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Abstract 

Background:  Multiple Sclerosis (MS) is a potentially devastating autoimmune neurological disorder, which character-
istically induces demyelination of white matter in the brain and spinal cord.

Methods:  In this study, three characteristics of the central nervous system (CNS) immune microenvironment 
occurring during MS onset were explored; immune cell proportion alteration, differential gene expression profile, 
and related pathways. The raw data of two independent datasets were obtained from the ArrayExpress database; 
E-MTAB-69, which was used as a derivation cohort, and E-MTAB-2374 which was used as a validation cohort. Dif-
ferentially expressed genes (DEGs) were identified by the false discovery rate (FDR) value of < 0.05 and |log2 (Fold 
Change)|> 1, for further analysis. Then, functional enrichment analyses were performed to explore the pathways 
associated with MS onset. The gene expression profiles were analyzed using CIBERSORT to identify the immune type 
alterations involved in MS disease.

Results:  After verification, the proportion of five types of immune cells (plasma cells, monocytes, macrophage M2, 
neutrophils and eosinophils) in cerebrospinal fluid (CSF) were revealed to be significantly altered in MS cases com-
pared to the control group. Thus, the complement and coagulation cascades and the systemic lupus erythematosus 
(SLE) pathways may play critical roles in MS. We identified NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B and TLR2 as 
eight core genes correlated with MS.

Conclusions:  Our study identified the change in the CNS immune microenvironment of MS cases by analysis of the 
in silico data using CIBERSORT. Our data may assist in providing directions for further research as to the molecular 
mechanisms of MS and provide future potential therapeutic targets in treatment.
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Background
MS is one of the most common inflammatory demyeli-
nating neurological diseases, and the disability result-
ing from it presents a huge social burden, putting many 
young adults in wheelchairs from an early age, and caus-
ing a range of problems for the family of the affected 

person. Though it is not actually a malignancy, MS is 
also sometimes known as one of the ‘nonfatal cancers’. 
To date, there is no medical therapeutic strategy that 
can cure MS. In the initial stages of MS, and also in an 
experimental autoimmune encephalomyelitis (EAE) ani-
mal model, following damage to the blood–brain bar-
rier (BBB), inflammatory cells infiltrate tissues of the 
brain and spinal cord. Persistent inflammatory cells and 
cytokines in the CNS microenvironment caused by this 
loss of BBB integrity can promote disease progression 
and recurrence. Indeed, the extent of BBB permeabil-
ity, which disrupts the homeostasis of the CNS immune 
microenvironment, is directly correlated with disease 
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severity [1]. According to recent reports in literature, 
the cells of the immune system such as M1 macrophage/
microglia [2, 3], Th1 cell [4, 5], Th17 cell [6] play vital 
roles in exacerbating the MS disease, however, M2 mac-
rophage/microglia [7], Th2 cell [8], regulatory T cell [9] 
play vital roles in ameliorating the MS disease. Further-
more, many different types of immunocytes such as B cell 
[10, 11], neutrophil [12], dendritic cell [13] and mast cell 
[14] were involved in the pathogenesis, development or 
relapse of MS.

CSF is a plasma-like liquid that circulates in the ven-
tricles and sub-arachnoid space, providing the brain 
with nutrient delivery, waste removal, and protection 
from mechanical injury. Because of the ventricular neu-
roanatomy and the characteristics of the circulation and 
production of CSF, there is frequently a corresponding 
relationship between the CSF laboratory findings and 
the pathological changes of CNS. Thus CSF cytology and 
biochemistry is an important basis for the diagnosis of 
disease of brain tissue. For example, CSF laboratory tests 
may reveal the existence and nature of radiculopathy in 
the subarachnoid space, meningeal disease and inflam-
matory lesions of brain parenchyma. A ‘liquid biopsy’ 
of CSF may also be useful for detecting nervous system 
tumors. The detection of oligoclonal bands (OCBs), anti-
myelin basic protein (MBP) antibody, and anti-myelin 
oligodendrocyte glycoprotein (MOG) antibody in the 
CSF and serum are now important diagnostic markers in 
the diagnosis of MS and are widely used clinically in diag-
nosis. However, more research is needed to fully under-
stand how these CSF markers change over the disease 
progression. Therefore, it is essential and important to 
undertake a comprehensive analysis of the CNS immune 
microenvironment, of differentially expressed genes, 
signaling pathways, and changes in the composition of 
immune cells in MS, compared to those of a normal con-
trol immune microenvironment. Such analysis may pro-
vide exciting new insights in understanding normal CSF 
homeostasis and the pathological changes in MS.

