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Memory T lymphocytes constitute a significant problem in tissue and organ transplantation
due their contribution to early rejection and their relative resistance to tolerance-promoting
therapies. Memory cells generated by environmental antigen exposure, as with T cells in
general, harbor a high frequency of T cell receptors (TCR) spontaneously cross-reacting with
allogeneic major histocompatibility complex (MHC) molecules. This phenomenon, known as
‘heterologous’ immunity, is thought to be a key barrier to transplant tolerance induction since
such memory cells can potentially react directly with essentially any prospective allograft. In
this review, we describe two additional concepts that expand this commonly held view of how
memory cells contribute to transplant immunity and tolerance disruption. Firstly, autoimmunity
is an additional response that can comprise an endogenously generated form of heterologous
alloimmunity. However, unlike heterologous immunity generated as a byproduct of
indiscriminate antigen sensitization, autoimmunity can generate T cells that have the
unusual potential to interact with the graft either through the recognition of graft-bearing
autoantigens or by their cross-reactive (heterologous) alloimmune specificity to MHC
molecules. Moreover, we describe an additional pathway, independent of significant
heterologous immunity, whereby immune memory to vaccine- or pathogen-induced
antigens also may impair tolerance induction. This latter form of immune recognition
indirectly disrupts tolerance by the licensing of naïve alloreactive T cells by vaccine/
pathogen directed memory cells recognizing the same antigen-presenting cell in vivo. Thus,
there appear to be recognition pathways beyond typical heterologous immunity through
which memory T cells can directly or indirectly impact allograft immunity and tolerance.

Keywords: immune memory, autoimmunity, tolerance, transplantation, infection, vaccination
INTRODUCTION

Memory T cells constitute a formidable obstacle both for preventing early graft rejection and for
the eventual induction of allograft tolerance. For example, memory CD8 T cells can trigger early
aggressive rejection of cardiac allograft rejection in mice (1). Importantly, memory T cells are also
relatively resistant to tolerance-promoting therapies (2–4). An important property of memory
cells thought to be especially relevant for impairing allograft survival is their strong ‘heterologous’
reactivity to allogeneic MHC molecules. The concept of heterologous immunity originated by the
observation that humoral or cellular immunity to one pathogen could impart reactivity to a
org October 2020 | Volume 11 | Article 5804831
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secondary, unrelated pathogen (5). This property is found in
memory T cells generated in response to one virus that that can
cross-react with a new unrelated viral infection (6, 7). This term
has been borrowed by the transplantation field to describe a
specific feature of memory T cells that imparts a high degree of
cross-reactivity to allogeneic MHC molecules (8, 9). This
phenomenon is almost certainly due to the high intrinsic bias
of the TCR repertoire for MHC recognition (10, 11). Thus,
simply by chance, any polyclonal antigen-specific T cell
response would be expected to contain a significant
subpopulation of allogeneic MHC-reactive T cells. This
concept is strikingly illustrated by the findings from Amir
et al. showing that nearly half of CD4 and CD8 virus-specific
human T cell clones cross-reacted to at least one allogeneic
HLA allele (12). A high degree of cross-reactivity to alloantigens
by pathogen-induced T cells has also been demonstrated in
mouse infection models (13–15).
AUTOIMMUNITY AS AN ENDOGENOUS
SOURCE OF HETEROLOGOUS
ALLOGRAFT IMMUNITY

There has been interest in the transplant field for how alloimmunity
may initiate nascent autoimmunity that can impact the graft. This
has been especially evident in chronic allograft reactivity in lung
transplantation (16, 17). However, the converse may also be true;
pre-existing autoimmunity may be a source of potential
alloimmunity in the form of heterologous immunity. We have
had a long-standing interest in islet transplantation using the non-
obese diabetic (NOD) model of spontaneous autoimmune Type 1
diabetes. NOD mice have a multi-factorial predisposition for
developing diabetes due to T and B cell dependent islet beta cell-
specific autoimmunity (18–20). Importantly, diseased NOD mice
destroy syngeneic (NOD) pancreas (21) or isolated islet (22)
transplants through a process of recurrent disease, a phenomenon
that also occured in non-immunosuppressed Type 1 patients
receiving a partial pancreas transplant from a non-diseased
identical twin (23). Moreover, NOD mice also show a strong
response to islet allografts (22, 24, 25). As such, the NOD mouse
model is highly useful for studying islet transplant autoimmunity
and alloimmunity, including potential heterologous immunity, in
the setting of Type 1 diabetes.

