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1  |  INTRODUC TION

Functional dyspepsia (FD) is a complex and heterogenous disor-
der characterized by chronic or recurrent upper abdominal pain 
or discomfort including postprandial fullness and early satiety not 

explained by structural or biochemical abnormalities identified in 
the routine clinical setting.1 Similar to the irritable bowel syndrome 
(IBS), FD is a disorder of gut–brain interaction (DGBI).2 These dis-
orders were previously known as functional gastrointestinal disor-
ders (FGID)3 and likely involve several disease mechanisms including 
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Abstract
Background: Functional dyspepsia (FD) is a common and debilitating gastrointestinal 
disorder attributed to altered gut-brain interactions. While the etiology of FD remains 
unknown, emerging research suggests the mechanisms are likely multifactorial and 
heterogenous among patient subgroups. Small bowel motor disturbances, visceral hy-
persensitivity, chronic microinflammation, and increased intestinal tract permeability 
have all been linked to the pathogenesis of FD. Recently, alterations to the gut micro-
biome have also been implicated to play an important role in the disease. Changes 
to the duodenal microbiota may either trigger or be a consequence of immune and 
neuronal disturbances observed in the disease, but the mechanisms of influence of 
small intestinal flora on gastrointestinal function and symptomatology are unknown.
Purpose: This review summarizes and synthesizes the literature on the link between 
the microbiota, low-grade inflammatory changes in the duodenum and FD. This re-
view is not intended to provide a complete overview of FD or the small intestinal 
microbiota, but instead outline some of the key conceptual advances in understanding 
the interactions between altered gastrointestinal bacterial communities; dietary fac-
tors; host immune activation; and stimulation of the gut–brain axes in patients with 
FD versus controls. Current and emerging treatment approaches such as dietary in-
terventions and antibiotic or probiotic use that have demonstrated symptom benefits 
for patients are reviewed, and their role in modulating the host–microbiota is dis-
cussed. Finally, suggested opportunities for diagnostic and therapeutic improvements 
for patients with this condition are presented.
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disrupted normal sensorimotor function of the gastrointestinal tract, 
but with essentially normal endoscopic findings.3–5

FD is common with a pooled worldwide prevalence of approxi-
mately 5%–7%,6 with variation across geographical regions6,7; how-
ever, treatment options are currently limited to chronic symptom 
relief,8,9 contributing to a high disease burden with an impaired 
quality of life,6,10 and financial hardship.11–13 Thus, there remains a 
significant need for further research on the pathophysiology of FD 
to guide improved diagnostics and therapy for patients.

Based upon Rome IV criteria, FD is stratified into two subtypes: 
epigastric pain syndrome (EPS), with epigastric pain and/or epigas-
tric burning; and postprandial distress syndrome (PDS), with post-
prandial fullness and/or early satiety.3 While different risk factors 
have been identified for each FD subtype,14,15 overlap is seen in ap-
proximately 30–60% of cases.16–18 Individuals’ symptoms may also 
change over time.19 Moreover, many patients with FD have concom-
itant IBS20,21 or gastroesophageal reflux disease (GERD).22,23 These 
diseases overlap more than expected by chance and are part of a 
“spectrum” of gastrointestinal diseases with most likely a similar un-
derlying pathogenesis.3,8,22

The pathophysiology of FD is likely multifactorial.24 Increased in-
testinal permeability,25,26 gastric hypersensitivity,27,28 gastric motor 
disturbances such as delayed gastric emptying and fundic dysac-
commodation,27,28 H. pylori infection,29,30 abnormalities of bile acid 
metabolism,31 dietary, environmental, psychosocial, microbiota, and 
atopic, allergic, and autoimmune changes have all been implicated in 
the disease process.32 Emerging evidence shows that microscopic 
upper gut alterations may exist in some patient subsets33 and that 
the pathophysiology of FD is likely due to alterations in duodenal 
microbiota, which interact with the immune system to trigger symp-
toms8 (Figure 1). Here, we review the recent literature on the duo-
denal microbiota changes in FD and host immunological, dietary and 
psychological factors, and outline future directions for mechanistic 
research in this complex condition.

