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Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression
profiles of heterogeneous cell populations. Inimmunology, scRNA-seq allowed the characterisation
. of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the
. fulllength T cell receptor (TCRa3), which defines the specificity against cognate antigens. Several
. factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq
data. We studied the effects of read length and sequencing depth on the quality of gene expression
profiles, cell type identification, and TCRa3 reconstruction, utilising 1,305 single cells from 8 publically
available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by
an increased number of unique genes identified with short read lengths (<50 bp), but these featured
. higher technical variability compared to profiles from longer reads. Successful TCRa3 reconstruction
. was achieved for 6 datasets (81% — 100%) with at least 0.25 miillions (PE) reads of length >50 bp,
. while it failed for datasets with <30bp reads. Sufficient read length and sequencing depth can control
. technical noise to enable accurate identification of TCRa3 and gene expression profiles from scRNA-seq
. dataof T cells.

Single cell RNA sequencing (scRNA-seq) has vastly improved our ability to determine gene expression and tran-
script isoform diversity at a genome-wide scale in different populations of cells. scRNA-seq is becoming a power-
ful technology for the analysis of heterogeneous immune cells subsets'? and studying how cell-to-cell variations
affect biological processes>*. Despite its potential, scRNA-seq data are often noisy, which are caused by a combi-
nation of experimental factors, such as the limited efficiency in RNA capture from single cells, and also by analyt-
ical factors, such as the challenges in separating true variation from technical noise®~’. The quality of scRNA-seq
data depends on mRNA capture efficiency®, the protocol utilised to obtain libraries, as well as sequence coverage
and length®*. Bioinformatics tools for the analyses of scRNA-seq data have been rapidly evolving, whereby var-
ious algorithms have been proposed to resolve the issues related to scRNA-seq compared to classical bulk tran-
scriptomic analysis®!!. However, the lack of a consensus in the data analyses further contributes to difficulties in
assessing the quality of the data analysed so far.
One important consideration in designing scRNA-seq experiments is to decide on the desired sequencing
. depth (i.e., the expected number of reads per cell) and read length*®. These are two important experimental
. parameters that can be controlled, and which need to be often predetermined before sequencing. For bulk
RNA-seq data, sequencing depth and read length are known to affect the quality of the analysis'2. For scRNA-seq
it has been shown that half a million reads per cell are sufficient to detect most of the genes expressed, and that
. one million reads are sufficient to estimate the mean and variance of gene expression'®. Low coverage scRNA-seq
. has also been utilised to show that 50,000 reads per cell are sufficient to classify a cell type in a sample of 301
cells'*. Nevertheless, this may not be sufficient when more homogenous populations are involved, for example T
- cell subsets, such as central memory and effector memory cells. In these scenarios, deep sequencing of single cell
- library may be required for improving detection of genes with low expression®®. Indeed, an important issue for
© scRNA-seq data is the very large number of genes with no detectable expression in a cell’. This overrepresentation
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Average Average number Number of genes
Accession Number | reads of PE reads scRNA-seq | expressed (FPKM >1)
Dataset | Dataset Reference number Organism | of cells | length (bp) | (x10° reads) protocol per cell
1 ooy jPTef:‘e‘}fs Elthala® E-MTAB-4850 |human | 54 145 8.4 Smart-Seq. 2 | 2,563
2 HSy shecifc | Bithala® E-MTAB-4850 |human |12 215 35 Smart-Seq. 2 | 3,289
3 Th17 cells (A) | Gaublomme** | GSE74833 mouse 399 125 2.5 Smart-Seq 5,128
4 Th17 cells (B) Gaublomme?* | GSE74833 mouse 269 100 3.7 Smart-Seq 6,540
5 Th17 cells (C) | Gaublomme® | GSE74833 mouse 100 25 1.5 Smart-Seq | 4,146
6 CD4+Tecells | Stubbington®' | E-MTAB-3857 | mouse 272 100 43 Smart-Seq | 2,354
7 CD8+Tecells | Kimmerling” | GSE74923 mouse 106 32 1.2 Smart-Seq. 2 | 6,796
8 Th2 Mahata?® E-MTAB-2512 | mouse 93 75 16.3 Smarter-Seq | 6,401

Table 1. scRNA-seq data sets analysed in this study. List of dataset used for the analysis.

of zeros in scRNA-seq datasets makes it difficult to distinguish technical dropout of transcripts from true bio-
logical variation between cells® and statistical methods have been developed to at least control this issue (e.g.').