Based on the discussion above, the autoimmune T cell
repertoire, like any polyclonal T cell population, would be
expected to have a high degree of cross-reactivity to allogeneic
MHCmolecules. Interestingly, a survey of established autoreactive
(islet antigen-specific) T cell clones derived from NOD mice
revealed that over one third cross-reacted to one or more of
three allogeneic MHC haplotypes (26), a result conceptually
similar to what had been found previously for human virus-
specific T cell clones (12). Based on this concept, we interrogated
the TCR specificity of T cells infiltrating MHC-unrelated islet
allografts grafted into spontaneously diabetic NOD mice.
Consistent with results from screening autoreactive T cell clones,
TCRs from islet allografts were profoundly enriched with dual
Frontiers in Immunology | www.frontiersin.org 2
autoreactive/alloreactive specificities (26). Thus, autoimmunity
can be a source endogenously generated heterologous immunity
contributing to allograft rejection.
Heterologous Autoreactive T Cells With
Alloreactivity: One or Two TCRs?
While the simultaneous reactivity of individual T cells for both
self-MHC-restricted cognate antigens and allogeneic MHC
molecules has been apparent for many years (27), it is not
always clear whether this is due to a single TCR a/b pair or
due to two separate TCRs on a given cell. There is ample reason
to posit that autoreactive T cells demonstrating additional
alloreactivity could be due to the contribution of two separate
TCRs. A significant percentage (estimated to be roughly between
1-8%) of mature mouse (28–30) and human (31) peripheral T
cells express two TCRs, presumably due to a substantial
frequency of developing T cells expressing two functional TCR
a chains (32). Moreover, dual TCR-expressing T cells indeed
have a high frequency of an alloreactive second receptor (33, 34),
and these can play an important role in triggering graft-versus-
host disease in mice (33). It is conceivable, then, that
autoreactive T cells demonstrating cross-reactive alloreactivity
could be the result of two separate TCR specificities on the
same cells.

Conversely, when studying a dual TCR-expressing T cell clone
with both self-MHC-restricted peptide specify (OVA) and
alloreactvity, Malissen et al. found that only one the two TCR a/
b pairs imparted this dual reactivity (35). This demonstrates that a
single TCR can possess combined nominal antigen plus cross-
reactive allo-specificity. This concept was supported by studies
involving high-throughput sequencing of a large repertoire of TCR
transcripts from T cells targeting islet allografts in spontaneously
diabetic NOD mice (26). Importantly, screening the antigen
reactivity of highly expressed TCRs indicated that single TCR a/
b pairs conferred simultaneous dual autoantigen/alloantigen
(MHC) reactivity (26). Thus, the predominant heterologous
immunity identified by this approach could be accounted for by
single autoreactive TCRs with clear cross-reactivity to allogeneic
MHCmolecules. Of course, these finds do not preclude the potential
of heterologous alloimmunity emerging from autoreactive T cells
being the result of a second TCR.However, results to date suggest that
the most frequent source of simultaneous autoreactive/alloreactive T
cells in islet transplants in the setting of autoimmunity is the result of
a single, cross-reactive TCR.
Conventional Antigen-Stimulated Versus
Autoimmune Heterologous Immunity: A
‘Trojan Horse’ Model of Allograft Immunity
One potentially key difference between memory T cells generated
by past antigen challenge and ongoing autoimmunity may
simply be in the activation state of antigen-experienced T cells
in these two scenarios. In fact, memory T cells may not be
completely resistant to tolerance induction (2). For example,
naïve mice can be tolerized to tissue and organ transplants
despite bearing a degree of memory T cells generated by
October 2020 | Volume 11 | Article 580483
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environmental antigen exposure. If this is the case, then the
impact of immune memory on allograft rejection and tolerance
may be related in part to the pre-transplant burden of pre-
existing alloreactive T cell memory (8, 36). However, the
activation state of memory cells may also impact their
potential to be tolerized. In most cases, one would expect
memory cells from past antigen exposure to be in a more
quiescent state of central memory (2). However, the
autoimmune T cell pool may be experiencing persistent
activation/re-activation in the host, including those cells
expressing cross-reactive alloimmunity. This means that the
alloimmune component found in autoimmune disease may
already be in a heightened activation state and potentially
more challenging to tolerize. While NOD mice have a variety
of tolerance defects (37, 38) the presence of alloreactvity found
within the smoldering autoreactive repertoire may contribute to
the dramatic resistance of NOD mice to allograft tolerance, even
toward tissues/organs for which they have no apparent
autoimmunity (37). It will be most interesting to test this
concept in future studies.