Whether MCPcounter, TIminer or other scoring meth-
ods based on labeled genes are used, or CIBERSORT, 
TIMER, ImmuCellAI and other scoring methods based 
on cell mixture deconvolution expression characteristics, 
it is gene expression data that quantify the immune cell 
proportion. CIBERSORT [15] can quantitatively calcu-
late the abundance of specific cell types in complex tis-
sues, and its results have been verified by fluorescence 
activated cell sorting. In recent years, research into the 
analysis of immune microenvironment cell types has 
progressed, with researchers developing new methods 
such as CIBERSORTx [16] and xCell [17]. The analysis of 
immune cell subtype distribution patterns has proved of 
great value and has been used in many kinds of tumors 

[18, 19], and immune related diseases [20, 21]. However, 
until now, no CIBERSORT analysis of the immune cell 
subtype distribution pattern associated with MS has been 
undertaken based on CSF samples. The disease lesions, 
immunocytes in CSF, and the CSF supernatant which 
bathing the CNS tissue constitute the immune micro-
environment of the MS disease together. Previous stud-
ies mainly focused on the gene expression change in CSF 
supernatant or the immunocytes infiltrated alteration in 
brain tissue lesions. This study focused on CIBERSORT 
analysis based on the gene transcriptional matrix of the 
CSF cells of both MS cases and control groups in order 
to find a missing link to complete the whole picture of 
the immune microenvironment. Moreover, exploring the 
changes in cell composition and gene expression levels of 
cells in the CSF, a part of the CNS immune microenvi-
ronment, will help us better understand the detail of the 
processes occurring during disease.

In this study, we explored the proportion of the 
immune cell types in the CSF of individuals from two 
microarray datasets using the CIBERSORT method, and 
performed a comprehensive analysis of related immune 
cells, genes and signaling pathways. The raw data of data-
sets E-MTAB-2374 and E-MTAB-69 were obtained from 
the EBI ArrayExpress database (https://​www.​ebi.​ac.​uk/​
array​expre​ss), which stores data from high-throughput 
functional genomics experiments and makes the data 
available to the research community. The study of drug 
pathways targeting disease-related immune cells and 
genes will assist the development of new diagnosis and 
treatment strategies for MS.

Materials and methods
Microarray datasets collection
The filter search inclusion criteria were as follows: (1) 
search term, multiple sclerosis; (2) organism, Homo 
sapiens; (3) type, transcription profiling by array; and (4) 
dataset including MS cases and control CSF samples. The 
exclusion criteria were as follows: (1) dataset containing 
fewer than 10 MS samples and 10 control samples; (2) 
the profile was based on cell lines; (3) individuals who 
received immunomodulatory drugs; and (4) individuals 
with other neurological diseases of a non-inflammatory 
kind were used as the control population. There was no 
dataset in the GEO database that met the inclusion cri-
teria. In this study, the EBI ArrayExpress functional 
genomics database (https://​www.​ebi.​ac.​uk/​array​expre​ss/) 
was used to acquire the gene expression profiles of MS.

The raw data of E-MTAB-69 [22] was used to obtain 
the derivation dataset, which included 18 other non-
inflammatory neurological disorders as controls and 26 
MS CSF samples. The raw data of E-MTAB-2374 [23] 
was used as the validation dataset, which included 13 

https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress/
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other neurological diseases as controls and 35 MS CSF 
samples (15 patients who received immunomodulatory 
drugs were excluded, so that only 20 MS samples were 
finally included for further analysis). The detailed infor-
mation of MS cases and control samples in these two 
datasets were listed in the Additional file  4: Table  S1. 
The samples in the two datasets were detected by the 
array of A-AFFY-44—Affymetrix GeneChip Human 
Genome U133 Plus 2.0 [HG-U133_Plus_2]. Figure  1 
shows the details of the study process.

Data preprocessing and DEG analysis
The raw expression profile data of these two datasets 
was downloaded from the EBI ArrayExpress database 
in CEL format (as.cel files). Bioinformatics analysis 
was performed using the R version 3.6.3 software. Data 
normalization and background correction were per-
formed by the R package ‘affy’. Next, we converted the 
probe level data into gene expression values. If multi-
ple probes corresponded to the same gene, we took the 
average expression value as the gene expression value. 
Differentially Expressed Genes (DEGs) between the MS 
and control groups were determined using the R pack-
age ‘limma’. Significance analysis of the microarray data 
was performed, with the selection criteria as follows: 
(1) false discovery rate (FDR) value < 0.05; (2) |log2 
(Fold Change)|> 1 (fold change > 2 or < 0.5). Moreover, 
we used STRING and Cytoscape software version 3.8.0 
to construct the PPI network.

GO functional and KEGG pathway enrichment analysis
The ‘clusterProfiler’ package in R was used to determine 
the biological functions of DEGs, which identified Gene 
Ontology (GO) biological process (BP), cellular compo-
nents (CC), molecular function (MF) and KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathway enrich-
ment analyses. The cutoff criterion for the GO and KEGG 
pathway analysis were both set at adjusted p value < 0.05.

Gene set variation analysis (GSVA) and gene set 
enrichment analysis (GSEA)
In this study, the open source ‘GSVA’ package for R 
was used to estimate variation of pathway activity over 
a sample population in an unsupervised manner [24], 
based on the microarray data. Furthermore, the ‘limma’ 
package for R was used to build linear models for com-
paring GSVA scores between MS cases and the control 
group. The cutoff criteria for GSVA were set as adjusted 
p value < 0.05 and |log2(fold change) |≥ 0.2. Further-
more, GSEA software was used to identify differentially 
enriched pathways between MS cases and the control 
groups with significant differences. The previously anno-
tated gene set c2.cp.kegg.v7.1.symbols.gmt was chosen as 
the reference gene list. The cutoff value for the GSEA was 
set as p value < 0.05.