Nonetheless, there has not been any systematic evaluation of the effect of sequencing depth and read length
on scRNA-seq data analysis. In designing an scRNA-seq experiment it is optimal to generate data by maximising
sequencing depth and utilising the longest read length. This approach would improve the quality of the reads
alignment and also maximise the chance of detecting low abundant transcripts. In reality, we are often con-
strained by the cost of sequencing. Therefore a more practical question is to ask what is the minimum sequencing
depth and read length that allows users to obtain adequate information for their desired downstream analyses.

To answer these questions, we have focussed on assessing the quality of available scRNA-seq data from T cells,
which form a highly heterogeneous population of lymphocytes that play a vital role in mounting successful adap-
tive immune responses against intracellular pathogens and tumours®®. T cells are also characterised by a highly
diverse repertoire of T cell receptors (TCRs), which identify the specific recognition of the cognate antigen. TCRs
are heterodimer proteins composed of two chains, cand 3, and a subset of those expressing the ~d chains, which
result from genetic recombination of the V(D)] genes. The diversity of TCRa3 repertoire has been associated with
successful control of many pathogens'”, and more recently with outcome of checkpoint inhibitor immunotherapy
for patients with metastatic melanoma'®. The third complementarity-determining region (CDR3) of the TCR «
and (3 chains forms loops that engage amino acid residues of peptides in complex with MHC. Detection of the
CDR3 region is a crucial step to accurately identify the clonality of a T cell repertoire, for instance responding to
a viral infection. The highly polymorphic nature of the TCR genes has made their identification very difficult in
bulk population sequencing datasets. In the last decade, deep sequencing approaches of bulk TCRs focussed on
either o or 3 chains'. The advent of scRNA-seq allowed the identification of the full length TCR of both « and 3
chains (referred to hereafter as TCRa3) from T cells*»*!. This has now led to the capacity to simultaneously detect
TCRaof and full gene expression profiles in one experiment, thereby allowing direct study of TCR diversity and
its interaction with the T cell functions reflected in gene expression profiles.

In this study we performed a comprehensive analysis of the impact of sequencing depth and read length on the
detection of full length TCRaf3 sequences, as well as estimation of gene expression and its effect on cell-type iden-
tification. Our study aims to fill this gap through performing a re-analysis of eight published scRNA-seq data that
have a wide range of read length and sequencing depth, and analysis of simulated datasets that were subsampled
from a deeply sequenced human T-cell scRNA-seq dataset. The analysis suggests important precautionary steps
for researchers seeking to maximise throughput of single cell experiments without compromising the quality of
the results.

Results

To assess the effects of sequencing depth and read length on accurate reconstruction of full length TCRaf3 and
gene expression profile from scRNA-seq data, we manually reviewed NCBI's Gene Expression Omnibus? and
ArrayExpress® to identify relevant T-cell scRNA-seq data published prior to April 2016. Eight datasets were
identified with accessible data, collectively profiling 1,305 single cells (Table 1). The datasets were generated from
mouse?**726 and human-derived cells®, utilising one of the available versions of the Smart-Seq protocol?, and
had a wide range of sequencing depth (1.2-8.4 million paired-end (PE) reads per cell) and read length (25-
215bp) (Table 1). The mean number of expressed genes in each data set ranged between 2,354 and 6,795 (Table 1).