In addition, there is a second and more unusual property of
heterologous (alloreactive) autoreactive T cells that may make
them especially virulent as mediators of islet rejection. In the
conventional view of heterologous immunity, antigen-
experienced memory cells contribute to allograft immunity
and tolerance resistance due to their chance cross-reactivity to
the graft, unrelated to the specificity of the original stimulating
antigen. However, in the case of autoimmunity, heterologous T
cells have the potential to interact with graft through two
qualitatively distinct recognition pathways simultaneously
Frontiers in Immunology | www.frontiersin.org 3
(Figure 1). One route of islet graft interaction can be through
the recognition of self MHC-restricted islet autoantigens
acquired from the transplant and processed and presented by
host antigen-presenting cells (APCs). We previously found that
monoclonal BDC2.5 TCR transgenic CD4 T cells without
allogeneic cross-reactivity could nevertheless recognize
allograft-derived autoantigens processed by host APCs and
destroy islet allografts though this type of indirect autoantigen
recognition (39). Thus, this autoreactive specificity alone was
sufficient to trigger allograft rejection. However, since
polyclonal autoreactive T cells targeting the islet graft also
contain cross-reactive, alloreactive T cells (26), some of these
cells can also directly recognize the native allogeneic MHC
expressed by the graft. An example of this phenomenon is a
CD4 TCR (9860-A3B3) isolated from an MHC mismatched
C3H (H-2k) islet graft in NOD mice. This TCR recognizes an
islet-associated Chromogranin A peptide presented by the NOD
MHC class II I-Ag7 while also directly recognizing allogeneic I-
Ak expressed by the donor (26). Thus, this unusual situation
could represent a sort of ‘Trojan Horse’ phenomenon in the islet
graft in which the influx of T cells responding to autoantigens
also ferries in a cohort of heterologous alloreactive T cells that
can directly engage the allograft MHC. This simultaneous graft
recognition through either auto- or allo- specificities could
account for the accelerated response to MHC unrelated islet
allografts in NOD mice despite the lack of intentional prior
alloantigen exposure in these mice (24, 25). This property of
heterologous immunity within autoimmune T cells could
potentially be a general dilemma in controlling allograft rejection
in the setting of autoimmune disease.
FIGURE 1 | Depiction of an autoreactive (islet-specific) T cell with a TCR with both autoantigen specificity and cross-reactivity to allogenic MHC molecules. In response to an
islet allograft, this type of heterologous TCR can recognize a host MHC-restricted, graft-derived autoantigen peptide presented by host APC (right side). Alternatively, the same
TCR may also directly recognize a native donor MHC molecule plus an unidentified peptide expressed by the graft (left side). As such, the same T cell has the potential to
interact with the islet graft through either a host MHC-restricted (autoreactive) or donor MHC-restricted (alloreactive) recognition pathway.
October 2020 | Volume 11 | Article 580483
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AN ADDITIONAL AND LESS APPARENT
ROUTE OF TOLERANCE BLOCKADE BY
MEMORY T CELLS

A major ongoing goal in transplantation is to transition from
chronic non-specific immunosuppression towards the induction
of antigen (donor)-specific tolerance. To this point, this discussion
has centered on heterologous immunity by memory T cells to
allogeneic MHC molecules themselves (either from prior antigen
exposure or via autoimmunity) as a key problem in transplant
immunity and tolerance. As such, the importance of assessing pre-
existing humoral or cellular immunity to donor MHC has been a
major focus of screening efforts in transplantation (40–42). While
such efforts are clearly warranted, there are potentially alternative
routes whereby T cell memory could impair tolerance induction
without a requirement for substantial heterologous immunity to the
donor MHC (43). Unfortunately, the metagenome of both organ
donors and recipients encode a variety of non-self antigens, such as
those derived from microbiota (44, 45) or from latent infections
such as CMV and EBV (46–49) that are clearly associated with
impaired allograft outcomes in clinical transplantation. It is clear
that the activation of anti-viral immunity can abrogate allograft
tolerance (50, 51), possibly by the induction of inflammation that
itself may non-specifically impair tolerance induction (52, 53).