1.1  |  The small intestinal microbiome in FD

There is growing interest in the microbiome of the small intestine in 
FD. The gastrointestinal tract has a large surface and represents one 
of the major interfaces between the human body and the external 
environment, with a microbiota made up of over 1000 commensal 
bacterial species.34,35 Many factors influence microbial composition 
including diet, environmental exposures, and medications, leading 
to high interindividual variation.36 The microbiome plays a role in gut 
homeostasis and in particular the integrity of the epithelial barrier or 
the modulation of the mucosal immune system pathways, including 
tolerance to commensal microorganisms and digested food antigens 
in the lumen.37–39 Furthermore, metabolites of the microbiota, most 
notably, tryptophan, short-chain fatty acids, and bile salts, interact 
with a number of pathways in the host.40 The main two phyla of the 
gut microbiota are gram-negative Bacteroidetes and gram-positive 
Firmicutes.41 While extensive physiological microbiota variation and 

compartmentalization exists along the length of the gastrointesti-
nal tract,42–44 this may be disturbed in disease states.45–47 The small 
bowel is characterized by higher acidic, oxygen, and antimicrobial 
peptide levels, and these factors and a singular tightly packed mu-
cosal layer and phasic propulsion at the ileum, limit bacterial density 
compared with the colon.44

The small intestine is dominated by the phyla Firmicutes, 
Proteobacteria, and Actinobacteria, with fewer Bacteroidetes,48 
since fast-growing facultative anaerobes tolerate this environment 
and can metabolize the simple carbohydrates available.44 The tax-
onomy of these is visualized in Figure  2. Moreover, the microbial 
compositions of the luminal microbiota and the mucosa-associated 
microbiota (MAM) are taxonomically and functionally distinct from 
each other.44,49 The MAM is posited to have a more direct role in the 
pathogenesis of gastrointestinal diseases due to its proximity to the 
epithelium.42,50 The mucosal layer acts as a barrier against patho-
genic microbes, preventing translocation into host tissue51; hence, 
the bacteria that can penetrate this layer and in the MAM may have 
a high potential to induce pro-inflammatory gene expression in the 
epithelium.44,52 Furthermore, the duodenal MAM is again taxonom-
ically distinct from other areas of the gastrointestinal tract,48 domi-
nated by Streptococcus, and lower levels of Prevotella, Veillonella, and 
Neisseria species.53

Microbial “dysbiosis” is defined as alterations in the composi-
tion, density, and function of the intestinal microbes that regulate 
immune and metabolic homeostasis.54 Gastrointestinal dysbiosis, 
especially a decrease in bacterial diversity, is an increasingly recog-
nized feature of multiple chronic noncommunicable diseases such as 
obesity, liver disease, cardiometabolic conditions, type 2 diabetes 
mellitus, and malnutrition.55 It is suggested that microbial dysreg-
ulation may enable the expansion of opportunistic “pathobionts”—
commensals with pathological potential,54 activating a disease 
process56 such as what is increasingly hypothesized to be a feature 
of IBS and FD.54,57,58

1.2  |  Small intestinal bacterial overgrowth and FD

DGBIs have been linked to small intestinal bacterial overgrowth 
(SIBO),59–64 a clinical condition that is characterized by the presence 
of excessive and/or abnormal type of microbes in the small intes-
tine.65 It is currently understood that SIBO involves bacteria that 
produce hydrogen, while patients that are also colonized with meth-
anogenic archaea, anaerobic organisms producing methane, have an 
overgrowth termed “intestinal methanogen overgrowth” (IMO), as 
distinct from SIBO.65 SIBO is traditionally diagnosed by >105 organ-
isms per mL of jejunal aspirate,66 or by a positive hydrogen breath 
test after peroral glucose or lactulose challenge.65 However, meth-
ane breath tests are now used for IMO diagnosis, and the organ-
ism cutoff value is debatable, and a lower threshold of ≥103 cfu ml−1 
cutoff has been proposed.67 It should be noted that jejunal aspirates 
are a limited sampling tool for the small intestinal microbiota due to 
risk of contamination and difficulties sampling hard-to-access areas 
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like blind loops48,66–68 and because the sampled luminal fluid may 
not represent the mucosal microbial composition.69 Breath tests lack 
sensitivity and specificity confounded by intestinal transit,66,70,71 
and heterogenous methodology.67,71

Sequencing of the duodenum has identified microbial alterations 
in SIBO, including a lower relative abundance of Firmicutes and a 
higher abundance of Proteobacteria, both positively associated with 
decreased alpha diversity.72 These changes also correlated with 
symptom severity such as bloating,72 likely as a result of increased 
microbial fermentation by the imbalanced over-abundant commu-
nity.73,74 SIBO has been shown to be increased in chronic gastroin-
testinal diseases irrespective of the diagnostic method used.62,75–77 

Specifically, the prevalence and risk of SIBO are both increased 
significantly in chronic uninvestigated dyspepsia and FD compared 
with controls.78 A recent study demonstrated elevated duodenal 
biopsy bacterial loads in DGBI patients compared with controls 
and increases in breath positivity in some patients, but no associ-
ation between breath test positivity and duodenal microbial load.79 
Patients diagnosed with SIBO may receive antibiotic treatment such 
as with the nonabsorbable antibiotic rifaximin,80 which also provides 
symptom relief in FD patients.81 Interestingly, a recent systematic 
review demonstrated that treatment with rifaximin in combination 
with fiber,82,83 Lactobacilli and Bifidobacteria probiotics84 or mesala-
zine,85,86 augmented the eradication rate of SIBO, further indicating 