The effect of sequencing depth and read length on reconstruction of full-length T-cell recep-
tors. We analysed whether sequencing depth and read length affect the detection and reconstruction
of TCRaf}. Two recently developed bioinformatics methods for reconstruction of full-length TCRaf from
scRNA-seq data were used, TraCeR?' and VDJPuzzle®. The analysis performed with VDJPuzzle revealed success-
ful TCRaf3 reconstruction in 1027 cells (79%) (Table 2). This result was consistent with the results from TraCeR,
with successful TCRaf3 reconstruction from 953 cells (73%) (Table S1). Six of the eight datasets had a success rate
>80% in detection of TCRa3, and up to 100% for the scRNA-seq dataset with an average read length of 215bp.
The two datasets with lowest detection rate of TCRa3 had 25 and 32bp long reads, where only 0% and 1.89%
of the cells successfully generated TCRaf3 sequences, respectively (Table 2 and Fig. 1A). In terms of sequencing

SCIENTIFICREPORTS |7: 12781 | DOI:10.1038/541598-017-12989-x 2


http://S1

www.nature.com/scientificreports/

1 54 145 8.4 81.48 85.19 81.48
2 12 215 3.5 100.00 100.00 100.00
3 399 125 2.5 99.25 98.75 98.50
4 269 100 3.7 98.51 98.88 97.77
5 100 25 1.5 0.00 0.00 0.00

6 272 100 4.3 89.71 93.38 85.66
7 106 32 1.2 1.89 7.55 1.89

8 93 75 16.3 89.25 93.55 86.02

Table 2. The success rate of reconstructing full-length T-cell receptors (TCR) using VDJPuzzle for the eight
scRNA-seq data sets. Success rates for TCRa3 detection in each dataset.
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Figure 1. Success rates of TCRof3 reconstruction as a function of read length (A) and sequencing depth (B)

using VDJPuzzle. Panels C and D show the distributions of the length of the reconstructed CDR3a and CDR33

regions, respectively.

depth, in datasets with less than 1.5 million PE reads TCRof3 were successfully detected in less than 1% of the
cells, and this success increased rapidly to >80% for depths >0.25 million PE reads (Fig. 1B).

To further assess the quality of the reconstruction of TCRaf3 sequence, we analysed the distribution of CDR3
amino acid sequences across both o and 3 chains, and the distribution of single cells carrying double o chains.
The average CDR3 length of the reconstructed TCRaf3 sequences with VDJPuzzle was 14 amino acids for both
o and B chains (Fig. 1C and D), with similar results using TraCeR (Fig. S1). This result showed a distribution of
CDR3 lengths consistent with those previously estimated with other methods, such as 5’-Race for single cell TCR
analysis?.

One of the major advantages of using scRNA-seq to reconstruct TCR sequences is the possibility to detect
double o chains within a single T cell. Overall, 30% (n = 395) of the cells analysed here presented more than one
o but not double (3. In a single study (datasets 3 and 4 in Table 1), 43% (n=2333) of the cells sequenced presented
more than one o, and 44% (n=337) had more than one 3 sequence detected. Notably, 29% (n=225) of these cells
had both more than two unique o and two unique (3 chain sequences, thus suggesting that in this study multiple
cell could have been sorted in a single well. In support of this conclusion, the plot of the number of unique genes
identified in those cells with two or more than unique « and two unique (3 chain sequences showed a significantly
higher number of gene counts when compared to the remaining cells (Fig. S2). By filtering out cells with more
than one o and one 3, a total of 309 unique TCRa3 sequences were identified across all datasets. There was no
clonotype (defined as cells bearing identical TCRa3) overlapping between datasets.
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Figure 2. (A) Generation of the simulated datasets from real scRNA-seq data 1. (B) Success rate for TCRaf3
reconstruction as a function of read length and sequencing depth from the simulated datasets.

Effect of sequencing depth and read length on the TCRa3 detection using simulated data-
sets. To systematically investigate the effect of sequencing depth and read length, we generated simulated
datasets with different sequencing depth and read length to assess the success rate of TCRa/3 reconstruction.
Simulated datasets were all derived from the original datasets 1, which had deep coverage (~8.4 million PE reads
per cell), and long read length (150 bp) (Table 1). The original datasets consisted of a total of 54 single cells
originated from HCV specific CD8+ T cells from a single subject that previously cleared HCV. Of these cells,
18 were directly sorted from peripheral blood mononuclear cells (PBMC-derived T cells) and the remaining 36
were sorted after in vitro expansion following stimulation with cognate antigen. Of these 36, 18 were sorted after
a second antigen restimulation 24 hours prior to sorting®). From each of the original single cell data (n = 54), we
generated 16 randomly subsampled scRNA-seq datasets with all combinations of four different sequencing depths
(0.05, 0.25, 0.625 and 1.25 million PE reads) and four different read lengths (25, 50, 100 and 150bp) (Fig. 2A). For
each of the 16 subsampled datasets, the TCRa3 sequence was reconstructed using VDJPuzzle®, and the success
rate was calculated (Figs 2B and S3). Only TCRof3 sequences with a complete CDR3 recognised by the inter-
national InMunoGeneTics information system (IMGT,?’) were considered as an exact TCRaf3 reconstruction.