Immune cell landscape analysis
CIBERSORT is a deconvolution algorithm that converts 
a normalized gene expression matrix into a constitutive 
distribution pattern of immune cells. In this study, we 
used the dataset E-MTAB-69 containing 26 MS cases 

Fig. 1  The flow chart of the analysis procedure. MS, multiple sclerosis; CIBERSORT, cell-type identification by estimating relative subsets of RNA 
transcripts; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; GSVA, gene set variation 
analysis
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and 18 controls to estimate the ratios of 22 types of infil-
trated immune cells at the onset of disease. The immune 
cell types were listed as follows: neutrophils, monocytes, 
eosinophils, M0 macrophages, M1 macrophages, M2 
macrophages, resting NK cells, activated NK cells, rest-
ing dendritic cells, activated dendritic cells, resting mast 
cells, activated mast cells, naïve CD4 + T cells, memory 
activated CD4 + T cells, memory resting CD4 + T cells, 
CD8 + T cells, regulatory T cells, γδ T cells, follicular 
helper T cells, naïve B cells, and memory B cells. For 
each sample, the summation of the total of each of the 
22 types of immune cells’ evaluated ratio was 100%. The 
CIBERSORT estimation result (with p value < 0.05) was 
thus taken as an accurate prediction of the immune cell 
composition. The samples that met the constraints were 
selected for further analysis.

Validation of core genes, immune cells, and pathways
The microarray data of 13 controls and 20 MS sam-
ples (without immunomodulatory treatment) from the 
E-MTAB-2374 dataset was used to verify the findings 
in the E-MTAB-69 derivation dataset. We examined the 
expression of core genes, immune cell alterations and 
DEGs enrichment pathways. A p value < 0.05 was consid-
ered to indicate a statistically significant difference. The 
intersection of the findings between the two datasets was 
considered to be real core genes, cells, and pathways.

Furthermore, we used an online digital algorithm 
tool—Immune Cell Abundance Identifier (ImmuCel-
lAI) (http://​bioin​fo.​life.​hust.​edu.​cn/​ImmuC​ellAI#!/) [25], 
a gene set signature-based method calculated using the 
single sample gene set enrichment analysis (ssGSEA), 
to validate CIBERSORT computational analysis data. 
ImmuCellAI is a tool to estimate the abundance of 24 
immune cells from gene expression dataset including 
RNA-Seq and microarray data, in which the 24 immune 
cells are comprised of 18  T-cell subtypes and 6 other 
important immune cells: B cell, NK cell, Monocyte, Mac-
rophage, Neutrophil and DC.

Statistical analysis
Statistical analysis and graphs were performed using R 
software, version 3.6.2 (the R Foundation for Statistical 
Computing). A p value < 0.05 was considered to be statis-
tically significant.

Results
Identification of core DEGs
The hierarchical cluster analysis heatmap showed sig-
nificantly different distributions of gene expression pat-
terns between MS cases and control samples of dataset 
E-MTAB-69 (Fig.  2a). Under the threshold values of 
FDR < 0.05 and |log2 (Fold Change)|> 1, a total of 148 

DEGs (21 up-regulated and 127 down-regulated) were 
chosen for further analysis, as shown in Fig. 2b and Addi-
tional file  4: Table  S2. The interactions among the 148 
DEGs were visualized in the PPI network. We identified 
111 nodes and 592 edges among the DEGs and used the 
Cytoscape software platform for visualization (Fig.  2c). 
Genes with the top 20 degree scores based on cyto-
Hubba analysis were identified as core genes (Table 1 and 
Fig.  2d). The degree means a connectivity degree that a 
gene connects with other genes in the PPI network. For 
example, degree = 1 means the connection comes from 
this gene or ends up with this gene. The closer the rela-
tionship with other genes in the network, the higher the 
degree value of the gene.

GO and KEGG analysis
Then, we performed the GO and KEGG analyses to fur-
ther explore the pathways in which DEGs were enriched 
of dataset E-MTAB-69. The GO analysis results showed 
that DEGs were mainly enriched in neutrophil activa-
tion, neutrophil activation involved in immune response, 
neutrophil degranulation, neutrophil mediated immunity 
and leukocyte migration, etc. The detailed top ten GO 
(BP, CC and MF) annotation terms are shown in Fig. 3a. 
The KEGG pathways of the DEGs are shown in Fig. 3b, 
which were mainly enriched in pathways of complement 
and coagulation cascades, phagosomes, transcriptional 
misregulation in cancer, cytokine-cytokine receptor 
interaction, Leishmaniasis and so on. Most of these path-
ways were associated with immune and inflammatory 
responses.