F I G U R E  1 Proposed disease model for the pathogenesis of functional dyspepsia. 1. Antigen presentation to the small intestinal mucosa, 
including food macromolecules or microbial antigens. 2. Activation of eosinophils and mast cells through an immune cascade. 3. Local nerve 
sensitization and systemic immune activation leading to symptomatology. 4. Maintenance of a low-grade state of inflammation through 
bidirectional gut–brain and brain–gut pathways [Image created in BioRender]
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that the condition is likely not underpinned simply by an increased 
microbial load alone, but also by an element of dysbiosis and possi-
bly inflammation.80 It has been postulated that SIBO may not be a 
distinct disease but a pathogenic mechanism underlying the devel-
opment of FD.60 The link between SIBO and DGBIs remains contro-
versial, as the small intestinal microbial alterations in symptomatic 
patients do not always correspond with a positive SIBO diagnosis.87

1.3  |  Small intestinal microbial signatures in FD

Recent studies have characterized the duodenal MAM of FD pa-
tients to a bacterial genus level. An Australian study first reported 
the increased relative abundance of Streptococcus in patients with 
FD compared with matched controls, albeit nonsignificant (which 
may have been because of the small sample size), and a notable in-
verse relationship between Streptococcus abundance and that of the 
anaerobic genera Prevotella, Veillonella, and Actinomyces, which were 
significantly reduced in the FD patients. Moreover, a higher bacte-
rial load observed in FD patients negatively correlated with bacte-
rial diversity and reported quality of life scores using the Nepean 
Dyspepsia Index and positively correlated with the severity of upper 
gastrointestinal meal symptoms.88 A Japanese study identified an 
increase in Streptococcus in all sites of the upper gut in an FD cohort 
that again correlated with patient symptoms scores.89 Furthermore, 
the reported beta diversity of the duodenal MAM was significantly 
different between patients and controls, while the alpha diversity 
remained unchanged, indicating a more complex microbiota struc-
tural change may be involved in the disease rather than changes in 
relative abundance of particular genera alone.89 Dyspeptic patients 
also demonstrated increased anaerobic metabolism in the gastric 

microbial community in conjunction with increased Pseudoclavibac
ter and Tannerella, increased Veillonella, Cohnella, Sporolactobacillus, 
Propionigenium in saliva, and a higher duodenal prevalence of 
Rothia, Clostridium, Haemophilus, and Actinobacillus species.90 A re-
cent study demonstrated decreased duodenal mucosal Neisseria 
and Porphyromonas abundance in FD patients and controls prior to 
treatment with PPIs, but no differences in microbial load.91 These 
findings are presented in Table 1. These bacterial shifts reported in 
FD patients are typical of the oral microbiota, and one study has 
confirmed that the healthy duodenum is taxonomically similar to the 
oral cavity.42 Importantly, a recent Australian publication describes 
a new Streptococcus salivarius strain isolated from an FD duodenal 
biopsy.92 Overall, this literature confirms that distinct duodenal mi-
crobial changes in both microbial load and diversity do occur in pa-
tients with FD.

1.4  |  Effects of antibiotics and probiotics on the 
microbiome in FD

A pathogenic role of the microbiota in FD is supported by re-
sponses to drugs that alter the microbiome (Table  1). Rifaximin is 
a broad-spectrum antibiotic with gram-positive, gram-negative, 
aerobic and anaerobic coverage, a high intraluminal bioavailabil-
ity in the gastrointestinal tract, and minimal systemic adverse ef-
fects.93 It was superior to placebo FD treatment in one randomized 
trial, wherein relief of dyspeptic symptoms was reported in 79% 
of patients after taking rifaximin, compared to 47% in the placebo 
group at 8 weeks.81 Moreover, the clinical benefits of rifaximin in 
FD do not appear to be explained by the overlap with IBS.20 There is 
some evidence that its efficacy in IBS is due to rifaximin altering the 

F I G U R E  2 Taxonomy of the small intestinal microbiota across the four main bacterial phyla. Pictured are key intestinal microbial species 
from phylum–class–genus
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intestinal gut microbiota,94 and in other gastrointestinal diseases, it 
has been shown to preserve colonic flora, increasing the abundance 
of Lactobacilli and Bifidobacteria95 in a “eubiotic” effect of positively 
modulating the gut microbiota, favoring the growth of beneficial 
bacteria altering the overall composition.96 However, these micro-
bial changes with treatment need to be studied in the duodenum in 
FD cohorts.

