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Abstract: Boronic acids have been widely used in a wide range of organic reactions, in the 
preparation of sensors for carbohydrates, and as potential pharmaceutical agents. With the 
growing importance of click reactions, inevitably they are also applied to the synthesis of 
compounds containing the boronic acid moiety. However, such applications have unique 
problems. Chief among them is the issue of copper-mediated boronic acid degradation in 
copper-assisted [2,3]-cycloadditions involving an alkyne and an azido compound as the 
starting materials. This review summarizes recent developments, analyzes potential issues, 
and discusses known as well as possible solutions. 
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1. Introduction 

Boronic acids are very important in synthetic organic, materials, bioorganic, and medicinal 
chemistry as well as chemical biology. In organic chemistry, boronic acids are very important in 
Suzuki-Miyaura coupling [1], aromatic functionalization (such as amination) with a heteroatom-
containing functional group [2], protection of diols [3], Diels-Alder reactions [4,5], asymmetric 
synthesis of amino acids [6], selective reduction of aldehydes [7], carboxylic acid activation [8-10], 
transition metal-catalyzed asymmetric conjugate additions of boronic acids [11,12], addition to 
carbonyl and imine derivatives [13-15]and as a template in organic synthesis [16]. In materials 
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chemistry, boronic acids are important in crystal engineering [17,18], construction of polymers with 
reversible properties [19,20], building unique molecular architects [21-24], functionalization of 
nanostructures [25], separation and purification of glycosylated products [26,27] and feed-back 
controlled drug delivery (glucose) [28]. In bioorganic chemistry, boronic acid is a commonly used 
recognition moiety for the design and synthesis of sensors for carbohydrates [29], amino acids [30], 
amino alcohols [31,32], cyanides [33], fluoride [34] and α-hydroxy acids [35,36]. In medicinal 
chemistry, boronic acids are important for the preparation of inhibitors of hydrolytic enzymes [37] in 
boron neutron capture therapy (BNCT) [38], quorum sensing inhibition [39], antifungal agent 
development [40,41], and the inhibition of other enzymes [42]. Among all the biologically active 
boronic acids, bortezomib is an FDA-approved anticancer agent [43]. In chemical biology, boronic 
acids are used in the detection and sensing of peroxides [44,45], recognition and sensing of the 
tetraserine motif in protein [46], development of new MRI contrast agents [47,48], cell-surface 
carbohydrate biomarker recognition [49-51], and development of boronic acids-modified aptamers 
[52,53] and boronic acid-modified proteins for various sensing and purification applications [54]. 

Because of the tremendous importance of boronic acids, there is interest in finding ways to increase 
their structural diversity and to tether them to other scaffolds. Among all the methods available, 
copper-mediated Huisgen cycloaddition is one that requires mild conditions and easy to operate. 
Herein, we provide a brief overview of applications and issues in using Cu-assisted azide-alkyne 
cycloaddition (CuAAC) [55,56], commonly known as a click reaction, for increasing the structural 
diversity of boronic acid compounds. We will also touch upon the application of boronic acids in 
facilitating this cycloaddition reaction and how to minimize certain degradation problems. 

2. The CuAAC Reaction-A Brief Overview 

Click chemistry according to Sharpless’ definition [57] refers to reactions that are fast, versatile, of 
high yields, and require mild reaction conditions. In addition, the reaction products are easy to purify. 
Examples include the thiol-ene additions, oxime formation, nucleophilic additions to epoxides, Diels-
Alder reactions, hetero-Diels-Alder reactions, and CuAAC [55,56]. The 1,3-dipolar cycloaddition 
between an azido compound and an alkyne was discovered in 1893 by Arthur Michael [58] and 
significantly developed in 1967 by Huisgen [59]. Without a metal catalyst, these cycloaddition 
reactions are relatively difficult, require high temperatures, and lack regioselectivity. In 2002, Meldal 
and Sharpless reported at almost the same time that Cu(I) was able to catalyze Huisgen [2+3] 
cycloadditions leading to fast and highly efficient azide–alkyne reactions with regio-chemistry control 
at room temperature in organic [60] or in polar media, such as tert-butyl alcohol, ethanol or pure water 
[55]. These important discoveries make the CuAAC reaction the most representative example of click 
reactions. As a result, in the literature, the term “click reaction” is often used to refer to the CuAAC 
reaction. Besides copper, ruthenium can also be used in such reactions, however, with a different 
regiochemistry outcome when compared with Cu(I) [61]. It has been proposed that during catalysis, 
copper binds to the terminal alkyne to form a π-complex, which leads to a substantially decreased pKa 
and allows for deprotonation in aqueous solution without additional added base [62]. These reactions 
are so robust that almost any source of solvated Cu(I) can be used as catalyst. However, the CuAAC 
reaction is not always without problems, due to potential oxidative side reactions. One commonly used 
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solution is the use of Cu(II) in the presence of a reducing agent such as excessive sodium ascorbate. 
The use of a Cu(I) ligand can minimize side reactions such as oxidation and disproportionation. 
Another way of minimizing side reactions is the use of a chelating agent, such as tris-[(1-benzyl-1H-
1,2,3-triazol-4-yl)methyl]amine (TBTA) [63] developed by the Sharpless lab. TBTA can accelerate the 
reaction by over 106-fold. The tetradentate binding by TBTA shields the Cu(I) from potential 
destabilizing interactions. 
 