GSVA and GAEA analysis
GSVA results of dataset E-MTAB-69 showed that 13 
pathways were significantly activated in MS, whereas 10 
were inhibited (Fig.  4a and Additional file  4: Table  S3). 
Similarly, genes in the disease group were significant 
highly enriched in two pathways, with 18 pathways 
enriched in the control group (p value < 0.05) accord-
ing to the GSEA results (Fig.  4b and Additional file  4: 
Table S4). Seven pathways, including the ubiquitin-medi-
ated proteolysis pathway, primary immunodeficiency 
pathway, SLE pathway, lysosome pathway, glycosamino-
glycan degradation pathway, complement and coagula-
tion cascades pathway, and the arrhythmogenic right 
ventricular cardiomyopathy (ARVC) pathway overlapped 
in both the GSVA and GSEA results, and are listed in 
Table  2. Furthermore, only two pathways (the comple-
ment and coagulation cascades pathway and the SLE 
pathway) in the KEGG pathway enrichment results of 
dataset E-MTAB-69 DEGs were overlapped with inter-
section of the GSVA and GSEA results.

http://bioinfo.life.hust.edu.cn/ImmuCellAI#
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Immune cell type pattern alteration in MS cases
The histogram shows the general distribution of various 
immune cells in each sample of dataset E-MTAB-69 
(Fig.  5a). Different colors represent different types of 
immune cells. The height of each color represents the 

percentage of such cells in the sample, and the sum of 
the percentage of various immune cells equals 1. It was 
observed that the main infiltrating cells were: T cells 
gamma delta, T cells CD4 memory resting, T cells CD4 
naïve, T cells CD8, T cells CD4 memory activated, and 

Fig. 2  Identification and analysis of differentially expressed genes of dataset E-MTAB-69. a Heatmap of 148 DEGs between MS cases and control 
group. DEGs, differentially expressed genes. Green means downregulated; red means upregulated. b Volcano plot showed 148 DEGs between MS 
cases and control group. Green points represent relatively downregulated genes, red points represent upregulated genes, black points represent 
genes showing no significant alteration. c PPI network of DEGs between MS cases and control group. d The top 20 nodes ranked by Degree 
algorithm calculated by Cytohubba plugin in Cytoscape software
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M2 Macrophages. Due to the limitations of the CIB-
ERSORT algorithm, the distribution of some immune-
cell subsets with low abundance expression in CSF 
samples of MS was not fully revealed. The proportion 
of immune cells in the comparison samples of the two 
groups showed individual differences. Cluster analysis 
of infiltrating immune cells in the disease and control 
data was an important means of determining the path-
ological processes and immune regulation mechanisms, 
as is shown in Fig. 5b. MS samples generally contained 
a lower proportion of eosinophils (p = 0.004), mac-
rophages M2 (p = 0.003), resting mast cells (p = 0.006), 
monocytes (p < 0.001), neutrophils (p = 0.026), acti-
vated NK cells (p < 0.001) than control samples; 
whereas the plasma cells (p < 0.001) fraction was rela-
tively higher (Fig. 5c). The boxplot (Fig. 5d) shows the 
details of the significantly altered immune cell propor-
tion between the MS and control groups.

Validation of CNS immune microenvironment alteration
In Fig.  6a, the hierarchical cluster analysis heatmap 
showed significantly different distributions of gene 
expression patterns between the MS cases and control 
samples of the validation cohort. Under the threshold 
of FDR < 0.05 and |log2 (Fold Change)|> 1, a total of 
150 DEGs (53 up-regulated and 97 down-regulated) 
were chosen for further analysis (Fig.  6b and Addi-
tional file 4: Table S5). Then, we found that eight genes 
were overlapped in the top 20 hub genes of the deri-
vation cohort and 150 DEGs of the validation cohort. 
The expression details are listed in Table 3. These eight 
genes were recognized as core genes involved in MS 
disease. As shown in Fig. 6c(i–-(viii), we also found that 
NLRP3, LILRB2 C1QB, CD86, C1QA, CSF1R, IL1B and 
TLR2 were downregulated in the MS samples. The scat-
ter plots of eight genes were consistent with the deri-
vation cohort analysis results. The KEGG pathways of 

Table 1  The expression analysis of the top 20 hub genes with the highest interaction degree