Conversely, previous antibiotic treatments are a risk factor for 
developing FD,97,98 and it is well known that broad-spectrum antibi-
otic use can result in long-term reductions in commensal species.55 
Probiotics may have a therapeutic role in FD due to their modulation 
of gastrointestinal flora, and three studies have shown postprandial 

fullness and bloating symptom improvements after administration of 
probiotic Lactobacillus gasseri OLL2716 for twelve weeks in H. pylori-
positive and negative dyspeptic patients.99–101 Symptom resolution 
was demonstrated in 35.5% of H. pylori-negative FD patients com-
pared to 17% with placebo.100 A lower abundance of Prevotella and a 
higher abundance of Bifidobacterium and Clostridium were seen in the 
gastric fluid of the FD cohort prior to treatment, but post-treatment, 
FD patients showed decreased gastric fluid volume possibly signify-
ing more efficient gastric emptying, and a gastric fluid microbiota re-
sembling the healthy controls pre-treatment. Interestingly, Prevotella 
abundance specifically was inversely associated with postprandial 
distress levels, wherein an increase in this genus post-treatment 

TA B L E  1 Microbial changes in functional dyspepsia patients compared with controls as reported in published literature

Microbial change Location
Number of FD 
patients

Number of 
controls Citation

Increased relative abundance of Streptococcus Duodenal biopsies 9 FD patients 9 matched 
endoscopy-
negative 
controls

Zhong et al.88

Mucosal brush sample of all 
sites in upper gut

11 FD patients 7 healthy controls Fukui et al.89

Streptococcus abundance positively correlated with 
severe upper gastrointestinal symptoms

Mucosal brush samples of 
all sites in upper gut

11 FD patients 7 healthy controls Fukui et al.89

Lower abundance of Prevotella, Veillonella and 
Actinomyces

Duodenal biopsies 9 FD patients 9 matched 
endoscopy-
negative 
controls

Zhong et al.88

Inverse relationship between Streptococcus and 
Prevotella, Veillonella and Actinomyces

Higher bacterial load negatively correlated with 
bacterial diversity

Higher bacterial load and lower bacterial diversity 
correlated with quality of life scores

Reduced beta diversity Mucosal brush samples of 
all sites in upper gut

11 FD patients 7 healthy controls Fukui et al.89

Unchanged alpha diversity

Increased Firmicutes

Increased Pseudoclavibacter and Tannerella, 
increased Veillonella, Cohnella, Sporolactobacillus, 
Propionigenium in saliva

Gastric and duodenal 
mucosal brush samples 
and saliva samples

25 symptomatic 
patients with 
dyspepsia, 
dysphagia 
and reflux

11 patients with 
achalasia

Cervantes et al.90

Increased duodenal Rothia, Clostridium, Haemophilus, 
and Actinobacillus

Increased gastric Pseudoclavibacter and Tannerella

Lower abundance of Prevotella Gastric fluid (via nasogastric 
tube)

44 FD patients 44 healthy 
controls

Nakae et al.101

Higher abundance of Bifidobacterium and Clostridium

Prevotella inversely associated with PDS symptom 
severity

Lower interindividual bacterial diversity

Predominance of Bacteroidetes over Proteobacteria Gastric fluid (via nasogastric 
tube)

24 FD patients 21 matched 
healthy 
controls

Igarashi et al.102

Absence of Acidobacteria

Higher Escherichia, Shigella and Bifidobacterium 
longum

Lower Neisseria and Porphyromonas abundance Mucosal brush samples of 
duodenum

28 PPI-naive FD 
patients

30 healthy 
controls

Wauters et al.103

Abbreviation: FD, functional dyspepsia.
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was related to symptom alleviation.101 Lactobacillus gasseri OLL271 
was also shown to “restore” the abnormal gastric fluid microbiota 
of patients with FD. The gastric fluid of FD patients prior to twelve 
weeks of probiotics showed a predominance of Bacteroidetes over 
Proteobacteria (24.2/4.9% compared to 13.5/29.5% for controls) and 
an absence of Acidobacteria (0.2% compared to 3.8% in controls) and 
post-probiotic treatment, these proportions shifted to reflect a micro-
biota composition similar to healthy volunteers.102 Additionally, while 
small intestinal bacterial data were not collected, 8 weeks of treatment 
with Bacillus coagulans MY01 and Bacillus subtilis MY02 demonstrated 
a 28% response rate improvement over placebo in FD patients.103 
These findings offer preliminary evidence that patient symptoms are 
related to abundances of certain genera in the upper gut microbiota, 
which can be modified by therapeutic antibiotic and probiotic agents. 
Despite these noted specific changes, further research on larger pa-
tient cohorts across more diverse geographical regions is needed to 
characterize the microbiome alterations in the disease, especially in 
the duodenum.

