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1  |  INTRODUC TION

Functional dyspepsia (FD) is a complex and heterogenous disor-
der characterized by chronic or recurrent upper abdominal pain 
or discomfort including postprandial fullness and early satiety not 

explained by structural or biochemical abnormalities identified in 
the routine clinical setting.1 Similar to the irritable bowel syndrome 
(IBS), FD is a disorder of gut– brain interaction (DGBI).2 These dis-
orders were previously known as functional gastrointestinal disor-
ders (FGID)3 and likely involve several disease mechanisms including 
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Abstract
Background: Functional dyspepsia (FD) is a common and debilitating gastrointestinal 
disorder	attributed	to	altered	gut-	brain	interactions.	While	the	etiology	of	FD	remains	
unknown, emerging research suggests the mechanisms are likely multifactorial and 
heterogenous among patient subgroups. Small bowel motor disturbances, visceral hy-
persensitivity, chronic microinflammation, and increased intestinal tract permeability 
have all been linked to the pathogenesis of FD. Recently, alterations to the gut micro-
biome have also been implicated to play an important role in the disease. Changes 
to the duodenal microbiota may either trigger or be a consequence of immune and 
neuronal disturbances observed in the disease, but the mechanisms of influence of 
small intestinal flora on gastrointestinal function and symptomatology are unknown.
Purpose: This review summarizes and synthesizes the literature on the link between 
the microbiota, low- grade inflammatory changes in the duodenum and FD. This re-
view is not intended to provide a complete overview of FD or the small intestinal 
microbiota, but instead outline some of the key conceptual advances in understanding 
the interactions between altered gastrointestinal bacterial communities; dietary fac-
tors; host immune activation; and stimulation of the gut– brain axes in patients with 
FD versus controls. Current and emerging treatment approaches such as dietary in-
terventions and antibiotic or probiotic use that have demonstrated symptom benefits 
for patients are reviewed, and their role in modulating the host– microbiota is dis-
cussed. Finally, suggested opportunities for diagnostic and therapeutic improvements 
for patients with this condition are presented.
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disrupted normal sensorimotor function of the gastrointestinal tract, 
but with essentially normal endoscopic findings.3– 5

FD is common with a pooled worldwide prevalence of approxi-
mately 5%– 7%,6 with variation across geographical regions6,7; how-
ever, treatment options are currently limited to chronic symptom 
relief,8,9 contributing to a high disease burden with an impaired 
quality of life,6,10 and financial hardship.11– 13 Thus, there remains a 
significant need for further research on the pathophysiology of FD 
to guide improved diagnostics and therapy for patients.

Based upon Rome IV criteria, FD is stratified into two subtypes: 
epigastric	pain	syndrome	(EPS),	with	epigastric	pain	and/or	epigas-
tric	burning;	and	postprandial	distress	syndrome	 (PDS),	with	post-
prandial fullness and/or early satiety.3	While	different	 risk	 factors	
have been identified for each FD subtype,14,15 overlap is seen in ap-
proximately 30– 60% of cases.16–	18 Individuals’ symptoms may also 
change over time.19	Moreover,	many	patients	with	FD	have	concom-
itant IBS20,21	or	gastroesophageal	reflux	disease	(GERD).22,23 These 
diseases overlap more than expected by chance and are part of a 
“spectrum” of gastrointestinal diseases with most likely a similar un-
derlying pathogenesis.3,8,22

The pathophysiology of FD is likely multifactorial.24 Increased in-
testinal permeability,25,26 gastric hypersensitivity,27,28 gastric motor 
disturbances such as delayed gastric emptying and fundic dysac-
commodation,27,28 H. pylori infection,29,30 abnormalities of bile acid 
metabolism,31 dietary, environmental, psychosocial, microbiota, and 
atopic, allergic, and autoimmune changes have all been implicated in 
the disease process.32	 Emerging	 evidence	 shows	 that	microscopic	
upper gut alterations may exist in some patient subsets33 and that 
the pathophysiology of FD is likely due to alterations in duodenal 
microbiota, which interact with the immune system to trigger symp-
toms8 (Figure 1).	Here,	we	review	the	recent	literature	on	the	duo-
denal microbiota changes in FD and host immunological, dietary and 
psychological factors, and outline future directions for mechanistic 
research in this complex condition.

1.1  |  The small intestinal microbiome in FD

There is growing interest in the microbiome of the small intestine in 
FD. The gastrointestinal tract has a large surface and represents one 
of the major interfaces between the human body and the external 
environment, with a microbiota made up of over 1000 commensal 
bacterial species.34,35	Many	factors	influence	microbial	composition	
including diet, environmental exposures, and medications, leading 
to high interindividual variation.36 The microbiome plays a role in gut 
homeostasis and in particular the integrity of the epithelial barrier or 
the modulation of the mucosal immune system pathways, including 
tolerance to commensal microorganisms and digested food antigens 
in the lumen.37–	39 Furthermore, metabolites of the microbiota, most 
notably, tryptophan, short- chain fatty acids, and bile salts, interact 
with a number of pathways in the host.40 The main two phyla of the 
gut microbiota are gram- negative Bacteroidetes and gram- positive 
Firmicutes.41	While	extensive	physiological	microbiota	variation	and	

compartmentalization exists along the length of the gastrointesti-
nal tract,42– 44 this may be disturbed in disease states.45– 47 The small 
bowel is characterized by higher acidic, oxygen, and antimicrobial 
peptide levels, and these factors and a singular tightly packed mu-
cosal layer and phasic propulsion at the ileum, limit bacterial density 
compared with the colon.44