Down-regulated down-regulated in MS cases

Gene symbol LogFC P.Value Adj. P.Value Degree Up/down-regulated

TLR2 − 1.402720222 3.46E−05 0.000996373 38 Down-regulated

CXCL8 − 1.991659081 1.66E−05 0.000623919 38 Down-regulated

IL1B − 1.353392774 5.32E−06 0.000322284 38 Down-regulated

FN1 − 1.534988876 2.41E−05 0.000796163 34 Down-regulated

CSF1R − 1.212137423 5.36E−05 0.001354478 34 Down-regulated

CD86 − 1.086235688 0.000162393 0.002835159 32 Down-regulated

CD163 − 1.345148553 0.000387759 0.005193712 29 Down-regulated

CD14 − 1.899109363 7.01E−05 0.001644275 28 Down-regulated

C3AR1 − 1.333582312 6.91E−05 0.001631076 28 Down-regulated

FOS − 1.088599141 0.000691142 0.007925829 28 Down-regulated

PTGS2 − 1.585185487 5.97E−06 0.000348936 26 Down-regulated

LILRB2 − 1.260703038 2.49E−05 0.000803783 25 Down-regulated

C1QB − 1.677793359 0.000312054 0.00446939 23 Down-regulated

MRC1 − 1.399146821 0.000212776 0.00339139 23 Down-regulated

C1QA − 1.395713692 0.002766721 0.020479401 22 Down-regulated

FCGR2A − 1.580725252 7.77E−06 0.000400066 22 Down-regulated

AIF1 − 1.043775506 5.30E−07 7.89E−05 21 Down-regulated

NLRP3 − 1.127686613 3.53E−10 8.93E−07 21 Down-regulated

CCL3 − 1.113448799 0.000134268 0.00250386 21 Down-regulated

MNDA − 1.032416671 3.19E−05 0.000952134 20 Down-regulated

Fig. 3  The GO and KEGG pathway analysis of dataset E-MTAB-69. a Bubble plot of GO gene set enrichment analysis of among all the DEGs (top 
10 of BP, CC and MF). GO, Gene Ontology; BP, biological process; CC, cellular components; MF, molecular function. b Bubble plot of KEGG gene set 
enrichment analysis of among all the DEGs. Gene ratio: the ratio of the enriched genes to the total number of genes in the relative pathway in the 
database. KEGG, Kyoto Encyclopedia of Genes and Genomes. Count: the DEGs number enriched in each pathway

(See figure on next page.)
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DEGs are shown in Fig. 6d, which were mainly enriched 
in immune-associated pathways, such as hematopoietic 
cell lineage, cytokine-cytokine receptor interaction, cell 
adhesion molecules, complement and coagulation cas-
cades, intestinal immune network for IgA production, 
B cell receptor signaling pathway, SLE pathway and so 
on. In addition, we found that two pathways, the com-
plement and coagulation cascades pathway and the SLE 
pathway, were overlapped in these KEGG results and 
in the former functional enrichment analysis such as in 

the GSEA, GSVA and KEGG results of the derivation 
cohort.

We found that MS samples generally contained a lower 
proportion of eosinophils (p = 0.007), macrophages 
M2 (p = 0.009), monocytes (p < 0.001), neutrophils 
(p = 0.027) than the control samples; whereas the plasma 
cells (p < 0.001), B memory cells (p = 0.034), naive B 
cells (p < 0.001), follicular helper T cells (p = 0.012) and 
gamma delta T cells (p = 0.04) fractions were relatively 
higher (Fig. 7 and Additional file 1: Figure S1). Five types 

Fig. 4  GSVA and GSEA of MS cases and controls of dataset E-MTAB-69. a Heatmap of GSVA scores of the KEGG gene-set enriched in samples of 
derivation dataset. b GSEA results of pathways which overlapped with results of GSVA in the derivation dataset. GSEA, gene set enrichment analysis; 
GSVA, gene set variation analysis; MS, multiple sclerosis; con, control group
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of immune cells (plasma cells, monocytes, M2 mac-
rophages, neutrophils and eosinophils) in the cerebro-
spinal fluid (CSF) were shown to be significantly different 
between the MS and control groups.

Furthermore, the combined ImmuCellAI online analy-
sis results of dataset E-MTAB-69 (as shown in Addi-
tional file 2: Figure S2) and E-MTAB-2374 (as shown in 
Additional file  3: Figure S3) indicated that CD8 + naïve 
T cell, Th17, effector memory T (Tem) cell, mucosal-
associated invariant T (MAIT) cell, dendritic cell (DC), 
B cell, Monocyte, Macrophage and Neutrophil had abun-
dance differences between MS and control groups. This 
online tool is mainly for 18  T cell subtype and 6 other 
immunocytes abundance prediction, so its immune cell 
classification is not one-to-one correspondence with our 
CIBERSORT analysis. The results from these two meth-
ods roughly matched, however, were still needed further 
experimental verification in the future.

Discussion
MS is an autoimmune disease characterized by demyeli-
nation of the CNS and infiltration of inflammatory cells. 
The condition relapses and progresses, often leading to 
lifelong disabilities. During the pathogenesis of multi-
ple sclerosis, a variety of immune-related molecules and 
pathways are altered. We identified eight core molecules 
in our findings (NLRP3, LILRB2, C1QB, CD86, C1QA, 
CSF1R, IL1B and TLR2), all of which, with the exception 
of C1QB, have previously been reported to be associated 
with MS or EAE. However, previous research has focused 

on the protein level alteration in the CNS tissue or super-
natant of CSF [26–32].