Success rate of paired o and 3 was above 80% for datasets which had a minimum read length of 50bp and a
depth of at least 0.25 million reads. This rate was substantially diminished up to 0% for datasets with a number
of PE reads per cell below 0.25 million PE reads (Fig. 2B). Finally, the proportion of cells with double o detected
was also proportional to both read length and sequencing depth, with the highest success rate corresponding to
a depth of 1.25 million PE reads and a read length above 100 bp (Fig. S4). The relationship between the success
rate of TCRaf3 reconstruction and both sequencing depth and read length was fitted with a sigmoidal function
(Fig. S3). The success rate in TCRa3 reconstruction from the experimental datasets (the real dataset) closely fol-
lowed this specific relationship (r=0.97, p <0.01).

The effect of read length and sequencing depth on the quantification of the gene expression
profile. Next, we used the 16 subsampled scRNA-seq datasets to investigate the effect of sequencing depth
and read length on read alignment and gene expression quantification. Surprisingly, we observed a slight increase
in the total number of aligned PE reads in datasets with shorter read length, especially when the read length
was below 100 bp (Fig. 3). This higher level of total read alignment at short read length can be attributed to an
increased proportion of reads with multiple alignments, and more discordant alignment of PE reads (Fig. 3).
Notably, this relationship with read length was also observed for the proportion of concordant pairs aligned, but
with a lower proportion for reads of 25 bp long compared to 50 bp. The reason for such a trend is largely due to the
increased number of reads that in general align when read length is <100bp (first column of Fig. 3). This is due to
the fact that shorter reads are more likely to be aligned anywhere in the genome compared to longer ones. Indeed,
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Figure 3. Analysis of the alignment of the simulated datasets as a function of sequencing depth and read length.
Shown is the number of paired-end reads aligned (in log10 scale), along with the proportion of concordant and
discordant pairs, and of multiple alignment instances.

for read length of 25bp and 50 bp the proportion of multiple, discordant, and paired concordant reads aligned
are all increased compared to long read. In regard of sequencing depth, we observed an increase in the number
of aligned reads of 50 bp compared to 25 bp for high coverage data (top rows in Fig. 3). This phenomenon is likely
due to the fact that shorter reads (25 bp) have lower mapping quality caused by the very large number of multiple
alignments (Fig. 3). Indeed, the aligner (bowtie) assigns a low score to reads that can be aligned multiple times as
their correct position is uncertain. This phenomenon is less evident for low coverage where reads aligning to the
genome are the limiting factor and are more influenced by sampling bias.

To assess the effect of this trend on the quantification of genes, fragments per kilo base per million (FPKM)
were calculated allowing only one alignment per read, hence eliminating a potential confounding factor of mul-
tiple alignments. We found that the number of detectable expressed genes (those with FPKM >1) was positively
correlated with sequencing depth (Pearson correlation = 0.89) but negatively correlated with read length (Pearson
correlation = —0.93). The number of genes that were expressed in at least 10% of the cells showed a similar cor-
relation with sequencing depth and read length (Table 3, Fig. 4A). Notably, there was a positive relationship
between number of genes expressed among cells within the same dataset and read length for sequencing depth
smaller than 0.625 million PE reads, while there was no variation at higher sequencing depths (Fig. 4B).

In order to quantify the reliability of the gene expression profile as a function of read length and sequencing
depth, two simulated datasets with a sequencing depth of 0.05 million PE reads were generated, with read length
of 25bp and 150 bp, respectively. Two replicates for each dataset were simulated. This analysis showed a signif-
icantly higher correlation between the gene expression profiles of paired cells from the two replicates with read
length 150 bp when compared to the two replicates with read length 25bp (Fig. 4C). This result suggested that
gene expression profiles from short read length dataset have higher levels of technical noise.