The small intestine is dominated by the phyla Firmicutes, 
Proteobacteria,	 and	 Actinobacteria,	 with	 fewer	 Bacteroidetes,48 
since fast- growing facultative anaerobes tolerate this environment 
and can metabolize the simple carbohydrates available.44 The tax-
onomy of these is visualized in Figure 2.	Moreover,	 the	microbial	
compositions of the luminal microbiota and the mucosa- associated 
microbiota	(MAM)	are	taxonomically	and	functionally	distinct	from	
each other.44,49	The	MAM	is	posited	to	have	a	more	direct	role	in	the	
pathogenesis of gastrointestinal diseases due to its proximity to the 
epithelium.42,50 The mucosal layer acts as a barrier against patho-
genic microbes, preventing translocation into host tissue51; hence, 
the	bacteria	that	can	penetrate	this	layer	and	in	the	MAM	may	have	
a high potential to induce pro- inflammatory gene expression in the 
epithelium.44,52	Furthermore,	the	duodenal	MAM	is	again	taxonom-
ically distinct from other areas of the gastrointestinal tract,48 domi-
nated by Streptococcus, and lower levels of Prevotella, Veillonella, and 
Neisseria species.53

Microbial	 “dysbiosis”	 is	 defined	 as	 alterations	 in	 the	 composi-
tion, density, and function of the intestinal microbes that regulate 
immune and metabolic homeostasis.54 Gastrointestinal dysbiosis, 
especially a decrease in bacterial diversity, is an increasingly recog-
nized feature of multiple chronic noncommunicable diseases such as 
obesity, liver disease, cardiometabolic conditions, type 2 diabetes 
mellitus, and malnutrition.55 It is suggested that microbial dysreg-
ulation may enable the expansion of opportunistic “pathobionts”— 
commensals with pathological potential,54 activating a disease 
process56 such as what is increasingly hypothesized to be a feature 
of IBS and FD.54,57,58

1.2  |  Small intestinal bacterial overgrowth and FD

DGBIs have been linked to small intestinal bacterial overgrowth 
(SIBO),59–	64 a clinical condition that is characterized by the presence 
of excessive and/or abnormal type of microbes in the small intes-
tine.65 It is currently understood that SIBO involves bacteria that 
produce hydrogen, while patients that are also colonized with meth-
anogenic archaea, anaerobic organisms producing methane, have an 
overgrowth	 termed	 “intestinal	methanogen	overgrowth”	 (IMO),	 as	
distinct from SIBO.65 SIBO is traditionally diagnosed by >105 organ-
isms per mL of jejunal aspirate,66 or by a positive hydrogen breath 
test after peroral glucose or lactulose challenge.65	However,	meth-
ane	breath	 tests	 are	now	used	 for	 IMO	diagnosis,	 and	 the	organ-
ism	cutoff	value	is	debatable,	and	a	lower	threshold	of	≥103 cfu ml−1 
cutoff has been proposed.67 It should be noted that jejunal aspirates 
are a limited sampling tool for the small intestinal microbiota due to 
risk of contamination and difficulties sampling hard- to- access areas 



    |  3 of 16BROWN et al.

like blind loops48,66–	68 and because the sampled luminal fluid may 
not represent the mucosal microbial composition.69 Breath tests lack 
sensitivity and specificity confounded by intestinal transit,66,70,71 
and heterogenous methodology.67,71

Sequencing of the duodenum has identified microbial alterations 
in SIBO, including a lower relative abundance of Firmicutes and a 
higher	abundance	of	Proteobacteria,	both	positively	associated	with	
decreased alpha diversity.72 These changes also correlated with 
symptom severity such as bloating,72 likely as a result of increased 
microbial fermentation by the imbalanced over- abundant commu-
nity.73,74 SIBO has been shown to be increased in chronic gastroin-
testinal diseases irrespective of the diagnostic method used.62,75– 77 

Specifically, the prevalence and risk of SIBO are both increased 
significantly in chronic uninvestigated dyspepsia and FD compared 
with controls.78	 A	 recent	 study	 demonstrated	 elevated	 duodenal	
biopsy bacterial loads in DGBI patients compared with controls 
and increases in breath positivity in some patients, but no associ-
ation between breath test positivity and duodenal microbial load.79 
Patients	diagnosed	with	SIBO	may	receive	antibiotic	treatment	such	
as with the nonabsorbable antibiotic rifaximin,80 which also provides 
symptom relief in FD patients.81 Interestingly, a recent systematic 
review demonstrated that treatment with rifaximin in combination 
with fiber,82,83 Lactobacilli and Bifidobacteria probiotics84 or mesala-
zine,85,86 augmented the eradication rate of SIBO, further indicating 