Recently, Hammond and colleagues [26] found that 
complement C1q A chain (C1qA) mRNA expression, and 
C1q protein expression, were both significantly increased 
in the hippocampus of EAE mice compared to control 
groups. Expression of the transcript for C1qA was noted 
in the neurons in the MS cortical and deep grey matter 
[33]. The variant rs158772 of C1QA was associated with a 
71% increase in risk of sustained low-contrast letter acu-
ity loss, which indicated visual system degeneration in 
MS [34]. Previous studies have reported that neurologi-
cal damage and degenerative changes could influence the 
expression of complement C1q B chain (C1qB). Experi-
mental lesions (kainic acid-induced) in the hippocampus 
and in other brain regions increased C1qB mRNA [35]. 
Grewal and colleagues found that C1qB mRNA increases 
in association with neurodegeneration in sporadic amyo-
trophic lateral sclerosis (ALS) [36]. In addition, C1q defi-
ciency caused by the splicing mutation in the C1qB gene 
is closely correlated with the development of SLE [37, 
38].

Furthermore, an important protein of the innate 
immune system, nucleotide-binding leucine-rich repeat 
family pyrin domain containing 3 (NLRP3) has been 
reported to mediate pyroptosis, and to be associated 
with various autoimmune disorders such as neuromy-
elitis optica spectrum disorder (NMOSD) and MS [39]. 
Recently, our team [27] as well as many other research-
ers [28, 29] have found that the NLRP3-mediated innate 

Table 2  The pathways overlapped in results of GSVA and GSEA

NES Normalized Enrichment Score

Pathway GSVA GSEA

logFC Adj. P. val NES p-val

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0.257353 0.000123 1.601199 0.018443

KEGG_PRIMARY_IMMUNODEFICIENCY 0.256664 0.014024 1.54737 0.032389

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS − 0.30003 0.014921 − 1.46851 0.039293

KEGG_LYSOSOME − 0.26996 0.00536 − 1.5659 0.038536

KEGG_GLYCOSAMINOGLYCAN_
DEGRADATION

− 0.32315 0.000742 − 1.68337 0.005941

KEGG_COMPLEMENT_AND_COAGULATION_ CASCADES − 0.36335 1.77E−06 − 1.54136 0.005917

KEGG_ARRHYTHMOGENIC_RIGHT_
VENTRICULAR_CARDIOMYOPATHY_ARVC

− 0.20114 0.003886 − 1.47921 0.008163

Fig. 5  The landscape of immune cell distributed pattern in MS and control groups of dataset E-MTAB-69. a Histogram of the fraction of 22 kinds of 
immune cell proportions in MS and control groups. X axis: each E-MTAB-69 sample; Y axis: percentage of each kind of immune cells. b Heatmap of 
22 immune cell proportions in MS and control groups. c Violin plot shows the differences of 22 immune cell proportions between two groups. Red 
color represents MS cases, blue color represents controls. d Boxplot of comparisons of significantly altered immune cell proportion between two 
groups. Red color represents MS cases, blue color represents controls. *P < 0.05, **P < 0.01, ***P < 0.001 compared to the control group

(See figure on next page.)
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immune pathways may be a novel target for future treat-
ments for MS. As a consequence of NLRP3 inflamma-
some activation, the expression of inflammatory genes 
IL1B increased in CNS tissues taken from cases with MS 
and from animal models with EAE [40]. Another impor-
tant study demonstrated that patients with high IL1B 
gene levels progressed significantly faster compared to 
primary progressive multiple sclerosis (PPMS) patients 
with low IL1B expression levels in peripheral blood mon-
onuclear cells (PBMCs), which indicated that IL1B could 
be a prognostic biomarker in patients with PPMS [41].

Using quantitative RT-PCR, leukocyte immunoglobu-
lin-like receptor B2 (LILRB2), also called immunoglob-
ulin-like transcript 4 (ILT4), has been reported to be 
upregulated in active lesions in the MS brain compared 
to the control brain [42]. In addition, LILRB2 was also 
induced in monocytes by IFN beta treatment in  vitro, 
and led to a beneficial effect in MS.

Recently, Hagan and colleagues found that colony-
stimulating factor-1 receptor (CSF1R) was elevated in 
the CNS tissue of MS cases with progressive disease [30]. 
Furthermore, their research demonstrated that CSF1R 
inhibition could reduce harmful microglial proliferation, 
modulate microglial phenotypes and reduce subsequent 
demyelination and neurodegeneration. CSF1R gene 
mutations were reported to be associated with heredi-
tary diffuse leukoencephalopathy with spheroids (HDLS) 
which led to demyelination and axonal degeneration with 
spheroids of the CNS [43, 44], presenting as primary pro-
gressive MS.

It is known that the expression of Toll-like recep-
tor 2 (TLR2) is increased in CNS tissues [31], and even 
in infiltrated inflammatory cells in the CNS [45]) taken 
from cases with MS and EAE animal models, as well as 
in the peripheral blood mononuclear cells (PBMCs) [46]. 
Enhanced TLR2 responsiveness plays a critical role in the 
pathogenesis of MS [47], and TLR2 could inhibit the mat-
uration and remyelination of oligodendrocyte precursor 
cells [48]. Reducing innate immune signals by inducing 
TLR2 tolerance may be a novel approach to alleviating 
inflammation and repairing myelin sheaths in MS [49].

