 3 | Association tests results for controls versus all tuberculosis (TB) cases.

SNP CHR:POS REF/ALT MAF PBH OR 95%CI EMP2 MOI Gene

rs17235409 2:218,395,009 G/A 0.06 0.13 0.135 0.13–0.15 0.06 rec SLC11A1
rs17048476 3:7,987,199 G/A 0.41 0.08 2.18 2.13–2.23 0.07 dom LOC101927394
rs955263 4:185,697,150 G/A 0.45 0.05 0.33 0.32–0.34 0.05 rec SORBS2
rs5030737 10:52,771,482 G/A 0.04 0.11 0.25 0.24–0.26 0.09 dom MBL2
rs8028149 15:61,724,906 C/T 0.57 0.08 0.43 0.42–0.45 0.08 dom LOC107984782

Note. CHR:POS, chromosome and base pair position; REF/ALT, reference and alternate alleles; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; PBH,
Benjamin–Hochberg adjusted p-value; EMP2, permutation test empirical p-value adjusted for multiple testing; MOI, mode of inheritance. The SNP in bold has the most significant
association.

The bold values show the loci of interest.

TABLE 4 | Association tests results for controls versus Mycobacterium tuberculosis sensu stricto (Mtbss) cases.

SNP CHR:POS REF/ALT MAF PBH OR 95%CI EMP2 MOI Gene

rs1524713 1:57,537,459 C/T 0.29 0.10 2.20 2.14–2.36 0.09 het DAB1
rs17235409 2:218,395,009 G/A 0.06 0.04 0.05 0.04–0.05 0.02 hom/rec SLC11A1
rs5030737 10:52,771,482 G/A 0.04 0.11 0.25 0.24–0.26 0.09 dom MBL2
rs8028149 15:61,724,906 C/T 0.57 0.09 0.44 0.42–0.45 0.08 dom LOC107984782

Note. CHR: POS, chromosome and base pair position; REF/ALT, reference and alternate alleles; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; PBH,
Benjamin–Hochberg adjusted p-value; EMP2, permutation test empirical p-value adjusted for multiple testing; MOI, mode of inheritance. The SNP in bold has the most significant
association.

The bold values show the loci of interest.
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survival of the TB pathogen after phagocytosis (O’Brien et al., 2008).
Of the most assessed SLC11A1 variants, the polymorphic (GT)n
microsatellite repeat has been shown to alter the level of SLC11A1
expression and is, therefore, a strong candidate for influencing
disease incidence. Several alleles of different repeat lengths have
been identified, with (GT)n allele 2 conferring lower SLC11A1
expression compared with the more commonly occurring (GT)n
allele 3 (Zaahl et al., 2004).

Earlier studies analyzing (GT)n allele 2 in humans with TB
in West Africans have primarily focused on four or five
polymorphisms distributed across the gene: A GTn repeat
in the 5′ promoter region, a four base-pair (TGTG) insertion/
deletion (rs17235416) in the 3′ untranslated region (UTR),
and two single-nucleotide polymorphisms (SNPs) in intron 4
(rs3731865). These mutations were found to be significantly
associated with pulmonary TB. This association has been
replicated in studies from Guinea-Conakry (Cervino et al.,
2000) and Gambia (Yakubu et al., 2014). Bellamy et al.
(Bellamy, 1998; Taype et al., 2006) found a significant
association between heterozygous GC, GA, and +del
genotypes, of INT4, D543N, and 3′UTR, respectively, and
pulmonary TB patients, in a case-control study in Gambia.
Similarly, case-control studies found an association between
GA and +del genotypes, of D543N, and 3′UTR, and lung TB
in Cambodia. All these genotypes were associated with
resistance to TB. However, in contrast, this study
identified a protective association with the more
commonly occurring (GT)n allele 3, exon 15 (rs17235409,
D543N).

