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Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested
that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and
degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development
of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg�1)
significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the
depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis
in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2a phosphorylation. Protein degradation rates in skeletal
muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values
found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-kB
(NF-kB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect
on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for
the attenuation of muscle atrophy in cancer cachexia.
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Cancer cachexia is characterised by specific depletion of skeletal
muscle mass, which leads to a general muscle weakness (asthenia)
and reduced physical activity, terminating in impairment of
respiratory muscle function and death of the patient through
hypostatic pneumonia (Windsor and Hill, 1988). In order to
counteract this progressive muscle atrophy, it is necessary to
understand the mechanisms involved. Protein loss from skeletal
muscle results from a combination of a depression in protein
synthesis (Emery et al, 1984), together with an increase in protein
degradation (Lundholm et al, 1982), which is initiated by cachectic
factors. We have recently shown a relationship between the
depression of protein synthesis in skeletal muscle and the increase
in protein degradation in response to cachectic factors such as
proteolysis-inducing factor (PIF) and angiotensin II (Ang II)
though the dsRNA-dependent protein kinase (PKR) (Eley and
Tisdale, 2007). Thus, using murine myotubes in vitro both agonists
were found to induce autophosphorylation and activation of PKR.
One of the primary substrates for PKR is eukaryotic initiation
factor 2 (eIF2), which is phosphorylated on the a-subunit, leading
to inhibition of translation initiation by blocking the action of the
guanine exchange factor eIF2B (Panniers and Henshaw, 1983).
Both PIF and Ang II inhibited protein synthesis in myotubes, and
this was attenuated in myotubes transfected with a catalytically

inactive variant of PKR (PKRD6), which showed no increase in
eIF2a phosphorylation in response to PIF and Ang II. Inhibition of
PKR by a low molecular weight inhibitor also attenuated the
depression of protein synthesis, confirming that it arose from an
increased phosphorylation of eIF2a (Eley and Tisdale, 2007).

In addition, PKR has been shown to mediate activation of the
transcription factor, nuclear factor-kB (NF-kB) through activation
of the upstream kinase, IkB kinase leading to degradation of the
inhibitors IkBa and IkBb and the concomitant release of NF-kB
(Zamanian-Daryoush et al, 2000). Activation of NF-kB has been
shown to cause muscle atrophy due to accelerated protein
breakdown through increased expression of the key components
of the ubiquitin–proteasome proteolytic pathway including
proteasome subunits and the E3 ligase, MuRF1 (Cai et al, 2004).
Induction of the ubiquitin–proteasome pathway by both PIF
(Wyke and Tisdale, 2005) and Ang II (Russell et al, 2006a, b) also
requires activation of NF-kB. Myotubes treated with a PKR
inhibitor, or containing plasmids expressing mutant PKRD6,
showed no protein degradation in response to PIF or Ang II,
and no activation of NF-kB, confirming a link between activation
of PKR and the induction of protein degradation, as well as the
depression of protein synthesis in skeletal muscle (Eley and
Tisdale, 2007).

If this same process is operative in skeletal muscle during cancer
cachexia then inhibitors of PKR may be useful therapeutically to
prevent muscle atrophy. Certainly phosphorylation of both PKR
and eIF2a was found to be increased in the gastrocnemius muscle
of weight losing mice bearing the MAC16 tumour (Eley and
Tisdale, 2007). To test the hypothesis that inhibition of PKR may
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prevent muscle atrophy, the present study investigates the effect of
a small molecule ATP-site directed inhibitor of PKR, 8-[1-(1H-
imidazol-4-yl) meth-(Z) ylidene]-6,8-dihydro-thiazol [5,4-e]indol-
7-one (Jammi et al, 2003), on cachexia in the MAC16 model. It
would be anticipated that inhibition of PKR would attenuate the
depression of protein synthesis in skeletal muscle, through a
reduction in the phosphorylation state of eIF2a, and would also
attenuate the increased protein degradation, by downregulating
the expression of the ubiquitin–proteasome pathway, by prevent-
ing the activation of NF-kB.