The CD86 molecule (also known as B7-2) is expressed 
both in MS lesions and inflammatory infarcts, mainly 
on macrophages [32]. A study found that CD86 mRNA 
in the CSF cells of MS cases showed no significant 

difference from that of a control group [50]. However, 
another study reported that the costimulatory molecule 
CD86 expressed by T cells in CSF was low in patients 
with MS compared to noninflammatory control subjects 
[51], which is a similar finding to ours. Moreover, this 
study focused on transcriptional level analysis of the CSF 
cells of both MS cases and control groups in order to find 
a missing part to complete the picture of the immune 
microenvironment. CSF cell counts are low, especially in 
individuals without sustained inflammation, which may 
account for why CSF cell gene expression levels are rarely 
reported.

It is of interest that these eight genes were downregu-
lated in the CSF cells, which was in contrast to the gene 
expression trends in CSF supernatant and in lesions. 
We postulated that the gene expression changes in CSF 
cells are due to the negative feedback regulation of the 
immune microenvironment, and occur in order to main-
tain homeostasis. Furthermore, we hypothesized that 
these molecular changes may be related to protein deg-
radation and activation of the ubiquitin–proteasome 
pathway, which is consistent with our GSVA and GSEA 
findings (Fig.  4 and Table  2). The cells in CSF, disease 
lesions, and the CSF supernatant which bathed the CNS 
tissue together constitute the immune microenviron-
ment of the disease. As the Chinese saying goes, ‘pull one 
hair, and the whole body moves’; in other words, a slight 
change will affect everything else. Our study suggests 
that the expression of related molecules in the cells of the 
CSF also changes according to the compositional changes 
of the CSF. Furthermore, our results are consistent with 
the findings of the original microchip research [22], such 
as the findings that B cell maturation factor TNF recep-
tor superfamily member 17 (TNFRSF17), and POU class 
2 homeobox associating factor 1 (POU2AF1) which is 
involved in Ig gene transcription, were highly expressed 
in MS, while AIF1 was down expressed in MS (see Addi-
tional file  4: Table  S2 for details). Previous studies have 
indicated that POU2AF1 is a B-cell-specific transcrip-
tional co-activator, which directly bound to TNFRSF17 
and enhance its transcription [52], and AIF1 could induce 
a M2-like phenotype of macrophages [53]. Our results 
indicated that TNFRSF17, POU2AF1 upregulated and 
plasma cells increased in MS cases, AIF1 downregulated 
and M2 macrophages decreased in MS cases. The trend 

(See figure on next page.)
Fig. 6  Differentially expressed genes of validation dataset E-MTAB-2374. a Heatmap of 150 DEGs between MS cases and control group. Green 
represents relatively downregulated genes, red represents upregulated genes, black represents genes showing no significant alteration. DEGs, 
differentially expressed genes. b Volcano plot showed 150 DEGs between MS cases and control group. c The expression of 8 overlapped core genes 
in validation dataset. d Bubble plot of KEGG gene set enrichment analysis of among all the DEGs. Gene ratio: the ratio of the enriched genes to the 
total number of genes in the relative pathway in the database. Count: the DEGs number enriched in each pathway
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of gene expression and the trend of cell proportion were 
mutually verified, which also coincided with achieve-
ments of predecessors [52, 53] on this point and showed 
credibility of the method we used. The findings from the 
E-MTAB-69 dataset will be intersected with those from 
E-MTAB-2374, which is equivalent to further expanding 
the sample size and searching for common differentially 
expressed genes, which is different from the focus of the 
original microchip research.

Our study demonstrated that the complement and 
coagulation cascades pathway and the SLE pathway were 
dysregulated in MS cases [22]. MS and SLE are common 
autoimmune diseases and may have a shared pathogene-
sis. Previous research [54] found that the occurrence and 
development of these two autoimmune diseases may be 
associated with lysosomes and phagocytosis, which leads 
to abnormal immune-related reactions and hence causes 
disease. Moreover, in 2019, Magliozzi and colleagues 
found that intrathecal dysregulation of complement 
and coagulation cascade pathways, as well as B-cell and 
monocyte activity, are strictly correlated with cortical 
damage at the early stages of MS [55]. Indeed, this field 
is the subject of increasing attention from researchers. 
Koudriavtseva and colleagues have undertaken a multi-
center, prospective, controlled study to determine the 
exact links between activation of the coagulation/com-
plement system and cerebral hypoperfusion in RRMS 
cases [56]. It has been suggested that interfering with the 
coagulation system might provide a novel therapeutic 
target in the treatment of MS and demyelinating diseases.

In this study, we used the CIBERSORT algorithm to 
analyze gene expression data to determine the immune 
cells ratio alteration in MS. We found that, in the CSF 
of MS cases, plasma cells increased, and monocytes 
decreased [22], a finding which corresponded with the 
speculative results of original microchip research. How-
ever, changes in the ratio of M2 macrophages, eosinophils 

and neutrophils were not mentioned by them and worthy 
of further experimental research.