F I G U R E  1 Proposed	disease	model	for	the	pathogenesis	of	functional	dyspepsia.	1.	Antigen	presentation	to	the	small	intestinal	mucosa,	
including	food	macromolecules	or	microbial	antigens.	2.	Activation	of	eosinophils	and	mast	cells	through	an	immune	cascade.	3.	Local	nerve	
sensitization	and	systemic	immune	activation	leading	to	symptomatology.	4.	Maintenance	of	a	low-	grade	state	of	inflammation	through	
bidirectional gut– brain and brain– gut pathways [Image created in BioRender]
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that the condition is likely not underpinned simply by an increased 
microbial load alone, but also by an element of dysbiosis and possi-
bly inflammation.80 It has been postulated that SIBO may not be a 
distinct disease but a pathogenic mechanism underlying the devel-
opment of FD.60 The link between SIBO and DGBIs remains contro-
versial, as the small intestinal microbial alterations in symptomatic 
patients do not always correspond with a positive SIBO diagnosis.87

1.3  |  Small intestinal microbial signatures in FD

Recent	 studies	 have	 characterized	 the	 duodenal	MAM	 of	 FD	 pa-
tients	to	a	bacterial	genus	level.	An	Australian	study	first	reported	
the increased relative abundance of Streptococcus in patients with 
FD compared with matched controls, albeit nonsignificant (which 
may have been because of the small sample size), and a notable in-
verse relationship between Streptococcus abundance and that of the 
anaerobic genera Prevotella, Veillonella, and Actinomyces, which were 
significantly	reduced	in	the	FD	patients.	Moreover,	a	higher	bacte-
rial load observed in FD patients negatively correlated with bacte-
rial	 diversity	 and	 reported	quality	of	 life	 scores	using	 the	Nepean	
Dyspepsia Index and positively correlated with the severity of upper 
gastrointestinal meal symptoms.88	 A	 Japanese	 study	 identified	 an	
increase in Streptococcus in all sites of the upper gut in an FD cohort 
that again correlated with patient symptoms scores.89 Furthermore, 
the	reported	beta	diversity	of	the	duodenal	MAM	was	significantly	
different between patients and controls, while the alpha diversity 
remained unchanged, indicating a more complex microbiota struc-
tural change may be involved in the disease rather than changes in 
relative abundance of particular genera alone.89 Dyspeptic patients 
also demonstrated increased anaerobic metabolism in the gastric 

microbial community in conjunction with increased Pseudoclavibac
ter and Tannerella, increased Veillonella, Cohnella, Sporolactobacillus, 
Propionigenium in saliva, and a higher duodenal prevalence of 
Rothia, Clostridium, Haemophilus, and Actinobacillus species.90	A	re-
cent study demonstrated decreased duodenal mucosal Neisseria 
and Porphyromonas abundance in FD patients and controls prior to 
treatment	with	PPIs,	but	no	differences	 in	microbial	 load.91 These 
findings are presented in Table 1. These bacterial shifts reported in 
FD patients are typical of the oral microbiota, and one study has 
confirmed that the healthy duodenum is taxonomically similar to the 
oral cavity.42	Importantly,	a	recent	Australian	publication	describes	
a new Streptococcus salivarius strain isolated from an FD duodenal 
biopsy.92 Overall, this literature confirms that distinct duodenal mi-
crobial changes in both microbial load and diversity do occur in pa-
tients with FD.

1.4  |  Effects of antibiotics and probiotics on the 
microbiome in FD

A	 pathogenic	 role	 of	 the	 microbiota	 in	 FD	 is	 supported	 by	 re-
sponses to drugs that alter the microbiome (Table 1). Rifaximin is 
a broad- spectrum antibiotic with gram- positive, gram- negative, 
aerobic and anaerobic coverage, a high intraluminal bioavailabil-
ity in the gastrointestinal tract, and minimal systemic adverse ef-
fects.93 It was superior to placebo FD treatment in one randomized 
trial,	 wherein	 relief	 of	 dyspeptic	 symptoms	 was	 reported	 in	 79%	
of patients after taking rifaximin, compared to 47% in the placebo 
group	at	8	weeks.81	Moreover,	 the	clinical	benefits	of	 rifaximin	 in	
FD do not appear to be explained by the overlap with IBS.20 There is 
some evidence that its efficacy in IBS is due to rifaximin altering the 

F I G U R E  2 Taxonomy	of	the	small	intestinal	microbiota	across	the	four	main	bacterial	phyla.	Pictured	are	key	intestinal	microbial	species	
from phylum– class– genus
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intestinal gut microbiota,94 and in other gastrointestinal diseases, it 
has been shown to preserve colonic flora, increasing the abundance 
of Lactobacilli and Bifidobacteria95 in a “eubiotic” effect of positively 
modulating the gut microbiota, favoring the growth of beneficial 
bacteria altering the overall composition.96	However,	 these	micro-
bial changes with treatment need to be studied in the duodenum in 
FD cohorts.