To further assess how the technical variation generated by shorter read length and lower sequencing depth
affects the identification of the three cell sub-populations available from the experimental scRNA-seq data of
HCV specific T cells®, a clustering algorithm was applied on all the simulated datasets. A newly developed bio-
informatics tool CIDR* was used to perform dimensionality reduction, Principal Coordinates Analysis (PCoA)
and hierarchical clustering on the scRNA-seq gene expression profiles. When cutting the hierarchical clustering
to form three clusters based on the experimentally validated cell subsets in the original data (i.e., the ground
truth defined by the known cell types in the data set*®), CIDR achieved the tightest clustering when the dataset
has >=100bp long PE reads (Figs 5A,B and S5). This was evident by the higher misclassification rate calculated
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Read length (bp) 0.05 0.25 0.625 1.25
25 6,081 8,497 9,184 10,849
50 5,665 7,801 8,255 8,240
100 5,141 6,879 7,333 7,440
150 4,836 6,458 6,824 6,936

Table 3. Number of genes expressed in at least 10% of the cells in the simulated data sets, comprised of
subsamples of the scRNA-seq data set 1, with various sequencing depths (columns) and read lengths (rows).
Analysis of empirical drop out rate on simulated datasets.
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Figure 4. The effect of read length and sequencing depth on the technical error variability using simulated
scRNA-seq datasets. A: Number of identified expressed genes (Fragment per Kilobase per Million reads;
FPKM >1) as a function of read length and sequencing depth (A). Error bars (box plot, mean and 5-95%
interval) represent variability across individual cells. (B) Mean pairwise cell-to-cell Pearson correlation of gene
expression values as a function of sequencing depth and read length. (C) The distribution of pairwise cell-to-
cell Pearson correlation of gene expression values using subsets of different read length drawn from the original
dataset. Original dataset had a read length of 145 bp with depth >8 millions PE reads, two samples drawn from
this dataset were taken, with length 25bp and same depth.

from the clustering analysis with shorter read length: 28% (15/54 of cells were misclassified for read length 25 and
50bp, and 9% (5/54 for read length 100 and 150 bp (Figs 5C and S5). Sequencing depth did not affect the mis-
classification rate. To investigate whether the ‘tightness’ of the clustering is affected by sequencing depth and read
length, the within-cluster-sum-of-squares of each cell type was computed. Consistent with the misclassification
analysis, longer reads led to tighter clusters, reflected by a substantial decrease in within-class-sum-of-squares for
PBMC derived Ag CD8+ T cells (Figs 5D and S5). The effect of read length was less pronounced for the other two
in vitro expanded subpopulations, as these are biologically more close to each others when compared to the blood
derived original population.

To analyse the effect of read length and sequencing depth on specific gene categories, the distribution of gene
expression levels (in terms of log(FPKM)) was analysed for highly expressed genes (average FPKM >100), lowly
expressed genes (average FPKM <100), housekeeping genes, and transcription factors in all the subsampled sim-
ulated datasets. Independent of the gene category, there was a reduction in the number of genes identified with
an expression level below 100 FPKM in datasets with a low sequencing depth (<0.05 PE reads x million, Fig. S6).
This effect was more evident among the transcription factors, where a combination or short read length and low
depth led to a complete loss of lowly expressed genes. There was an increase in the frequency of highly abundant
genes with the decrease of read length. To illustrate these trends, six individual genes were considered: three
housekeeping genes (GAPDH, RPL7A, and RPL34), two genes constitutively expressed in CD8+ T cells (CD8B
and TRAC), and one transcription factor (GAS5, which is associated with T cell proliferation®!). The analysis
showed that, contrary to the expectation, the gene expression profile of the selected housekeeping genes varied
significantly for low depth and short reads (Fig. 6). Notably, the housekeeping gene RPL34 did not vary as much
as GAPDH and RPL7A for low depth and short reads (Fig. 6). GAPDH and CD8B expressions were positively
correlated with the read length, while a significant variability was detected for GAS5, independent of sequencing
depth and read length. TRAC did not show any substantial variation.
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Figure 5. Clustering analysis for the three populations of HCV specific CD8+ T cells. Panels A and B display
Principle Coordinate Analysis of the three subsets of cells by varying read length (25 to 150 bp). Coverage for
each dataset was set to 1.25 millions of PE reads per cell. The point colours correspond to the ‘ground truth’ cell
type labels (see legend), while the three point styles correspond to the three identified clusters (circle, triangle
and cross). Clustering analysis was performed using CIDR, and forcing the number of clusters to be n =3.
Panels C and D display the misclassification and the variability within the same cell type (within-class sum of
squares) as a function of read length and sequencing depth, respectively. Panel D displays only results from
PBMC-derived T cells.