The immune cells and immune reactions play a vital 
role in MS progress. The CIBERSORT analysis could 
convert the expression matrix into the immunocytes 
fraction matrix, which is helpful for better understanding 
the pathological process of diseases, especially immune-
related diseases. Single-cell transcriptomics is an emerg-
ing technology which could elucidate the heterogeneity 
of complex tissues. Single-cell analysis of cells in CSF 
could help us to discover new and unknown populations 
of cells [41]. However, because of its high cost, single cell 
analysis technology has so far not been widely used, and 
its clinical application is limited. The accuracy of CIBER-
SORT has been validated by fluorescence activated cell 
sorting (FACS) technique, and before single-cell sequenc-
ing is widely available, CIBERSORT will be a simple and 
effective method to investigate immunocyte pattern of 
CSF in MS.

Although we have found and verified our research 
results with two independent datasets, we have to admit 
that there are some limitations in current study. First, 
this study is based on two public datasets uploaded 
some years ago, of which the complete follow-up infor-
mation of clinical samples is lacked. Second, a patient’s 
first clinical episode of neurological symptoms is often 
diagnosed as clinical isolated syndrome (CIS), and at the 
initial diagnosis, testing for oligoclonal bands and other 
demyelinating related markers is undertaken to differ-
entiate the patient from Neuromyelitis optica (NMO) or 
other diseases. The diagnosis of MS is confirmed by the 
recurrent nature of the disease, with the extended course 
of treatment determined by imaging results and clinical 
symptoms. Therefore, there are some limitations to sim-
ply obtaining clinical CSF samples. Finally, our findings 
based on retrospective bioinformatics analysis should 
be verified by following up CIS patients, cell and animal 
experiments in the future.

Table 3  The expression of the 8 genes overlapped in top 20 hub genes of derivation cohort and 150 DEGs of validation cohort

Down-regulated down-regulated in MS cases

Gene symbol logFC t P.Value adj. P.Val Up/down-regulated

NLRP3 − 1.015208 − 3.717949 0.0007216 0.0330639 Down-regulated

CD86 − 1.058162 − 4.334 0.0001233 0.0212309 Down-regulated

C1QB − 1.146578 − 3.513766 0.0012729 0.0415789 Down-regulated

LILRB2 − 1.147991 − 3.781941 0.0006028 0.0308922 Down-regulated

TLR2 − 1.245801 − 4.140113 0.0002166 0.024029 Down-regulated

C1QA − 1.285648 − 3.447825 0.0015253 0.0448478 Down-regulated

CSF1R − 1.331567 − 4.240982 0.0001617 0.0222183 Down-regulated

IL1B − 1.447641 − 3.834274 0.0005199 0.0292885 Down-regulated



Page 14 of 16Li et al. J Transl Med          (2021) 19:125 

Conclusions
In summary, our study is the first to use the CIBERSORT 
method to analyze the immune cell subtypes distribution 
pattern in CSF samples of MS. Our study attempted to 
better understand the alteration of the microenviron-
ment in, and the cause of, MS. More in-depth research of 
these core genes, pathways and differential immune cells 
may further uncover the underlying mechanisms and 
pathological process of MS.
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Fig. 7  Boxplot of comparisons of significantly altered immune cell proportion between MS and control groups in validation dataset E-MTAB-2374. 
Red color represents MS cases, blue color represents control group. *P < 0.05, **P < 0.01, ***P < 0.001 compared to the control group
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Additional file 1: Figure S1. Violin plot of significant differential immune 
cells in MS and control groups. The control group is shown in blue and MS 
group is shown in red.

Additional file 2: Figure S2. The abundance differences of immune cells 
between MS and control groups in dataset E-MTAB-69 by the application 
of ImmuCellAI. 24 immune cell types including 18 T-cell subsets and 6 
other important immune cells: CD4 + naïve cell, CD8 + naïve cell, cyto-
toxic T (Tc) cell, exhausted T (Tex) cell, type 1 regulatory T (Tr1) cell, natural 
regulatory T (nTreg) cell, induced regulatory T (iTreg) cell, Th1, Th2, Th17, T 
follicular helper (Tfh) cell, central memory T (Tcm) cell, effector memory T 
(Tem) cell, natural killer T (NKT) cell, mucosal-associated invariant T (MAIT) 
cell, gamma delta (γδ) T (Tgd) cell, CD4 + T cell, CD8 + T cell, dendritic cell 
(DC), B cell, monocyte, macrophage, natural killer (NK) cell and neutrophil. 
A p value < 0.05 was considered to indicate a statistically significant differ-
ence. Red color represents MS case, blue color represents control group.

Additional file 3: Figure S3. The abundance differences of immune 
cells between MS and control groups in dataset E-MTAB-2374 by the 
application of ImmuCellAI. A p value < 0.05 was considered to indicate a 
statistically significant difference. Red color represents MS case, blue color 
represents control group.

Additional file 4: Table S1. The information of control samples in these 
two datasets. Table S2. The differentially expressed genes of dataset 
E-MTAB-69. Table S3. GSVA results of the KEGG gene-set enriched in 
samples of derivation dataset (MS Vs Control). Table S4. GSEA results 
of the most of the significantly altered pathways were activated in the 
derivation dataset. Table S5. The differentially expressed genes of dataset 
E-MTAB-2374.
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