Conversely, previous antibiotic treatments are a risk factor for 
developing FD,97,98 and it is well known that broad- spectrum antibi-
otic use can result in long- term reductions in commensal species.55 
Probiotics	may	have	a	therapeutic	role	in	FD	due	to	their	modulation	
of gastrointestinal flora, and three studies have shown postprandial 

fullness and bloating symptom improvements after administration of 
probiotic Lactobacillus gasseri OLL2716 for twelve weeks in H. pylori- 
positive and negative dyspeptic patients.99–	101 Symptom resolution 
was demonstrated in 35.5% of H. pylori- negative FD patients com-
pared to 17% with placebo.100	A	lower	abundance	of	Prevotella and a 
higher abundance of Bifidobacterium and Clostridium were seen in the 
gastric fluid of the FD cohort prior to treatment, but post- treatment, 
FD patients showed decreased gastric fluid volume possibly signify-
ing more efficient gastric emptying, and a gastric fluid microbiota re-
sembling the healthy controls pre- treatment. Interestingly, Prevotella 
abundance specifically was inversely associated with postprandial 
distress levels, wherein an increase in this genus post- treatment 

TA B L E  1 Microbial	changes	in	functional	dyspepsia	patients	compared	with	controls	as	reported	in	published	literature

Microbial change Location
Number of FD 
patients

Number of 
controls Citation

Increased relative abundance of Streptococcus Duodenal biopsies 9	FD	patients 9	matched	
endoscopy- 
negative 
controls

Zhong et al.88

Mucosal	brush	sample	of	all	
sites in upper gut

11 FD patients 7 healthy controls Fukui et al.89

Streptococcus abundance positively correlated with 
severe upper gastrointestinal symptoms

Mucosal	brush	samples	of	
all sites in upper gut

11 FD patients 7 healthy controls Fukui et al.89

Lower abundance of Prevotella, Veillonella and 
Actinomyces

Duodenal biopsies 9	FD	patients 9	matched	
endoscopy- 
negative 
controls

Zhong et al.88

Inverse relationship between Streptococcus and 
Prevotella, Veillonella and Actinomyces

Higher	bacterial	load	negatively	correlated	with	
bacterial diversity

Higher	bacterial	load	and	lower	bacterial	diversity	
correlated with quality of life scores

Reduced beta diversity Mucosal	brush	samples	of	
all sites in upper gut

11 FD patients 7 healthy controls Fukui et al.89

Unchanged alpha diversity

Increased Firmicutes

Increased Pseudoclavibacter and Tannerella, 
increased Veillonella, Cohnella, Sporolactobacillus, 
Propionigenium in saliva

Gastric and duodenal 
mucosal brush samples 
and saliva samples

25 symptomatic 
patients with 
dyspepsia, 
dysphagia 
and reflux

11 patients with 
achalasia

Cervantes et al.90

Increased duodenal Rothia, Clostridium, Haemophilus, 
and Actinobacillus

Increased gastric Pseudoclavibacter and Tannerella

Lower abundance of Prevotella Gastric fluid (via nasogastric 
tube)

44 FD patients 44 healthy 
controls

Nakae	et	al.101

Higher	abundance	of	Bifidobacterium and Clostridium

Prevotella	inversely	associated	with	PDS	symptom	
severity

Lower interindividual bacterial diversity

Predominance	of	Bacteroidetes	over	Proteobacteria Gastric fluid (via nasogastric 
tube)

24 FD patients 21 matched 
healthy 
controls

Igarashi et al.102

Absence	of	Acidobacteria

Higher	Escherichia, Shigella and Bifidobacterium 
longum

Lower Neisseria and Porphyromonas abundance Mucosal	brush	samples	of	
duodenum

28	PPI-	naive	FD	
patients

30 healthy 
controls

Wauters	et	al.103

Abbreviation:	FD,	functional	dyspepsia.
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was related to symptom alleviation.101 Lactobacillus gasseri OLL271 
was also shown to “restore” the abnormal gastric fluid microbiota 
of patients with FD. The gastric fluid of FD patients prior to twelve 
weeks of probiotics showed a predominance of Bacteroidetes over 
Proteobacteria	(24.2/4.9%	compared	to	13.5/29.5%	for	controls)	and	
an	absence	of	Acidobacteria	(0.2%	compared	to	3.8%	in	controls)	and	
post- probiotic treatment, these proportions shifted to reflect a micro-
biota composition similar to healthy volunteers.102	Additionally,	while	
small	intestinal	bacterial	data	were	not	collected,	8	weeks	of	treatment	
with Bacillus coagulans	MY01	and	Bacillus subtilis	MY02	demonstrated	
a	 28%	 response	 rate	 improvement	 over	 placebo	 in	 FD	 patients.103 
These findings offer preliminary evidence that patient symptoms are 
related to abundances of certain genera in the upper gut microbiota, 
which can be modified by therapeutic antibiotic and probiotic agents. 
Despite these noted specific changes, further research on larger pa-
tient cohorts across more diverse geographical regions is needed to 
characterize the microbiome alterations in the disease, especially in 
the duodenum.