Although there are several studies on the rs17235409
variant, the role of the variant in the pathobiology of TB
remains unclear. A study by Liu et al. associated the variant
with treatment failure of pulmonary TB in the Chinese (Yajie
et al., 2021) and Mexican populations (Salinas-Delgado et al.,
2015). Among the Tibetan population in Qinghai, the variant
has been associated with TB susceptibility (Xiying et al.,
2016). The variant was not only associated with TB but
also was implicated in other diseases as well. The
rs17235409 variant was among the list of host factors
associated with susceptibility to leishmaniasis (Ates et al.,
2009) and rheumatoid arthritis (Niño-Moreno et al., 2017;
Braliou et al., 2019). Our analysis shows that rs17235409
might be a promotor/repression gene mutation, which could
lead to significant phenotypic consequences. Mutations in
this gene might eventually make the phagocytic cells less
toxic, thus, providing the patients with more protection from
infections by Mtb. It has, therefore, been hypothesized that
allele 3 would provide protection against infectious disease by
driving high SLC11A1 expression and resulting in Th1-
mediated immune response. It was also suspected that the
intronic position of this polymorphism might affect
posttranscriptional modification of the affected gene,
hence, potentially affecting the resulting SLC11A1 protein.
Further analysis of the mechanism of action of NRAMP1 and
its genetic variants may lead to new approaches in controlling
tuberculosis, which kills more people than any other disease
caused by an infectious pathogen.

Sorbin and sh3 domain-containing protein 2 (SORBS2) gene
(OMIM: 616,349) located on chromosome 4q35.1 is responsible
for the regulation of many cell signaling pathways. It is involved
in several biological processes such as apoptosis, mitochondrial
dysfunction, and innate immunity. Our study found a protective
association of rs955263 in SORBS2 against Mtb and Maf
together. Contrary to the protective value of rs955263
observed within the Ghanaian population, the variant was
associated with active TB in a combined cohort from Uganda
and Tanzania (36). Similar to our finding, a study from China
reported an inconsistent risk association between SNPs in the
SORBS2 gene and active TB cases with respect to the data
published from Uganda and Tanzania (Qi et al., 2017). The
inconsistency maybe explained by different host factors that
may modify the activity of the gene as well as genetic diversity
observed in the different populations. There seems to be some
level of population specificity, which needs to be investigated
from different populations to fully understand the role of
SORBS2 gene variants in the development of active TB.

Associations between MTBC lineages and human
ethnicities have been reported. Indeed, lineages 1, 2, and 4
are reported to be strongly associated with Filipino, Chinese,
and “white” ethnicities, respectively (Gagneux et al., 2006;
Asante-Poku et al., 2016). Likewise, in China, Hui ethnicity
was found to be associated with the Beijing family of MTBC
(Pang et al., 2012). Indeed, human genetic diversity has been
linked to an increased or reduced susceptibility to TB. Recent
studies have reported human genetic polymorphisms that
influence the susceptibility to TB caused by Maf but Mtbss
or vice versa. These studies indicate that human genetic
susceptibility to TB is further influenced by the MTBC
genotype. Conversely, a human polymorphism that
reported recently on mannose-binding lectin (MBL) was
associated with protection against TB caused by Maf (23).
Moreover, this latter study also found Maf to bind to human
recombinant MBL more efficiently, perhaps leading to an
improved uptake by macrophages and selection of deficient
MBL variants among human populations exposed to Maf.
Although our study did not find a significant association
between ethnicity and MTBC lineages, our study suggests
that host genetics play an important role in TB pathogenesis,
hence, the need for newer approaches to TB therapy such as
host-directed immune-therapy, which have the potential to
shorten the TB treatment and prevent resistance by
promoting autophagy.

CONCLUSION

In conclusion, we found SLC11A1 as a potential susceptibility
gene of substantial interest for TB caused by M. africanum,
which is an important pathogen in West Africa. Given the odds
ratio specified in the sample size calculation method (which
effectively powers the study to detect loci that increase TB
susceptibility), it implies that further studies on larger case-
control sample sizes are needed to confirm the resistance loci
observed in this study.
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