MATERIALS AND METHODS

Materials

L-[2, 6-3H] Phenylalanine (sp. act.2.07TBq mmol�1), hybond A
nitrocellulose membranes and enhanced chemiluminescene (ECL)
development kits were from Amersham Biosciences Ltd (Bucks,
UK). Mouse monoclonal antibodies to 20S proteasome a-subunits
and p42 were from Affiniti Research Products (Exeter, UK). Rabbit
monoclonal antibodies to phospho-eIF2a (Ser 51) and to phospho-
PKR (Thr 446) were purchased from Insight Biotechnology Ltd
(London, UK). Mouse monoclonal antibody to myosin heavy chain
was from Novocastra (Newcastle, UK), whereas polyclonal antisera
to total PKR were from New England Biolabs Ltd (Herts, UK).
Rabbit polyclonal antisera to mouse b-actin were from Sigma

Aldridge (Dorset, UK). Peroxidase-conjugated goat anti-rabbit
antibody and peroxidase-conjugated rabbit anti-mouse antibody
were purchased from Dako Ltd (Cambridge, UK). The PKR
inhibitor and PhosphoSafet Extraction Reagent were from Merck
Eurolab Ltd (Leicestershire, UK) and electrophoretic mobility shift
assay (EMSA) gel shift assay kits were from Panomics (CA, USA).

Animals

Pure strain male NMRI mice (average weight 25 g) were obtained
from our own inbred colony and were fed a rat and mouse
breeding diet (Special Diet Services, Witham, UK) and water ad
libitum. Animals were transplanted with fragments of the MAC16
tumour s.c. into the flank by means of a trochar, as described
(Bibby et al, 1987), selecting from donor animals with established
weight loss. Weight loss was evident 12–15 days after tumour
transplantation and animals were entered into the study when they
had lost approximately 5% of their starting body weight. Animals
were randomised into groups of six to receive solvent (DMSO PBS;
1 : 20) or the PKR inhibitor (at 1 and 5 mg kg�1) administered daily
by s.c. injection. Both tumour volume and body weight were
monitored daily. Animals were terminated by cervical dislocation
when the body weight loss reached 25%, and all animal
experiments followed a strict protocol approved by the British
Home Office, and the ethical guidelines that were followed meet
the standards required by the UKCCR guidelines (Workman et al,
1998). The soleus muscles were quickly dissected out, together
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Figure 1 Effect of daily s.c. administration of a PKR inhibitor at 1 (’) and 5 (m) mg kg�1 in comparison with solvent control (DMSO : PBS 1 : 20) on body
weight change (A) and tumour growth rate (B) in mice bearing the MAC16 tumour. A time course for the inhibition of body weight loss (m) and tumour
growth (’) is shown in (C). The average weight of the soleus muscles after 5 days treatment is shown in (D), and the body composition is shown in (E).
The conditions for tumour transplantation and conductance of the experiment are given in Materials and Methods. The number of mice in each group n¼ 6.
Differences from control are shown as a: Po0.05; b: Po0.01; or c: Po0.001, whereas differences from percentage inhibition of tumour volume are shown
as f: Po0.001.
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with intact tendons maintained in isotonic ice-cold saline before
determination of protein synthesis. Protein degradation was
determined on freshly excised gastrocnemius muscle.

Protein synthesis and degradation in muscle

The method for the determination of protein synthesis in muscle
has been previously described (Smith and Tisdale, 1993). Protein
synthesis was measured by the incorporation of L-[2, 6-3H]
phenylalanine into acid insoluble material during a 2 h period in
which soleus muscles were incubated at 371C in RPMI 1640
without phenol red and saturated with O2 : CO2 (19 : 1). After
incubation, muscles were rinsed in non-radioactive medium,
blotted and homogenised in 4 ml 2% perchloric acid. The rate of
protein synthesis was calculated by dividing the amount of
protein-bound radioactivity by the amount of acid-soluble radio-
activity.

For protein degradation, gastrocnemius muscle was incubated
in 3 ml of oxygenated (95% oxygen; 5% carbon dioxide) Krebs –
Henselit buffer (pH 7.4), containing 5 mM glucose and 0.5 mM

cycloheximide. The protein degradation rate was determined by
the release of tyrosine (Waalkes and Udenfriend, 1957) over a 2 h
period.