Proton	pump	 inhibitors	 (PPIs)	 also	modulate	 the	microbiome,	
and	patients	with	DGBIs	 using	PPIs	 have	been	 shown	 to	have	 a	
higher	 bacterial	 load	 in	 the	 duodenum	 compared	 with	 non-	PPI	
users,79	and	there	an	increased	risk	of	SIBO	in	PPI	users	has	been	
observed.104	Studies	of	the	fecal	microbiota	suggest	that	PPIs	are	
associated with decreased bacterial diversity,105,106 and a shift to-
ward a community more closely resembling that of the oral mi-
crobiota, such as increased Streptococci,105,106 Enterococcus and 
potentially pathogenic species of Escherichia coli,105 and decreased 
Faecalibacterium.107 Some duodenal microbiota changes at a family 
level	have	been	observed	between	PPI	users	and	non-	PPI	users,108 
but	 little	 is	known	about	how	PPIs	 impact	the	duodenal	MAM	in	
FD.	 A	 recent	 preliminary	 study	 using	 duodenal	 brushings	 found	
significant	MAM	variation	and	decreased	diversity	from	baseline	
after	PPI	use	in	FD	patients	and	controls.91	While	the	healthy	du-
odenum is taxonomically similar to the oral microbiota,42 it is of 
interest	to	understand	whether	PPIs	reduce	the	abundance	of	spe-
cies specific to the duodenum, resulting in increased similarity to 
oral	bacterial	communities.	Furthermore,	PPIs	are	a	current	treat-
ment	for	FD	and	gastroesophageal	reflux	disease	 (GERD),109 and 
oral microbial species have been linked to other gastrointestinal 
inflammatory	diseases,	including	GERD.110,111 Thus, there is likely 
to be a complex interrelationship between microbial load, diver-
sity,	and	PPI	use	in	the	small	intestine	of	patients	with	FD.

1.5  |  Immune activation and the gastrointestinal 
microbiome in FD

1.5.1  |  The	microbial	antigen	or	“postinfectious”	
hypothesis of FD

The microbiota’s significance in gastrointestinal inflammation 
and FD symptomatology is highlighted in cases of postinfec-
tious	FD	(PI-	FD).	The	prevalence	of	PI-	FD	is	approximately	10%,	

with ~2.5 times increased likelihood of development at 6- month 
post- acute gastroenteritis exposure (OR =	 2.54,	 95%	 CI	 1.76–	
3.65, p < 0.05).112	PI-	FD	is	currently	understood	to	be	a	product	
of residual dysfunctional immune activation113,114; or from per-
manent gastrointestinal damage from transient inflammation27 
driven by either microbial displacement or antibiotic treatment.32 
Previously,	 persistent	microscopic	 duodenitis114 and higher pro-
portions of eosinophils and mast cells activating in close range 
(<5	nM)	of	nerve	fibers	 in	the	gut	have	been	noted	 in	PI-	FD	pa-
tients.115	Postinfectious	gastrointestinal	symptoms	have	been	re-
ported up to 10 years after an intestinal infection,116 and those 
exposed to gastroenteritis were more likely to develop new- onset 
dyspepsia117	 and	 IBS,	with	 relative	 risks	 of	 5.2	 (95%	CI	 2.7–	9.8,	
p <	0.05)	and	7.8	times	greater	(95%	CI	3.1–	19.7,	p < 0.05), respec-
tively, at 1- year follow- up.118

Moreover,	while	H. pylori infection is now classified as a sep-
arate entity,3,119 its role in the pathogenesis of FD is under scru-
tiny.30,32,70	 Higher	 oesophageal	 and	 gastric	 eosinophils29,120–	122 
and altered gastric microbiotas including lower bacterial richness 
have been found in H. pylori- positive FD patients compared to 
those not infected.123 Some H. pylori- positive patients have de-
creased	 Firmicutes,	 Bacteroidetes,	 Actinobacteria,123,124 and 
Fusobacteria,123	 and	an	 increase	 in	Proteobacteria.124	Moreover,	
the benefit of long- term symptom relief after H. pylori eradication 
therapy in FD has been postulated to come not from the resolution 
of the infection, but possibly from the antibiotics’ effect on the 
upper gut microbiota.125– 127	Nonetheless,	 this	 supports	 the	 role	
of therapeutics targeting the microbiota in symptom alleviation 
for FD patients.

1.5.2  | Mucosal	barrier	disruption,	
inflammation, and dysbiosis

From infancy, an individual’s microbiome matures in conjunction 
with their immune system.128	A	disruption	in	the	triad	of	epithelial	
gut barrier integrity, the gut microbiome, and the immune system, 
such as intestinal dysbiosis, may lead to pathology and an inflamma-
tory process. Impaired intestinal mucosal barrier integrity has been 
reported in FD and may relate to microbiome disruption, leading to 
a conceptualization of the disorder involving a “leaky gut.”129	A	re-
lationship between the extent of increased duodenal mucosal per-
meability and the severity of low- grade duodenal inflammation has 
been reported in FD patients; however, the mechanism by which the 
microbiome influences this process is still unknown.

Increased immune mediators and cell populations and abnor-
mally decreased protein expression at epithelial intercellular have 
been seen in FD patients.25,26,130 Immune mediator interleukin- 1β 
disrupts the function of epithelial cells,131 and in FD patients, in-
creased expression was correlated inversely with duodenal epithelial 
integrity.26 Inflammasomes have a crucial role in intestinal mucosa 
homeostasis	as	NOD-	like	receptor	6	(NLRP6)	deficiency	leads	to	de-
fective intestinal goblet cells and a compromised mucosal barrier, 
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which abrogates effective clearance of enteric pathogens.132 This 
leaves patients vulnerable to infection and intestinal dysbiosis133,134 
and consequential inflammation.135	In	FD	patients,	duodenal	NLRP6	
was significantly reduced and correlated with decreased duode-
nal	 corticotropin-	releasing	 hormone	 (CRH)	 receptor-	2	 expression	
compared with controls.136 This indicates that the upregulation of 
NLRP6	may	lead	to	mucosal	disruption	and	immune	activation	in	FD.