Discussion

This study explored how sequencing depth and read length of scRNA-seq dataset affect various downstream
analyses, such as transcript reconstruction, gene expression estimation and cell-type identification. The overall
messages of this study can be summarised with two major findings. Firstly, by combining available algorithms for
TCRaof detection, along with simulation-based analysis, this study revealed that accurate detection of full-length
TCRaf3 is possible and achievable with sequencing depth below 0.25 million PE reads, and with a minimum read
length of 50 bp. The detection rate of full length TCRo@ is at least 80% for reads with a sequencing depth >0.25
million PE reads of length at least 50 bp. Notably, the success rate in TCR reconstruction was dramatically reduced
for short read length datasets (25bp). This result can be explained by the poor alignment quality of short reads
across the highly variable region of the CDR3 genes. Both methods implemented for TCR reconstruction rely on
a de novo assembly step, which failed to reconstruct putative TCR contig. Secondly, the poor quality of alignment
with short reads (25 or 50 bp) is associated with a higher number of detected genes when compared to datasets
with longer reads. This increase in gene expression quantification is also associated to a diminished accuracy
and increased misclassification of cell populations. Hence, short read datasets are more prone to technical noise.
Future experimental designs should consider the quality of the reads as an important feature to obtain reliable
results. Analyses of simulated and real scRNA-seq datasets showed that current methods, such as Smart-seq2
are consistent with a capture efficiency between 3-10% of the total mRNA available®. Indeed, the effect of low
sequencing depth in the quality of gene expression quantification and TCR reconstruction is likely to be asso-
ciated to the poor library capture efficiency of mRNA from single cells (<10%)?, hence it is conceivable that
downstream analyses are not affected by large increase in sequencing depth. This study has focussed on T cells,
however the results provided here are likely to be valid for other cell types. Notably, in this study we analysed
resting memory T cells?, which are likely to be affected by limited mRNA available compared to other more
active cell types such as effector cells. Previous studies have shown that the technical noise strongly depends on
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Figure 6. Gene expression profiles of selected genes identified from dataset 1, human HCV- specific CD8+ T
cells (Table 1).

the mRNA content of the cell, which is a limiting factor in the detection of biological variation®**. It is therefore
likely that these results may be relevant for other cell types with a resting state, such as naive cells, quiescent cells
and dormant cancer cells.

Here we have showed that clustering analysis with scRNA-seq data characterised by 0.25 million PE reads and
length >50bp can accurately distinguish three rare and relatively homogenous cell subsets of antigen specific
T cells, thus suggesting that despite technical limitations current scRNA-seq data can successfully be applied
to identify differences between rare T cell subsets, such as effector and memory subtypes during an immune
response against a viral infection. On the other hand, this may not be sufficient when more homogenous popula-
tions are involved, such as central memory and effector memory T cells from the same antigen specific repertoire.
Deep sequencing of single cell library may still be required to improve detection of low abundant transcripts.
Indeed, an important issue for scRNA-seq data is the very large amount of genes with zero expression®. This
observation results from real zero expression genes that a single cell may have at the time of RNA extraction, as
well as dropout events, which are due to inefficient mRNA capture and library processing.