Measurement of proteasome activity

The 20S proteasome functional activity was determined by
measuring the ‘chymotrypsin-like’ activity by the method of Orino
et al (1991), which measures the release of aminomethyl coumarin
(AMC) from the fluorogenic peptide succinyl-LLVY-AMC in the
absence and presence of the specific proteasome inhibitor
lactacystin (10 mM). Only lactacystin-suppressible activity was
considered to be proteasome specific. Activity was normalised to
the protein content of the muscle determined by the Bradford
assay (Sigma).

Body composition analysis

After killing animals were heated to 80– 901C for 48 h, or until a
constant weight was achieved. The water content was determined
from the difference between the wet and dry weight. Lipids were
extracted from the dried carcass with chloroform/methanol (1 : 1),
ethanol/acetone (1 : 1) and diethyl ether, which was then allowed
to evaporate. The fat content was determined from the weighed
residue. The non-fat carcass mass was calculated as the difference
between the initial weight of the carcass and the weight of water
and fat.

Electrophoretic mobility shift assay

DNA-binding proteins were extracted from skeletal muscle using
hypotonic lysis followed by high salt extraction of nuclei, as
described (Andrews and Faller, 1991). The EMSA-binding assay
was carried out using a Panomics EMSA ‘gel shift’ kit according to
the manufacturer’s instructions.

Western blot analysis

Samples (about 10 mg) of gastrocnemius muscle were homoge-
nised in 500 ml PhosphoSafet Extraction Reagent and centrifuged
at 18 000 g for 5 min. Samples of cytosolic protein (10mg) were
resolved on 10% sodium dodecylsulphate –polyacrylamide gel
electrophoresis (6% for eIF2a), and transferred to 0.45 mm
nitrocellulose membranes, which had been blocked with 5%
Marvel in Tris-buffered saline, pH 7.5, at 41C for 1– 2 h, and then
washed for 15 min in 0.1% Tween buffered saline or PBS Tween
before adding the primary antibodies. The primary antibodies
were used at a dilution of 1 : 1000, except for phospho-eIF2a

(1 : 500), actin (1 : 200) and myosin (1 : 100). The secondary
antibodies were used at a dilution of 1 : 1000. Incubation was for
1 h at room temperature (actin, p42) or overnight, and develop-
ment was by ECL. Blots were scanned by a densitometer to
quantify differences.

Statistical analysis

Results are presented as mean7s.e.m. Differences in means
between groups were determined by one-way analysis of variance
followed by Tukey– Kramer multiple comparison test. P-values
less than 0.05 were considered significant.

RESULTS

The effect of the PKR inhibitor at two dose levels (1 and 5 mg kg�1)
on change in body weight and tumour growth in mice bearing
the MAC16 tumour over a 5-day period is shown in Figure 1. The
dose levels were chosen based on the effective dose in vitro (Eley
and Tisdale, 2007), and by using dose-range finding assays to
determine toxicity. At dose levels of both 1 and 5 mg kg�1, the
PKR inhibitor effectively attenuated both the depression in body
weight (Figure 1A) and tumour growth (Figure 1B), although the
time course for these two events appeared to be distinct
(Figure 1C). In addition, in animals treated with the PKR inhibitor
at 5 mg kg�1 there was a significant increase in muscle wet weight
suggesting preservation of muscle mass (Figure 1D), and this was
confirmed by body composition analysis (Figure 1E), which
showed a significant increase in the non-fat carcass mass. Body
composition analysis also showed that at both dose levels of the
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Figure 2 Protein synthesis (A), protein degradation (B) and ‘chymo-
trypsin-like’ enzyme activity, in comparison with a non-tumour-bearing
control (C) in the skeletal muscle of mice bearing the MAC16 tumour after
5 days of treatment, as shown in Figure 1. The number of muscles used in
each group n¼ 6. Differences from animals not receiving inhibitor are
shown as a: Po0.05 or b: Po0.01, whereas differences from non-tumour-
bearing animals is shown as e: Po0.01.
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PKR inhibitor there was a significant depression in the carcass fat
mass. At this dose level, there was a significant increase in protein
synthesis in skeletal muscle (Figure 2A), which paralleled the
decrease in eIF2a phosphorylation (4B). There was also a
significant decrease in protein degradation (Figure 2B). The latter
was reflected in a significant decrease in the functional activity of
the 20S proteasome, as measured by the ‘chymotrypsin-like’
enzyme activity (Figure 2C), such that at a dose level of
5 mg kg�1enzyme levels were reduced down to that found in
non-tumour-bearing controls. In addition, expression of the 20S
proteasome a-subunits (Figure 3A), and p42, an ATPase subunit of
the 19S regulator in skeletal muscle (Figure 3B), were reduced
down to the levels found in non-tumour-bearing mice. Also mice
bearing the MAC16 tumour showed a significant depression in the
expression of the myofibrillar protein myosin, and this was
restored up to the levels found in non-tumour-bearing animals
after treatment with both dose levels of the PKR inhibitor
(Figure 3C). As previously reported (Eley and Tisdale, 2007),
levels of both phospho-PKR (Figure 4A) and -eIF2a (Figure 4B)
were significantly increased in the skeletal muscle of mice bearing
the MAC16 tumour, and this was reduced down to levels found in
non-tumour-bearing animals after treatment with the PKR
inhibitor. To verify that changes in proteasome expression in
skeletal muscle arose from an effect on nuclear migration of NF-kB,
the amount of NF-kB in the nucleus was determined by EMSA.
The results depicted in Figure 5 show a significant upregulation of
NF-kB in gastrocnemius muscle of mice bearing the MAC16