Proton pump inhibitors (PPIs) also modulate the microbiome, 
and patients with DGBIs using PPIs have been shown to have a 
higher bacterial load in the duodenum compared with non-PPI 
users,79 and there an increased risk of SIBO in PPI users has been 
observed.104 Studies of the fecal microbiota suggest that PPIs are 
associated with decreased bacterial diversity,105,106 and a shift to-
ward a community more closely resembling that of the oral mi-
crobiota, such as increased Streptococci,105,106 Enterococcus and 
potentially pathogenic species of Escherichia coli,105 and decreased 
Faecalibacterium.107 Some duodenal microbiota changes at a family 
level have been observed between PPI users and non-PPI users,108 
but little is known about how PPIs impact the duodenal MAM in 
FD. A recent preliminary study using duodenal brushings found 
significant MAM variation and decreased diversity from baseline 
after PPI use in FD patients and controls.91 While the healthy du-
odenum is taxonomically similar to the oral microbiota,42 it is of 
interest to understand whether PPIs reduce the abundance of spe-
cies specific to the duodenum, resulting in increased similarity to 
oral bacterial communities. Furthermore, PPIs are a current treat-
ment for FD and gastroesophageal reflux disease (GERD),109 and 
oral microbial species have been linked to other gastrointestinal 
inflammatory diseases, including GERD.110,111 Thus, there is likely 
to be a complex interrelationship between microbial load, diver-
sity, and PPI use in the small intestine of patients with FD.

1.5  |  Immune activation and the gastrointestinal 
microbiome in FD

1.5.1  |  The microbial antigen or “postinfectious” 
hypothesis of FD

The microbiota’s significance in gastrointestinal inflammation 
and FD symptomatology is highlighted in cases of postinfec-
tious FD (PI-FD). The prevalence of PI-FD is approximately 10%, 

with ~2.5 times increased likelihood of development at 6-month 
post-acute gastroenteritis exposure (OR  =  2.54, 95% CI 1.76–
3.65, p < 0.05).112 PI-FD is currently understood to be a product 
of residual dysfunctional immune activation113,114; or from per-
manent gastrointestinal damage from transient inflammation27 
driven by either microbial displacement or antibiotic treatment.32 
Previously, persistent microscopic duodenitis114 and higher pro-
portions of eosinophils and mast cells activating in close range 
(<5 nM) of nerve fibers in the gut have been noted in PI-FD pa-
tients.115 Postinfectious gastrointestinal symptoms have been re-
ported up to 10  years after an intestinal infection,116 and those 
exposed to gastroenteritis were more likely to develop new-onset 
dyspepsia117 and IBS, with relative risks of 5.2 (95% CI 2.7–9.8, 
p < 0.05) and 7.8 times greater (95% CI 3.1–19.7, p < 0.05), respec-
tively, at 1-year follow-up.118

Moreover, while H. pylori infection is now classified as a sep-
arate entity,3,119 its role in the pathogenesis of FD is under scru-
tiny.30,32,70 Higher oesophageal and gastric eosinophils29,120–122 
and altered gastric microbiotas including lower bacterial richness 
have been found in H. pylori-positive FD patients compared to 
those not infected.123 Some H. pylori-positive patients have de-
creased Firmicutes, Bacteroidetes, Actinobacteria,123,124 and 
Fusobacteria,123 and an increase in Proteobacteria.124 Moreover, 
the benefit of long-term symptom relief after H. pylori eradication 
therapy in FD has been postulated to come not from the resolution 
of the infection, but possibly from the antibiotics’ effect on the 
upper gut microbiota.125–127 Nonetheless, this supports the role 
of therapeutics targeting the microbiota in symptom alleviation 
for FD patients.

1.5.2  | Mucosal barrier disruption, 
inflammation, and dysbiosis

From infancy, an individual’s microbiome matures in conjunction 
with their immune system.128 A disruption in the triad of epithelial 
gut barrier integrity, the gut microbiome, and the immune system, 
such as intestinal dysbiosis, may lead to pathology and an inflamma-
tory process. Impaired intestinal mucosal barrier integrity has been 
reported in FD and may relate to microbiome disruption, leading to 
a conceptualization of the disorder involving a “leaky gut.”129 A re-
lationship between the extent of increased duodenal mucosal per-
meability and the severity of low-grade duodenal inflammation has 
been reported in FD patients; however, the mechanism by which the 
microbiome influences this process is still unknown.

Increased immune mediators and cell populations and abnor-
mally decreased protein expression at epithelial intercellular have 
been seen in FD patients.25,26,130 Immune mediator interleukin-1β 
disrupts the function of epithelial cells,131 and in FD patients, in-
creased expression was correlated inversely with duodenal epithelial 
integrity.26 Inflammasomes have a crucial role in intestinal mucosa 
homeostasis as NOD-like receptor 6 (NLRP6) deficiency leads to de-
fective intestinal goblet cells and a compromised mucosal barrier, 
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which abrogates effective clearance of enteric pathogens.132 This 
leaves patients vulnerable to infection and intestinal dysbiosis133,134 
and consequential inflammation.135 In FD patients, duodenal NLRP6 
was significantly reduced and correlated with decreased duode-
nal corticotropin-releasing hormone (CRH) receptor-2 expression 
compared with controls.136 This indicates that the upregulation of 
NLRP6 may lead to mucosal disruption and immune activation in FD.