One could assume that much of the impairment of tolerance
induced by recipient responses to donor-associated pathogens is
related to either heterologous immunity generated during the
pathogen response and/or to the associated inflammation. We
propose another more provocative form of host immunity to
donor-derived non-MHC antigens that also could impair tolerance
induction. This problem of donor-derived, non-self, non-MHC
antigens has arguably been under-represented in most small
animal studies. This being the case, we developed a model system
in which the donor expressed a non-self transgenic antigen (OVA) to
which the host was immune via vaccination (43), a scenario that
could have relevance to clinical transplantation in which vaccination
might protect from a donor-derived pathogen (54). Tolerance was
induced using a common approach of administering a pre-transplant
donor-specific transfusion (DST) in the form of donor spleen cells
plus costimulation blockade (55, 56). Interestingly, host anti-OVA
vaccination alone was innocuous, generating negligible anti-donor
heterologous alloimmunity and had no impact on tolerance
induction to wild-type allografts. Even peri-transplant re-activation
of host anti-OVA reactivity did not impair tolerance induction.
However, treatment with an OVA-expressing allogeneic DST in an
OVA-immune recipient profoundly abrogated tolerance induction,
even if the subsequent allograft did not express OVA (43).
TOLERANCE DISRUPTION OF NAÏVE T
CELLS BY MEMORY T CELLS VIA LINKED
ANTIGEN PRESENTATION

A key feature of this admittedly contrived system was that that
the alloantigen and non-self (OVA) antigen had to be presented
Frontiers in Immunology | www.frontiersin.org 4
on the same APC in order to disrupt tolerance (Figure 2). That
is, ‘linked’ recognition of the vaccine-directed antigen and the
alloantigen was required for tolerance blockade (43). This
scenario illustrates the potential for an alternative route
whereby memory cells may impact the microenvironment
during initial tolerance induction at the level of antigen
presentation, not via donor MHC recognition, but rather
through the recognition of another non-MHC antigen
introduced by donor cells. Currently, probably the most
recognizable concept involving T cells influencing one another
via recognition of the same APC is that of ‘linked suppression’ in
which putative regulatory T cells inhibits the function of another
uncommitted T cell through interacting with the same APC (57).
However, the concept of linked recognition leading to cell
activation is actually considerably older. The original
description of ‘linked’ antigen recognition referred to the
observation of the carrier-hapten phenomenon in which the
‘helper’ determinant for antigen formation required physical
linkage between the ‘helper’ determinant and the antibody
specificity (58). This concept was later adapted to refer to the
finding that helper T cells for the generation of cytotoxic T cells
required recognition of the same APC in vivo (59). Three seminal
studies later found that the basis of such CD4 T cell help for CD8
T cells was in the form of CD40:CD154 interactions with the
APC resulting in the licensing of such APCs to activate other T
cells (60–62). We had proposed that such T-T cell collaboration
could be bi-directional in that CD4 and CD8 T cells could
potentially influence one another through linked recognition of
the APC (63). This latter concept could explain how memory
CD8 T cells could disrupt T cell tolerance and promote allograft
rejection instead (64). Of course, while this model of tolerance
disruption required memory CD8 T cells (43), there is clear
evidence that both CD4 (65–67) and CD8 (64, 65, 68) T cells can
be involved in tolerance blockade in pre-clinical models.
However, it is usually unclear how specific memory T cell
subsets actually impair tolerance induction.