tumour, in comparison with non-tumour-bearing control, and a
reduction in NF-kB DNA-binding activity in gastrocnemius muscle
of mice treated with the PKR inhibitor at both dose levels, down to
values found in non-tumour-bearing controls. These results
suggest that inhibition of PKR autophosphorylation may be a
useful target in attenuating muscle atrophy in cancer cachexia.

DISCUSSION

PKR is a serine/threonine protein kinase, which is normally
inactive, but undergoes a conformational change upon binding
of its activator, dsRNA, leading to autophosphorylation, with
phosphorylation of substrates independent of dsRNA (Clemens,
1997). The best characterised substrate of PKR is the a-subunit of
eIF2, which results in the sequestration of the recycling factor
eIF2B in an inactive complex with eIF2-GDP, inhibiting protein
synthesis (Panniers and Henshaw, 1983). Studies in vitro using PIF
and Ang II as agonists (Eley and Tisdale, 2007) have shown that
activation of PKR not only depresses protein synthesis but also
increases protein degradation through an NF-kB-dependent
increase in proteasome expression. Weight losing mice bearing
the MAC16 tumour showed a similar increase in phospho-PKR
and -eIF2a, in gastrocnemius muscle, suggesting that a similar
mechanism was operative in cancer cachexia. We have recently
shown (Eley and Tisdale, unpublished results) that levels of
phospho-PKR and -eIF2a were also significantly elevated in rectus
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abdominis muscle of weight losing cancer patients, when the
weight loss exceeded 10%. There was a parabolic relationship
between levels of phospho-PKR and -eIF2a and weight loss, with
levels increasing with weight loss up to a maximum of 19– 20%,
and then decreasing. There was a linear relationship between
expression of mRNA for the C2 proteasome subunit and levels
of phospho-PKR, suggesting that phosphorylation of PKR was
responsible for the induction of proteasome expression and
degradation of myofibrillar proteins. Thus, if the in vitro results
are also applicable in vivo this suggests that inhibition of PKR
autophosphorylation may be useful for the treatment of muscle
atrophy in cancer patients, particularly for those with weight losses
between 10 and 20%.