Eosinophils and mast cells in the proximal small intestine are 
increased in FD and associated with eosinophil degranulation.137 
These cells may be stimulated after barrier disruption, leading to 
mucosal nerve activation and visceral hypersensitivity, or alterna-
tively, eosinophil degranulation may induce barrier disruption.138,139 
The involvement of these cells in FD is supported by patients’ re-
sponses to therapeutics such as montelukast,140,141 histamine H1/
H2 antagonists,142 and budesonide.143 Moreover, emerging evi-
dence indicates that PPIs may have therapeutic value through anti-
inflammatory actions144,145 such as reducing duodenal eosinophils 
and improve mucosal barrier dysfunction.146,147

Other documented immune changes in FD include increased 
duodenal intraepithelial lymphocytes in a subset148 and circulating 
TNF-α, IL-1β, and IL-10 cytokines in patients compared with con-
trols.149 Moreover, higher proportions of gut-homing (positive to 
CD4, α4 β7 integrins, CCR9-positive) T cells have also been observed 
and correlated with gastrointestinal symptoms in patients compared 
with controls, potentially due to localizing immune recruitment in 
the small intestine in FD.149 Notably, increased duodenal popula-
tions of CD68- and CCR2-positive cells in PI-FD patients compared 
with non-PI-FD patients and controls have been reported, suggest-
ing a potential cellular response is triggered by bacterial antigens in 
this subtype.114 Moreover, upregulated antimicrobial pathways in-
volving toll-like receptors150,151 and β-defensin 2152 have been ob-
served in other DGBI patients and controls, but these have not yet 
been studied in FD.

Interestingly, animal studies have demonstrated a relation-
ship between microbial communities including Clostridium and 
Bacteroides and increased regulatory T cell populations.153–155 While 
there is emerging evidence for links between barrier integrity, spe-
cific microbial changes, and immune activation, associations be-
tween specific microbial communities and immune signatures in FD 
patients are areas for further study.

1.5.3  |  Gastrointestinal microbial and immunological 
relationships with dietary factors in FD

Over 80% of patients with FD report meal-related gastrointestinal 
symptoms and alleviation with dietary modification.14,156 Dietary 
factors are known to play a role in gut symptomatology and may 
represent a link between food antigens, immune cell activation, and 
microbiome changes. The potential mechanisms of dietary antigens 
in this condition have recently been reviewed.157,158 The relation-
ship between digested food, mucosal barrier dysregulation, and 
hypersensitivity responses is complex. Digested nutrients activate 

neurons in the small intestine, such as submucosal sensory neu-
rons, and myenteric motor neurons, and the specific site of neuronal 
activation is nutrient-specific.159 FD patients’ increased sensory 
responses to glucose challenge,159 lipids,160 and capsaicin161 are sug-
gested to be linked to barrier dysfunction and gastric acid hyper-
sensitivity, but the role of the intestinal microbiota in this process 
is unclear. Notably, patient symptoms after a standardized nutri-
ent challenge were significantly correlated with an increased bac-
terial load dominated by Streptococcus and Prevotella and reduced 
Actinomyces.88 Moreover, this increased bacterial load was nega-
tively correlated with bacterial diversity.88 This suggests an associa-
tion between meal-related symptoms in FD and both microbial load 
and diversity changes. Interestingly, avoidance of highly processed, 
“inflammatory” foods minimized the risk of dyspepsia onset,162 pre-
vented colonic inflammation,163,164 and is associated with beneficial 
fecal microbial changes.165 Furthermore, fecal microbiota transplant 
in IBS patients exhibited gastrointestinal and psychological symptom 
relief benefits,166 and associations with increased short-chain fatty 
acid butyrate, a fiber metabolite produced by gut microbes,167,168 
which has been linked to nociception.169,170 However, these associa-
tions are still conjectural and have not yet been investigated in the 
small intestine of patients with FD.

Fermentable oligosaccharides, disaccharides, monosaccharides, 
and polyols (FODMAPs) have been speculated to influence FD symp-
tom onset. FODMAPs are carbohydrates that are poorly absorbed 
by the small intestine, and their incomplete digestion by the small in-
testinal microbiota may lead to increased fatty acid, gas production, 
and increased water transport in the colon leading to bloating, pain, 
and diarrhea in FD and IBS.171 Patients with IBS have higher reported 
levels of known microbial fermentation by-products compared with 
controls,172 and changes of the microbiota may at least partly explain 
the clinical effects of low-FODMAP diets in patients with DGBI symp-
toms.173–176 Interestingly, high FODMAPs lead to increased gastro-
intestinal symptoms, higher levels of anger, and a decreased positive 
affect in IBS patients compared with controls,177 indicating gastroin-
testinal dysfunction is more complex than just macromolecule me-
tabolism and is intertwined with psychological processes. However, a 
randomized trial of a low-FODMAP diet in FD was negative in terms 
of symptom improvement versus a standard diet, although PDS symp-
toms improved more on a low-FODMAP diet on a post hoc analysis.178