3. Click-Modification of Thymidine-5'-triphosphate (TTP) for DNA Incorporation 

DNA is central to essentially to all life forms. Modified nucleosides/tides can be used as 
mechanistic probes for DNA polymerase and medicinal agents such as antiviral and anti-cancer drugs 
[64]. Besides, it has also been shown that side chain modified DNA can be used in the selection of 
functional aptamers with specific properties and high binding affinity [65]. In building side-chain 
functionalized DNA, there needs to be a way of either performing “site-specific” modification or 
synthesizing modified building blocks for incorporation chemically or enzymatically. For applications 
in aptamer selection, the evolutionary nature dictates that the incorporation needs to be enzymatic. 
Along this line, TTP analogs functionalized at the 5-position are known to be recognized by DNA 
polymerase and can be incorporated into DNA [65,66]. Therefore, boronic acid-modified TTP analogs 
were prepared for DNA aptamer selection and other applications. Specifically, an 8-quinolynylboronic 
acid-modified thymidine-5'-triphosphate (QB-TTP, Scheme 1) was first synthesized by the Wang lab 
[52]. In accomplishing the synthesis, there were two dilemmas. First, if the boronic acid moiety were 
introduced first, its hygroscopic nature would hinder the subsequent triphosphorylation, which required 
anhydrous conditions. On the other hand, if the triphosphate group were introduced first, the 
introduction of the boronic acid would also be very hard in using traditional chemistry such as 
amidation. Indeed, attempts using amidation and nucleophilic substitution all failed. Therefore, 
CuAAC was used in the synthesis of the very first 5-boronic acid-modified TTP, QB-TTP (Scheme 1). 
It was further demonstrated that QB-TTP could be effectively incorporated into DNA by  
enzymatic polymerization. 

Scheme 1. Synthesis of BQ-TTP and NB-TTP by CuAAC. 
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Recently, the Wang lab also prepared a new generation of boronic acid-modified TTP, NB-TTP 
(Scheme 1), by incorporating a naphthalenylboronic acid (NB) into TTP. The synthesis of NB-TTP 
followed the same procedure [53]. It is worth noting that during the synthesis of NB-TTP, it was found 
that the starting material NB could be precipitated out by methanol addition if the solution was acidic. 
Treatment with K2CO3 brought the boronic acid into solution. NB-TTP has the unique property of 
changing fluorescent properties upon sugar binding. In addition, the same fluorescent properties were 
preserved after DNA incorporation. For example, the fluorescent intensity of NB-TTP increased upon 
the addition of model sugar, D-fructose with the Ka of 73 M-1. After DNA incorporation, the 
fluorescent properties of NB-TTP-DNA were retained. The intensity increased by 1.5-fold upon 
addition of D-fructose (100 mM). This property is very important and can be used for future 
fluorescent DNA-based aptamer selection, DNA labeling as well as genomic DNA incorporation work.  

 
4. Click Reaction in the Preparation of Boronic Acid Fluorophores 

Along the line of using the boronic acid group in preparing sensors, there are also interests in 
developing modular approaches for the construction of fluorescent boronic acids. Typically, the 
synthesis of boronic acid based sensors involves either direct attachment a boronic acids to a 
fluorophores or the attachment of a boronic acid to an amine to create boronic acid derivatives. 
Recently, CuAAC was used as a strategy for the preparation of a large number of fluorescent coumarin 
analogs. Triazole formation was used as a way to turn on coumarin fluorescence [67]. As shown in 
Scheme 2, 3-azidocoumarins 1 and terminal alkynes 2 are nonfluorescent. However, they afford a large 
library of intense fluorescent triazolylcoumarins 3 (λem = 388-521 nm) after click reaction. This 
reaction was used for the preparation of fluorescent boronic acids [42,68]. 