To test this hypothesis, the current study examined the effect of
a PKR inhibitor on muscle wasting in mice bearing the cachexia-
inducing MAC16 tumour. The results of this study confirm that
inhibition of PKR phosphorylation, by a small molecule inhibitor,
attenuates the development of cachexia in a murine model,
through an increase in non-fat carcass mass, although the effect on
total body weight is less pronounced because of a significant
depression of the carcass fat mass. The mechanism for this effect is
not known. The PKR inhibitor preserved muscle mass through the
attenuation of the depression of protein synthesis and the increase
in protein degradation in skeletal muscle, as predicted from the in
vitro study (Eley and Tisdale, 2007). Inhibition of PKR activity was
found to attenuate phosphorylation of eIF2a, which would prevent
the depression of protein synthesis through inhibition of transla-
tion initiation. As with the in vitro model (Eley and Tisdale, 2007),
inhibition of the phosphorylation of PKR also attenuated the
increased protein degradation in the skeletal muscle of cachectic
mice through repression of the induction of proteasome expres-
sion and activity concomitant with a significantly reduced nuclear
accumulation of NF-kB down to values found in non-tumour-
bearing animals. The increased nuclear accumulation of NF-kB
in cachectic mice bearing the MAC16 tumour is probably due to
tumour factors such as PIF, which has been shown to induce
expression of the ubiquitin– proteasome system through activation
of NF-kB (Wyke and Tisdale, 2005). Decreased activation of NF-kB
would also be expected to reduce expression of the E3 ligase,
MuRF1 (Cai et al, 2004), and to increase levels of the transcription
factor MyoD (Guttridge et al, 2000), which is essential for skeletal
muscle differentiation, and for repair of damaged tissue. MyoD
expression has been shown to be dramatically downregulated in
skeletal muscle of cachectic rats (Costelli et al, 2005). Both of these
changes would contribute to increased levels of the myofibrillar
protein, myosin, in skeletal muscle. A flow diagram showing the
proposed pathways by which a PKR inhibitor could attenuate the
depression of protein synthesis and increase protein degradation
in skeletal muscle is shown in Figure 6. In addition to this pathway,
there is an NF-kB-independent pathway involved in ubiquitin-
mediated proteolysis involving the transcription factor Foxo1 and
which is activated by myostatin (McFarlane et al, 2006). There is
no evidence that this pathway would be affected by inhibition of
PKR.

A surprising observation was that inhibition of PKR phos-
phorylation also inhibited tumour growth. This was unlikely to be
responsible for the observed changes in protein synthesis and
degradation in skeletal muscle, as it occurred after the stabilisation
of body weight (Figure 1C). Thus, the PKR inhibitor had a rapid
effect on the loss of body weight, which was apparent within 1 day
of treatment and remained at the same level throughout the
experiment. In contrast, inhibition of tumour growth was not
evident until day 4 of the experiment, and there was a progressive
increase between days 4 and 5. dsRNA-dependent protein kinase
has been suggested to act as a tumour suppressor protein
(Clemens, 1997), as it probably functions in interferon-mediated
host defence to trigger cell death in response to viral infection and
possible tumorigenesis (Balachandran et al, 1998). Overexpression
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of PKR in mammalian and insect cells results in inhibition of
cellular growth, which probably involves repression of translation
through inhibition of the eIF2a pathway (Barber, 2005), whereas
the expression of catalytically inactive dominant-negative PKR
molecules causes the transformation of immortalised cells
(Koromilas et al, 1992). Thus, inhibition of PKR phosphorylation
might be expected to stimulate tumour growth. However, PKR can
also mediate activation of NF-kB (Zamanian-Daryoush et al, 2000),
although it has not been shown that this happens in tumours.

Nuclear factor-kB is known to be constitutively activated in certain
tumours, including the MAC16 tumour (Wyke et al, 2004), and this
has been connected with tumour cell survival and proliferation, as
well as invasion and angiogenesis (Baldwin, 2001; Karin et al,
2002). Thus, inhibition of PKR phosphorylation might be expected
to downregulate nuclear binding of NF-kB, as it does in skeletal
muscle.

Another possible explanation is that the MAC16 tumour
requires amino acids released from skeletal muscle during
proteolysis for growth. We have found (Hussey and Tisdale,
unpublished results) that MAC16 cells have a higher requirement
for isoleucine and tryptophan than a related tumour (MAC13),
which does not induce cachexia. Previous studies have shown
inhibition of the growth of the MAC16 tumour when cachexia was
attenuated by b-hydroxy-b-methylbutyrate, a metabolite of leucine
(Smith et al, 2005) and resveratrol at low dose levels (Wyke et al,
2004).

More studies are needed on the antitumour activity of PKR
inhibitors and the mechanism by which they exert their effect.
Inhibitors of PKR may also be expected to be synergistic with
DNA-damaging agents such as cisplatin and melphalan, as PKR-
deficient mouse-embryonic fibroblasts have been shown to be
hypersensitive to bulky adduct DNA damage (Bergeron et al,
2000).

These results suggest that agents which inhibit autophosphory-
lation of PKR may be useful in the treatment of muscle atrophy
associated with cancer cachexia and may have the added benefit of
attenuating tumour growth.
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