Full length TCRa can be accurately estimated and linked to the gene expression profile of the same cell. The
analysis also showed multiple instances of single cells with at least two o and two (3 sequences detected. These
findings are likely explained by the presence of multiple cells per well being sequenced, and the higher detec-
tion rate of double chains in the Th17 dataset (datasets 3 and 4) is likely due to the larger sample size compared
to the other studies. The high success rate obtained with both available software programs further support the
high quality of the scRNA-seq data, which significantly improve the quality of TCR reconstruction with more
classical approaches such as bulk sequences and Sanger sequencing. Along with TCRaf full-length data, the
entire transcriptome can be interrogated to identify specific gene profiles associated to T cell subsets, along with
the relationship with the TCRo3 clonotypes. Single cell approaches are therefore likely to increase further the
accurate identification of novel markers, which could be utilised for detecting novel subpopulations of cells, for
instance using flow cytometry. Another improvement is to introduce bar coding of the cell, with approaches such
as MARS-seq*. These approaches however still lacks the incorporation of full-length transcriptome sequencing,
hence affecting the accurate detection of full length TCRaf3. In conclusion, this study showed that future anal-
yses should consider the quality of sequencing output to ensure reliable and accurate single cell transcriptomic
profiling.

This study focussed only on T cells and scRNA-seq protocols available that allow full-length sequencing of
transcripts. Barcoded methods, such as those with microfluidics based technologies and unique molecular iden-
tifiers (UMIs) are restricted to sequencing of a small fragment of the mRNA transcript, thus limiting the detection
of full TCR sequences. At the time of this analysis there were no studies that performed UMI-based protocols
for T cell subsets. A recent study has utilised a cell line to benchmark four UMI-based protocols (CEL-seq. 2,
Drop-seq, MARS-seq, SCRB- seq) against Smart-seq. 1, and Smart-seq. 2*°. The analysis tested the sensitivity
of UMI and Smart-seq methods on the same samples by assessing the number of genes detected as a function
of sequencing depth. This analysis showed that Smart-seq. 2 had the highest sensitivity of detection, and 0.625
Million PE reads were sufficient to obtain an optimum number of genes, which is in line with our simulations.
UMI-methods however quantified mRNA levels with less amplification noise due to the use of UMI. A compre-
hensive analysis of 15 experimental protocols utilizing ERCC spike-ins on the effect of sequencing depth and
on the limit of detection (lower molecular-detection limit, for a given sequencing depth), confirmed high sensi-
tivity of Smart-seq protocols and comparable but variable accuracy when compared to UMI-based methods®.
Consistent with our findings this analysis also showed that sensitivity is highly dependent on sequencing depth,
experimentally confirming our value for the optimal sequencing depth (>0.625 million PE reads, i.e. 1.25 million
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reads in total) whereby the increase in read depth from 1 million reads to 4.5 million reads per sample results in
marginally increased sensitivity. Finally, UMI-based methods can be modified to obtained VD] region of the TCR
at the single cell level. For instance 10x Genomics has recently released a new protocol to sequence VD] sequences
from bar coded T cells (https://www.10xgenomics.com/vdj/). This approach however does not provide simulta-
neous analysis of gene expression and TCR repertoire from the same cell.

In conclusion, our results based on T cell data are consistent with benchmark studies on other cells, showing
that the full-length scRNA-seq methods provide good accuracy, high sensitivity and larger potential for appli-
cations in T cell biology. Future development of barcoded technologies that allow full-length transcriptomic
sequencing will allow the application of these technologies to a larger number of cells, enabling comprehensive
study of the role of T cells in experimental models and human disease states.

Material and Methods
ScRNA-seq data. Raw data were downloaded from NCBI's Gene Expression Omnibus and ArrayExpress
(Table 1).

Generation of simulated datasets. Simulated data were obtained by generating subset of reads from
Dataset 1 in Table 1 by randomly reducing read length and sequencing depth using an in-house python scripts.
Original dataset consisted of 54 scRNA-seq data all with read length of 145bp and sequencing depth of about
8.4 million PE reads. Sixteen combinations of read length and sequencing depth were considered: read length
of 25, 50, 100 and 150 bp; and sequencing depth of 0.1, 0.5, 1.25 and 2.5 million. A new set of paired fastq file for
each combination was then generated. For each dataset, reduced depth was obtained by randomly subsampling
the original set of PE reads while the shorter read length was obtained by randomly cropping original PE reads.