Scheme 2. Synthesis of triazolylcoumarins by CuAAC.  
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Inspired by this, a new water-soluble “click” modified coumarin-based fluorescent boronic acid 
probe (6, Scheme 3) for hydrogen peroxide was designed and synthesized by the Wang lab [69]. The 
fluorescent intensity of probe 6 at 5 µM increased by about 5-fold upon reaction for 120 min with  
100 µM hydrogen peroxide. On the other hand, it showed much lower responses to other ROS species, 
such as hydroxyl radical, hypochlorite, tert-butyl hydroperoxide (TBHP) and tert-butoxy radical. By 
introducing the triazole ring through CuAAC, the excitation wavelength was increased by about  
70 nm (λex = 400 nm). Finally, the easy synthesis of probe 6 can also be adapted to include other 
functional groups for structural and spectroscopic diversity. 
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Scheme 3. Synthesis of coumarin-based fluorescent probe 6 by CuAAC. 
 

 
 

In 2008, the James group reported a carbohydrate sensor (10, Scheme 4), which displayed 
fluorescent changes upon adding model saccharides [68]. Compound 10 was obtained by CuAAC and 
termed as a “click-fluor” because fluorescent changes were caused by the formation of 1,2,3-triazole 
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Scheme 4. Synthesis of “click-flour” 10. 
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Scheme 5. Synthesis of 2,2-dimethylpropane-1,3-diyl ethynylaryl boronates. 

 
 

Besides the two ways of preparing boronic acids using CuAAC mentioned above, a reliable and 
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Scheme 6. One pot synthesis of triazolyl boronates. 
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6. Bisamidoboronic Acid Preparation Using CuAAC  

Due to their small size, high energy as well as narrow distribution of reactivity, alkyne and azido 
groups can be used as a pair of linkers to easily make bisboronic acid-based chemosensors. As a 
specific example, the Wang group recently reported two water soluble bis-α-amidoboronic acids (D-2, 
L-2, Figure 1) synthesized by using CuAAC [72]. Compared to their monoboronic acid counterparts 
(D-1, L-1, Figure 1), D-2 and L-2 showed significantly enhanced binding for oligosaccharides. For 
example, the Ka of L-2 with D-fructose is around 497 M-1, while the Ka of L-1 with D-fructose is 10-
fold less at 46 M-1. Another interesting property of the bisboronic acid is their ability to bind 
disaccharides maltose and lactose. For example, the Ka of L-2 with α-D-lactose is around 36 M-1, while 
the Ka of L-1 is only 1 M-1. The most promising finding was the high binding affinity of D-2 and L-2 
with three tetrasaccharides: neocarratetraose-41-O-sulfate, N',N'',N''',N''''-tetraacetyl chitotetraose, and 
lacto-N-tetraose (Ka = 2422~19148 M-1). With the high binding of bisamidoboronic acid, there is no 
significant stereochemical discrimination in the binding for D-2 and L-2. The authors ascribed this to 
two possible reasons: 1) the side chains did not participate in binding, and 2) no bidentate binding  
was involved.  

Figure 1. Enatiomeric pairs of α-amidoboronic acids and the corresponding bisboronic acids. 
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useful for the future synthesis of boronic acids with diverse structures using CuAAC. In this study, it 
was found that some boronic acids are less prone to Cu(I)-mediated degradation than others. For 
example, 8-QBA (17a, Figure 2) was essentially stable with 95% remaining after being exposed to  
100 mM of Cu(I) for 5 h. On the other hand, for 17e only 79% of the boronic acid remains under the 
same conditions. However, addition of fluoride (100 mM) diminished the degradation to a negligible 
level. Similar results were observed with boronic acids 17f~17h.   

Figure 2. Structures of compounds 17a~17h for the stability study. 
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Scheme 7. Ortho-nitrophenylboronic acid catalyzed click reaction. 
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8. Conclusions 

During the past decade, interest in and applications of the CuAAC reaction have increased to the 
point that it permeates all fields in organic, medicinal, and bioorganic chemistry. When applied to 
boronic acid chemistry, the requirement for a copper catalyst is a limiting factor. Chief among the 
problems is copper-mediated boronic acid degradation. It has been found that some boronic acids are 
more prone to copper-mediated degradation than others; fluoride can protect some boronic acids from 
copper-mediated degradations; and boronic acids in some cases can catalyze the Huisgen cycloaddition 
reaction. Detailed mechanistic insight into these observations will be very useful to broaden the future 
application of click chemistry to boronic acid synthesis and conversions. Though alkynes, which can 
readily undergo copper-free cycloaddition, have been reported [77-79], they are not applicable in all 
situations. Thus CuAAC still has its important place. 
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