Eosinophils	 and	 mast	 cells	 in	 the	 proximal	 small	 intestine	 are	
increased in FD and associated with eosinophil degranulation.137 
These cells may be stimulated after barrier disruption, leading to 
mucosal nerve activation and visceral hypersensitivity, or alterna-
tively, eosinophil degranulation may induce barrier disruption.138,139 
The involvement of these cells in FD is supported by patients’ re-
sponses to therapeutics such as montelukast,140,141	histamine	H1/
H2	 antagonists,142 and budesonide.143	 Moreover,	 emerging	 evi-
dence	indicates	that	PPIs	may	have	therapeutic	value	through	anti-	
inflammatory actions144,145 such as reducing duodenal eosinophils 
and improve mucosal barrier dysfunction.146,147

Other documented immune changes in FD include increased 
duodenal intraepithelial lymphocytes in a subset148 and circulating 
TNF-	α, IL- 1β, and IL- 10 cytokines in patients compared with con-
trols.149	 Moreover,	 higher	 proportions	 of	 gut-	homing	 (positive	 to	
CD4, α4 β7	integrins,	CCR9-	positive)	T	cells	have	also	been	observed	
and correlated with gastrointestinal symptoms in patients compared 
with controls, potentially due to localizing immune recruitment in 
the small intestine in FD.149	 Notably,	 increased	 duodenal	 popula-
tions	of	CD68-		and	CCR2-	positive	cells	in	PI-	FD	patients	compared	
with	non-	PI-	FD	patients	and	controls	have	been	reported,	suggest-
ing a potential cellular response is triggered by bacterial antigens in 
this subtype.114	Moreover,	 upregulated	 antimicrobial	 pathways	 in-
volving toll- like receptors150,151 and β- defensin 2152 have been ob-
served in other DGBI patients and controls, but these have not yet 
been studied in FD.

Interestingly, animal studies have demonstrated a relation-
ship between microbial communities including Clostridium and 
Bacteroides and increased regulatory T cell populations.153– 155	While	
there is emerging evidence for links between barrier integrity, spe-
cific microbial changes, and immune activation, associations be-
tween specific microbial communities and immune signatures in FD 
patients are areas for further study.

1.5.3  |  Gastrointestinal	microbial	and	immunological	
relationships with dietary factors in FD

Over	80%	of	patients	with	FD	report	meal-	related	gastrointestinal	
symptoms and alleviation with dietary modification.14,156 Dietary 
factors are known to play a role in gut symptomatology and may 
represent a link between food antigens, immune cell activation, and 
microbiome changes. The potential mechanisms of dietary antigens 
in this condition have recently been reviewed.157,158 The relation-
ship between digested food, mucosal barrier dysregulation, and 
hypersensitivity responses is complex. Digested nutrients activate 

neurons in the small intestine, such as submucosal sensory neu-
rons, and myenteric motor neurons, and the specific site of neuronal 
activation is nutrient- specific.159 FD patients’ increased sensory 
responses to glucose challenge,159 lipids,160 and capsaicin161 are sug-
gested to be linked to barrier dysfunction and gastric acid hyper-
sensitivity, but the role of the intestinal microbiota in this process 
is	 unclear.	 Notably,	 patient	 symptoms	 after	 a	 standardized	 nutri-
ent challenge were significantly correlated with an increased bac-
terial load dominated by Streptococcus and Prevotella and reduced 
Actinomyces.88	 Moreover,	 this	 increased	 bacterial	 load	 was	 nega-
tively correlated with bacterial diversity.88 This suggests an associa-
tion between meal- related symptoms in FD and both microbial load 
and diversity changes. Interestingly, avoidance of highly processed, 
“inflammatory” foods minimized the risk of dyspepsia onset,162 pre-
vented colonic inflammation,163,164 and is associated with beneficial 
fecal microbial changes.165 Furthermore, fecal microbiota transplant 
in IBS patients exhibited gastrointestinal and psychological symptom 
relief benefits,166 and associations with increased short- chain fatty 
acid butyrate, a fiber metabolite produced by gut microbes,167,168 
which has been linked to nociception.169,170	However,	these	associa-
tions are still conjectural and have not yet been investigated in the 
small intestine of patients with FD.