FD symptoms may be directly or indirectly influenced by lipid in-
take interacting with the intestinal microbiota, bile acid signaling, or 
both. Fatty foods have been associated with FD symptoms, but the 
mechanism of this is unclear.156 Dietary fat intake is an independent 
risk factor for increased gastrointestinal permeability, and most lipids 
are absorbed in the first 20 cm of the small intestine.179,180 Lipids are a 
microbial substrate, and the most potent nutrient modulators of gas-
trointestinal motility and distention through hormones such as chole-
cystokinin (CCK), released from enteroendocrine cells in a vago-vagal 
loop with the brain to regulate satiety.181 While yet to be studied in FD, 
a high-fat diet is associated with a pro-inflammatory immune cascade 
involving a transition to barrier-disrupting hydrophobic bile acids and 
changes to the intestinal microbiota.182,183 An overall reduced bacterial 
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load and diversity in the gut has been seen182 and increased Firmicutes 
and reduced Bacteroidetes182 (with a predominance of Bacteriodes and 
lower Prevotella183). This abnormal, higher Firmicutes/Bacteroidetes 
ratio is associated with disturbances in the intestinal mucosa184 and 
may be a hallmark of metabolic pathology185; however, the latter re-
mains controversial. Interestingly, these bacterial changes are consis-
tent with those that have been observed independently of dietary fat 
in FD patients (Table 1).

The relationship between microbial translocation, intestinal mu-
cosal permeability, and bile salts has been investigated in FD. The 
microbiota alter the bile acid pool composition through biochemical 
transformation, such as partial dihydroxylation.186 Bile salt compo-
sition, such as lower concentrations of hydroxylated bile salts, has 
been associated with increased duodenal permeability31 and slowed 
gastric emptying in FD.187 While remediation by administration of 
an anti-inflammatory, hydrophilic bile salt was observed,31 the in-
fluence of bacterial translocation across the lumen on bile salt com-
position is unclear in FD.31 Further analysis of the gut microbiota 
in FD patients and how it modulates nutrient and bile metabolism, 
gastrointestinal symptom onset, and intestinal function is needed to 
understand the pathogenesis of this condition.

1.5.4  |  Gut–brain and brain–gut axes in FD

The immune activation and dysbiosis in the pathogenesis of FD may 
be explained by a relationship with psychological symptoms through 
the bidirectional brain–gut and gut–brain axes. The brain can influ-
ence the microbiota indirectly via gut motility, secretions, and in-
testinal permeability, or directly through the release of signaling 
molecules into the lumen from lamina propria cells. Microbes can 
conversely communicate with the nervous system by direct stimula-
tion of cells in the lamina propria by microbial metabolites, signaling 
molecules, and hormones to stimulate vagal pathways and contrib-
ute to reward processing, pain, sleep, mood, and cognition.188

FD was originally conceptualized as psychosomatic,189 and pa-
tients often have extraintestinal symptoms and comorbidities.190–194 
FD patients have a higher prevalence of psychiatric comorbidities 
such as depression and anxiety compared with non-dyspeptic con-
trols,195,196 and patients may be able to be classified based on their 
gastrointestinal symptoms and concomitant psychological bur-
den.197 Baseline anxiety is an independent predictor of persistent GI 
symptoms and DGBI onset,198,199 but the order of onset of psychi-
atric conditions and gastrointestinal symptoms may vary between 
patients. One third of patients have psychological conditions that 
precede their DGBI diagnosis,200 while many patients experience 
psychological disturbances after DGBI onset.16,200–203 Moreover, 
those with an FD or IBS diagnosis but no psychological comorbidities 
at baseline had higher levels of psychological distress at 12-month 
follow-up.199 Notably, several brain regions in patients with FD 
demonstrate both white and gray matter anomalies, including the 
frontal and somatosensory cortices, hippocampus, amygdala, inter-
nal capsule, and corpus callosum, suggesting both abnormal central 

processing (brain to gut) and overactive visceral signaling and pain 
modulation (gut to brain).204–209

Chronic stress is a risk factor for FD and IBS, posited to be me-
diated by the gut–brain axis and hypothalamic–pituitary–adrenal 
(HPA) axis.210 Stress may increase intestinal permeability and poten-
tiate the uptake of noxious agents,211 dysregulate motility,212 and 
lead to visceral hypersensitivity213 and an activated inflammatory 
state.214 Anxiety and depression may contribute to the systemic 
immune activation seen in FD,215 as CRH released by the hypo-
thalamus during stress is also produced by peripheral inflammatory 
cells and increases gastrointestinal permeability.216 Moreover, it is 
suggested that eosinophils and possibly mast cells may alter neural 
structure and function, and this sensitization of the enteric nervous 
system may be exacerbated by pre-existing psychological prob-
lems.217 Interestingly, anxiety in IBS patients is linked to increased 
mast cells in the rectum,218 while gastric mast cell density has been 
shown to relate to somatization, depression, and anxiety in pediatric 
FD cases.219