Gene expression quantification. PE reads were analysed for quality control using FastQC, and reads
were trimmed using Trimmomatic®. For Trimmomatic we used the following parameters: Nextera adapters,
leading = 3, trailing = 3, window length =4, window quality = 15, average quality = 20, minimum length was
chosen according to the read length of the dataset. Alignment of PE reads was performed with TopHat2. For the
alignment, the default option was used, (https://ccb.jhu.edu/software/tophat/manual.shtml).

Gene expression was estimated with the pipeline available in Cufflinks 2.2.1, utilising CuffQuant with
parameter-max-frag-multihits equal to 1, which allows maximum one alignment per fragment. Gene expres-
sion quantification (in FPKM) was normalised with CufftNorm using default parameters. Resulting FPKM val-
ues were manipulated in R using the package Monocle (version 2)*, using the detectGenes function to count
and filter genes by FPKM value. Downstream analysis, which included Pearson’s correlation analysis, number
of genes expressed, and gene expression analysis by gene categories, was performed with an in-house R script.
Transcription factors and housekeeping genes have been selected from available list in the literature®.

Dropout rate and clustering analysis. Dropout analysis, principal coordinates analysis and clustering
were performed using CIDR*, which requires raw read counts as input data. The tool featureCounts was used
to obtain the read counts, with the-primary option to allow only primary alignments. The dropoutCandidates
Boolean matrix output by the determinDropoutoutCandidates method of CIDR is used to calculate the figures in
Table 3 and Fig. 5 - a gene is considered ‘expressed’ in a sample if the corresponding entry in the dropoutCandi-
dates matrix has a value of FALSE.

For clustering, the CIDR parameters nCluster and wThreshold were set to be 3 and 6 respectively, while the
other CIDR parameters were left as defaults. Within each cluster, the first two CIDR principal coordinates were
used to calculate Euclidean distances between all pairs of samples, the squares of which sum to the within-class
sum of squares.

Misclassification rate was used to evaluate the accuracy of clustering, which is defined as the number of mis-
classified cells divided by the total number of cells. To define misclassified cells, each CIDR cluster is associated
with the ground truth cluster, which gives the biggest intersection, and those cells that are not in the intersection
are counted as misclassified cells.

Reconstruction of TCRa3. TCRaf of the downloaded dataset were reconstructed using VDJPuzzle*!. A
second method was used to validate the VDJPuzzle result using the program TraCeR*! (see Supplementary Text).
VDJPuzzle algorithm is briefly outlined in the following steps (see' for more details): for each single cell and
for each chain: i) it aligns the reads to the full reference genome; ii) it extracts the reads that align to one known
VDJ gene or constant region and assemble these reads using a de novo assembly algorithm (Trinity*?); iii) all
reconstructed sequences with a match to the IMGT database are collected in a preliminary TCR sequence iden-
tification; iv) the original reads are re-aligned (using bowtie 2**) against the putative TCR sequences, to include
additional reads that could have been lost in the first alignment;.v) resulting aligned reads aligning to the prelim-
inary repertoire are assembled with Trinity and interrogated to IMGT with MigMap, a smart wrapper for IgBlast
(https://github.com/mikessh/migmap).

Successful reconstruction of a TCR from a single cell was defined as at least one complete and in-frame TCR
sequence (o, 3, or both) identified in the IMGT database. The exact procedure was performed as previously
reported?.

The fit of the proportion of cells with successful TCRof3 reconstruction as a function of read length and
sequencing depth was performed using a two-dimensional sigmoidal function implemented in the scipy package
in python (the “curve_fit”)
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— q1 q2
SRa,ﬁ - 1+ e—a(xfxo) X 1+e—b(y7y0) (1)

Where x represents the read length and y represents the sequencing depth. The obtained fitting values are
gl =0.94, g2 =0.95, a =052, b=98.67, x,=24.2, y = 8.85.

Availability of data and materials. The scRNA-seq data analysed are freely available and accession num-
bers are provided in Table 1.
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