Fermentable oligosaccharides, disaccharides, monosaccharides, 
and	polyols	(FODMAPs)	have	been	speculated	to	influence	FD	symp-
tom	 onset.	 FODMAPs	 are	 carbohydrates	 that	 are	 poorly	 absorbed	
by the small intestine, and their incomplete digestion by the small in-
testinal microbiota may lead to increased fatty acid, gas production, 
and increased water transport in the colon leading to bloating, pain, 
and diarrhea in FD and IBS.171	Patients	with	IBS	have	higher	reported	
levels of known microbial fermentation by- products compared with 
controls,172 and changes of the microbiota may at least partly explain 
the	clinical	effects	of	low-	FODMAP	diets	in	patients	with	DGBI	symp-
toms.173– 176	 Interestingly,	 high	 FODMAPs	 lead	 to	 increased	 gastro-
intestinal symptoms, higher levels of anger, and a decreased positive 
affect in IBS patients compared with controls,177 indicating gastroin-
testinal dysfunction is more complex than just macromolecule me-
tabolism	and	is	intertwined	with	psychological	processes.	However,	a	
randomized	trial	of	a	low-	FODMAP	diet	in	FD	was	negative	in	terms	
of	symptom	improvement	versus	a	standard	diet,	although	PDS	symp-
toms	improved	more	on	a	low-	FODMAP	diet	on	a	post	hoc	analysis.178

FD symptoms may be directly or indirectly influenced by lipid in-
take interacting with the intestinal microbiota, bile acid signaling, or 
both. Fatty foods have been associated with FD symptoms, but the 
mechanism of this is unclear.156 Dietary fat intake is an independent 
risk factor for increased gastrointestinal permeability, and most lipids 
are absorbed in the first 20 cm of the small intestine.179,180 Lipids are a 
microbial substrate, and the most potent nutrient modulators of gas-
trointestinal motility and distention through hormones such as chole-
cystokinin (CCK), released from enteroendocrine cells in a vago- vagal 
loop with the brain to regulate satiety.181	While	yet	to	be	studied	in	FD,	
a high- fat diet is associated with a pro- inflammatory immune cascade 
involving a transition to barrier- disrupting hydrophobic bile acids and 
changes to the intestinal microbiota.182,183	An	overall	reduced	bacterial	
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load and diversity in the gut has been seen182 and increased Firmicutes 
and reduced Bacteroidetes182 (with a predominance of Bacteriodes and 
lower Prevotella183). This abnormal, higher Firmicutes/Bacteroidetes 
ratio is associated with disturbances in the intestinal mucosa184 and 
may be a hallmark of metabolic pathology185; however, the latter re-
mains controversial. Interestingly, these bacterial changes are consis-
tent with those that have been observed independently of dietary fat 
in FD patients (Table 1).

The relationship between microbial translocation, intestinal mu-
cosal permeability, and bile salts has been investigated in FD. The 
microbiota alter the bile acid pool composition through biochemical 
transformation, such as partial dihydroxylation.186 Bile salt compo-
sition, such as lower concentrations of hydroxylated bile salts, has 
been associated with increased duodenal permeability31 and slowed 
gastric emptying in FD.187	While	 remediation	by	administration	of	
an anti- inflammatory, hydrophilic bile salt was observed,31 the in-
fluence of bacterial translocation across the lumen on bile salt com-
position is unclear in FD.31 Further analysis of the gut microbiota 
in FD patients and how it modulates nutrient and bile metabolism, 
gastrointestinal symptom onset, and intestinal function is needed to 
understand the pathogenesis of this condition.

1.5.4  |  Gut–	brain	and	brain–	gut	axes	in	FD

The immune activation and dysbiosis in the pathogenesis of FD may 
be explained by a relationship with psychological symptoms through 
the bidirectional brain– gut and gut– brain axes. The brain can influ-
ence the microbiota indirectly via gut motility, secretions, and in-
testinal permeability, or directly through the release of signaling 
molecules	 into	 the	 lumen	 from	 lamina	 propria	 cells.	Microbes	 can	
conversely communicate with the nervous system by direct stimula-
tion of cells in the lamina propria by microbial metabolites, signaling 
molecules, and hormones to stimulate vagal pathways and contrib-
ute to reward processing, pain, sleep, mood, and cognition.188

FD was originally conceptualized as psychosomatic,189 and pa-
tients often have extraintestinal symptoms and comorbidities.190–	194 
FD patients have a higher prevalence of psychiatric comorbidities 
such as depression and anxiety compared with non- dyspeptic con-
trols,195,196 and patients may be able to be classified based on their 
gastrointestinal symptoms and concomitant psychological bur-
den.197 Baseline anxiety is an independent predictor of persistent GI 
symptoms and DGBI onset,198,199 but the order of onset of psychi-
atric conditions and gastrointestinal symptoms may vary between 
patients. One third of patients have psychological conditions that 
precede their DGBI diagnosis,200 while many patients experience 
psychological disturbances after DGBI onset.16,200– 203	 Moreover,	
those with an FD or IBS diagnosis but no psychological comorbidities 
at baseline had higher levels of psychological distress at 12- month 
follow- up.199	 Notably,	 several	 brain	 regions	 in	 patients	 with	 FD	
demonstrate both white and gray matter anomalies, including the 
frontal and somatosensory cortices, hippocampus, amygdala, inter-
nal capsule, and corpus callosum, suggesting both abnormal central 

processing (brain to gut) and overactive visceral signaling and pain 
modulation (gut to brain).204–	209