In what situation might this type of memory cell reactivity be
important in transplantation? In the setting of autoimmunity or
c donor pathogen infections such as CMV and EBV (46–49), the
host could be immune to donor-derived, non-MHC antigens
without obvious pre-transplant anti-donor MHC immunity.
However, depending on the tissue distribution of autoantigens
or donor pathogen-derived antigens, memory cells for these
antigens could disrupt tolerance induction by diverting the
naïve T cells recognizing the same APC from a tolerized fate to
an effector phenotype (Figure 2). Because the existing host T cell
memory to donor-derived, non-self antigens was self-MHC
restricted in this linked recognition model (65), we would
propose that the ‘indirect’ pathway of alloantigen recognition
by host APCs was chiefly involved in disrupting tolerance. This
could contrast sharply with how heterologous memory T cells
(i.e., T cells with direct donor MHC reactivity) disrupt tolerance.
Such donor MHC cross-reactive T cells may influence tolerance
through the ‘direct’ pathway of antigen recognition. Future
studies are needed to define the specific cellular interactions
required by memory T cells to impair tolerance. Moreover, this
October 2020 | Volume 11 | Article 580483
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tolerance blockade could occur without significant evidence of
conventional heterologous anti-donor MHC reactivity. If this
alternate and less apparent route of memory T cell tolerance
blockade is significant, it implies that assessing pre-transplant
anti-donor MHC reactivity alone may not be sufficient to predict
the potential success of tolerance-promoting therapies. It may
also be important to more carefully assess the presence of donor-
derived pathogens and the corresponding host immunity to these
antigens or to autoantigens.
CONCLUDING REMARKS

The role of memory T cells for providing resistance to allograft
tolerance induction is well established. Moreover, the high
degree of heterologous anti-donor MHC alloreactivity found
within memory T cell populations is rightly considered a
Frontiers in Immunology | www.frontiersin.org 5
major potential source of tolerance disruption. By this view,
the implied paradigm is that memory cells behave essentially as
directly allo-sensitized cells that are resistant to regulation.
However, there are other routes of memory cell specificity that
expand and perhaps complicate this straightforward view
(summarized in Table 1). For example, autoimmunity may
constitute a form of ongoing memory T cell generation and
heterologous alloreactivity that does not require exogenous
antigen exposure. Also, heterologous autoreactive T cells have
the unusual potential for recognizing autoantigen-expressing
allografts through autoreactive and alloreactive specificities
simultaneously. Alternatively, memory T cells can potentially
subvert tolerance induction by recognizing donor-derived, non-
MHC antigens (such as autoantigens or from pathogens) co-
presented on APCs with conventional alloantigens resulting in
the disruption of tolerance by naïve alloreactive T cells.
Importantly, this latter form of antigen recognition could
A B

FIGURE 2 | Working model of tolerance blockade by linked recognition of alloantigens and non-MHC donor antigens. In (A) host naïve T cells responding to donor
antigens acquired by host APCs are amendable to tolerance induction by tolerance-promoting agents. In (B), if these same APCs also acquire other donor-derived
antigens to which the host has pre-existing immunity (e.g., to non-self pathogen-derived antigens or autoantigens), tolerance is disrupted at the level of the APC. In
this case, the fate of such uncommitted alloreactive T cells is diverted from tolerance to immunity.
TABLE 1 | Characteristics of differing pathways whereby memory T cells impair allograft tolerance.

Pathway of tolerance
blockade

Potential source of
memory-directed

antigen

Direct specificity for
donor MHC molecules

Reactivity with
donor versus host

APCs

Potential clinical scenario Pre-clinical
evidence

Clinical
evidence

1. Conventional
heterologous immunity

Environment/pathogens/
vaccination

Yes Donor APCs and
tissues

Recipient with common cellular
immune memory

(8, 13–15, 69) (12, 40,
67, 70–73)

2. Heterologous immunity
from autoimmunity

Autoantigens Yes Donor and host APCs Autoimmune recipient of organ
transplant

(26) Unknown

3. Linked recognition of
donor-associated
antigens

Pathogens or
autoantigens

Not required Host APCs CMV+ or EBV+ organ
transplanted into CMV+ EBV+
recipient

(43) Unknown
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impair tolerance even in the absence of significant anti-donor
MHC reactivity. The relative significance of this latter route of
tolerance blockade by memory T cells requires further
clarification. Unfortunately, the clinical transplantation field
currently relies on chronic non-specific immunosuppression to
maintain graft survival and has not yet progressed to the point of
using defined therapeutics to induce allograft tolerance in
prospective trials. As such, it is challenging to determine the
degree to which these or other potential pathways of tolerance
impairment by immune memory pose significant barriers to
achieving transplantation tolerance in humans.
Frontiers in Immunology | www.frontiersin.org 6
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