The intestinal microbiota have a defining impact on the ner-
vous, neuroendocrine, and metabolic systems as outlined in sev-
eral comprehensive reviews.188,220–222 Microbial factors have 
now been identified in a number of psychiatric diseases,40,223,224 
and it is known that gut microbes produce their own neuroac-
tive molecules, potentially having a modifiable impact on brain 
signaling.55 This is demonstrated by healthy female adults exhib-
iting reduced reactive midbrain neural activity in response to a 
negative emotional attention task after ingestion of a fermented 
probiotic product containing Bifidobacterium lactis DN-173 010 
for four weeks.225 This same probiotic product led to a reduction 
in gastrointestinal symptoms in undiagnosed subjects226 and im-
proved symptom severity, abdominal transit, and distension in IBS 
patients.227 Moreover, Bifidobacterium longum supplementation 
reduced limbic reactivity and depressive scores in IBS patients.228 
These results may be a product of vagal nerve signaling, as mu-
rine and human studies have demonstrated vagal nerve-mediated 
anxiolytic effects of Lactobacillus229,230 and Bifidobacterium230,231 
and increased neural plasticity gene expression, linked to stress 
circuitry.232 Furthermore, other bacterial strains have been linked 
to changes to serotonin metabolism in the brain stem,233 inhib-
ited pain sensation from visceral distension234,235 and expression 
of endogenous opioid and cannabinoid receptors by gut epithe-
lium.236 These findings exemplify that the intestinal microbiota 
have a complex relationship with neuroendocrine pathways in the 
brain–gut and gut–brain axes and likely contribute to both psycho-
logical symptoms and gastrointestinal discomfort in FD.

2  |  LIMITATIONS OF MICROBIAL 
ANALYSIS IN DGBIs

Analyzing the role of the intestinal microbiome in FD is compli-
cated by difficulties in studying the gut microbes themselves. This 
is partly due to wide human microbiota heterogeneity between 
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individuals,237,238 and the hostile and dynamic environment of the 
proximal small intestine wherein microbes have fastidious growth 
requirements.36,239–241 Culture-independent methods of analy-
sis remain the mainstay of gastrointestinal microbiological re-
search such as metagenomics and 16S rRNA sequencing.45,242,243 
However, few metagenomic studies exist due to the emerging 
technology and high cost,45,243 while the distinct variable rRNA 
gene regions targeted in different 16S sequencing protocols may 
influence microbial diversity results and exclude viral and fungal 
analysis.244,245 Furthermore, the small bowel is difficult to study 
due to limitations with current sampling and storage methods.245 
The assessment of MAM in the duodenum requires the analysis of 
endoscopic biopsies as they adequately capture bacteria deep in 
the mucosa more effectively than other techniques.44,246 However, 
current biopsy techniques pose a risk of cross-contamination of bi-
opsy samples,247 so the more widespread use of novel techniques 
such as the Brisbane Aseptic Biopsy Device (BABD) that minimizes 
cross-contamination from luminal contents, is key for representa-
tive analysis of the MAM.53 Moreover, the heterogenous aggre-
gation of microbial communities along the gastrointestinal tract 
means may require considered mucosal biopsy technique to obtain 
samples representative of FD’s disease process and accurately 
capture any subtle microbial changes.248–250 Multifarious factors 
influencing mucosal microbial diversity contribute to extensive 
variation between individuals, revealing a need for further study 
to better understand the normal microbiome across a variety of 
populations.36,251

3  |  CONCLUSION

There is growing evidence that the microbial colonization of the 
small intestine plays a role in the pathophysiology of disorders of 
gut–brain interaction. FD has been shown to have component of 
gastrointestinal dysbiosis and altered mucosal barrier dysfunction. 
While low-grade inflammation might be the consequence of micro-
bial dysbiosis, the inflammation may play a role in sensory dysfunc-
tion. This disease process resulting in the manifestation of dyspeptic 
symptoms is likely modified by environmental factors such as di-
etary factors or medications. The recent observations require fur-
ther research to appropriately delineate cause and consequence and 
explore interventions that allow individualized treatments targeting 
the causes for symptoms. While the understanding of FD contin-
ues to improve, further analysis of the small intestinal microbiome 
in conjunction with immune cell activation levels and function is re-
quired to clarify the pathophysiological mechanisms of this debilitat-
ing condition to guide further diagnostic and curative therapeutic 
innovations.
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