Chronic stress is a risk factor for FD and IBS, posited to be me-
diated by the gut– brain axis and hypothalamic– pituitary– adrenal 
(HPA)	axis.210 Stress may increase intestinal permeability and poten-
tiate the uptake of noxious agents,211 dysregulate motility,212 and 
lead to visceral hypersensitivity213 and an activated inflammatory 
state.214	 Anxiety	 and	 depression	 may	 contribute	 to	 the	 systemic	
immune activation seen in FD,215	 as	 CRH	 released	 by	 the	 hypo-
thalamus during stress is also produced by peripheral inflammatory 
cells and increases gastrointestinal permeability.216	Moreover,	 it	 is	
suggested that eosinophils and possibly mast cells may alter neural 
structure and function, and this sensitization of the enteric nervous 
system may be exacerbated by pre- existing psychological prob-
lems.217 Interestingly, anxiety in IBS patients is linked to increased 
mast cells in the rectum,218 while gastric mast cell density has been 
shown to relate to somatization, depression, and anxiety in pediatric 
FD cases.219

The intestinal microbiota have a defining impact on the ner-
vous, neuroendocrine, and metabolic systems as outlined in sev-
eral comprehensive reviews.188,220–	222	 Microbial	 factors	 have	
now been identified in a number of psychiatric diseases,40,223,224 
and it is known that gut microbes produce their own neuroac-
tive molecules, potentially having a modifiable impact on brain 
signaling.55 This is demonstrated by healthy female adults exhib-
iting reduced reactive midbrain neural activity in response to a 
negative emotional attention task after ingestion of a fermented 
probiotic product containing Bifidobacterium lactis DN- 173 010 
for four weeks.225 This same probiotic product led to a reduction 
in gastrointestinal symptoms in undiagnosed subjects226 and im-
proved symptom severity, abdominal transit, and distension in IBS 
patients.227	 Moreover,	 Bifidobacterium longum supplementation 
reduced limbic reactivity and depressive scores in IBS patients.228 
These results may be a product of vagal nerve signaling, as mu-
rine and human studies have demonstrated vagal nerve- mediated 
anxiolytic effects of Lactobacillus229,230 and Bifidobacterium230,231 
and increased neural plasticity gene expression, linked to stress 
circuitry.232 Furthermore, other bacterial strains have been linked 
to changes to serotonin metabolism in the brain stem,233 inhib-
ited pain sensation from visceral distension234,235 and expression 
of endogenous opioid and cannabinoid receptors by gut epithe-
lium.236 These findings exemplify that the intestinal microbiota 
have a complex relationship with neuroendocrine pathways in the 
brain– gut and gut– brain axes and likely contribute to both psycho-
logical symptoms and gastrointestinal discomfort in FD.

2  |  LIMITATIONS OF MICROBIAL 
ANALYSIS IN DGBIs

Analyzing	 the	 role	 of	 the	 intestinal	microbiome	 in	 FD	 is	 compli-
cated by difficulties in studying the gut microbes themselves. This 
is partly due to wide human microbiota heterogeneity between 
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individuals,237,238 and the hostile and dynamic environment of the 
proximal small intestine wherein microbes have fastidious growth 
requirements.36,239–	241 Culture- independent methods of analy-
sis remain the mainstay of gastrointestinal microbiological re-
search	such	as	metagenomics	and	16S	rRNA	sequencing.45,242,243 
However,	 few	 metagenomic	 studies	 exist	 due	 to	 the	 emerging	
technology and high cost,45,243	 while	 the	 distinct	 variable	 rRNA	
gene regions targeted in different 16S sequencing protocols may 
influence microbial diversity results and exclude viral and fungal 
analysis.244,245 Furthermore, the small bowel is difficult to study 
due to limitations with current sampling and storage methods.245 
The	assessment	of	MAM	in	the	duodenum	requires	the	analysis	of	
endoscopic biopsies as they adequately capture bacteria deep in 
the mucosa more effectively than other techniques.44,246	However,	
current biopsy techniques pose a risk of cross- contamination of bi-
opsy samples,247 so the more widespread use of novel techniques 
such	as	the	Brisbane	Aseptic	Biopsy	Device	(BABD)	that	minimizes	
cross- contamination from luminal contents, is key for representa-
tive	 analysis	 of	 the	MAM.53	Moreover,	 the	heterogenous	 aggre-
gation of microbial communities along the gastrointestinal tract 
means may require considered mucosal biopsy technique to obtain 
samples representative of FD’s disease process and accurately 
capture any subtle microbial changes.248–	250	Multifarious	 factors	
influencing mucosal microbial diversity contribute to extensive 
variation between individuals, revealing a need for further study 
to better understand the normal microbiome across a variety of 
populations.36,251

3  |  CONCLUSION

There is growing evidence that the microbial colonization of the 
small intestine plays a role in the pathophysiology of disorders of 
gut– brain interaction. FD has been shown to have component of 
gastrointestinal dysbiosis and altered mucosal barrier dysfunction. 
While	low-	grade	inflammation	might	be	the	consequence	of	micro-
bial dysbiosis, the inflammation may play a role in sensory dysfunc-
tion. This disease process resulting in the manifestation of dyspeptic 
symptoms is likely modified by environmental factors such as di-
etary factors or medications. The recent observations require fur-
ther research to appropriately delineate cause and consequence and 
explore interventions that allow individualized treatments targeting 
the	 causes	 for	 symptoms.	While	 the	 understanding	 of	 FD	 contin-
ues to improve, further analysis of the small intestinal microbiome 
in conjunction with immune cell activation levels and function is re-
quired to clarify the pathophysiological mechanisms of this debilitat-
ing condition to guide further diagnostic and curative therapeutic 
innovations.
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