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Chronic liver disease progresses through several stages, fatty 
liver, steatohepatitis, cirrhosis, and eventually, it leads to hepato-
cellular carcinoma (HCC) over a long period of time. Since a 
large proportion of patients with HCC are accompanied by 
cirrhosis, it is considered to be an important factor in the diag-
nosis of liver cancer. This is because cirrhosis leads to an 
irreversible harmful effect, but the early stages of chronic liver 
disease could be reversed to a healthy state. Therefore, the 
discovery of biomarkers that could identify the early stages of 
chronic liver disease is important to prevent serious liver dam-
age. Biomarker discovery at liver cancer and cirrhosis has en-
hanced the development of sequencing technology. Next gene-
ration sequencing (NGS) is one of the representative technical 
innovations in the biological field in the recent decades and it 
is the most important thing to design for research on what type 
of sequencing methods are suitable and how to handle the 
analysis steps for data integration. In this review, we compre-
hensively summarized NGS techniques for identifying genome, 
transcriptome, DNA methylome and 3D/4D chromatin struc-
ture, and introduced framework of processing data set and 
integrating multi-omics data for uncovering biomarkers. [BMB 
Reports 2020; 53(6): 299-310]

INTRODUCTION

Studies have been conducted for a long time so as to discover 
biomarkers at the molecular level for the diagnosis of diseases 
(1-3). With the development of sequencing technology, it be-
came possible to understand the entire genes beyond the 
individual gene associated with a disease. High-throughput se-
quencing produces omics-data set and allows the identification 
of modifications of genome, transcriptome and epigenome. 

The investigation of entire genomic DNA sequences provides 
individual variants called single-nucleotide polymorphisms 
(SNPs) and was applied so as to predict diagnosis and prog-
nosis of a disease through analysis of genetic diversity and 
population genomics (4-8). The comparison of transcriptomes 
in various conditions can uncover disease-specific or stage-speci-
fic genes, which can be used as biomarkers. In addition, the 
identification of epigenomic factors and not DNA mutations, 
which are factors that regulates gene expression, has potential 
as a new biomarker. While it was possible to find biomarkers 
by each sequencing approach, it has recently been possible to 
discover high-confident biomarkers through integrative analysis 
of omics data. However, in order to integrate and analyze the 
omics data produced for each special purpose, it is necessary 
to understand the characteristics of the data and examine it 
carefully. 

Liver is the largest internal organ in the body, and it has 
essential roles in our body such as digesting foods, detoxifying 
chemical, and storing energy. Chronic liver disease and cirrhosis, 
damaged liver states, are a cause of global mortality and 
morbidity (9). Liver disease could be caused by a variety of 
factors, such as hepatitis virus A, B, and C infection, persistent 
alcoholic hepatitis, and also fat accumulation in liver. Regard-
less of these factors, repeated injuries provoke inflammatory 
damage, parenchymal cell death, and matrix decomposition 
leading to advance fibrosis (10). Liver disease is a multi-step 
disease including fatty liver, steatosis, cirrhosis, and hepato-
cellular carcinoma (HCC). The scar matrixes typically accumu-
late very slowly for approximately 5-50 years, before cirrhosis, 
and early stages of chronic liver disease could be reversed to a 
healthy state (10). But once cirrhosis occurs, it becomes to 
have irreversible properties. It often develops complications 
and even progresses to cancer (10).

Thus, in the review, we summarized the overall major re-
searches relevant to next generation sequencing (NGS) tech-
niques from the beginning and introduce more recent studies 
with integrative analysis of epigenome sequencing classified 
by each character of omics-data, especially in liver disease 
(11-15). 
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Fig. 1. Overview of next-generation sequencing techniques. (A) De-
tection methods for genetic variations, including in whole genome 
and whole exome. (B) Applications for methylation patterns. (C) Me-
thods of genetic modifications, such as strand breaks enzyme diges-
tion. (D) Various sequencing techniques for observing chromatin 
modifications. (E) Chromatin structures could be explained with se-
quencing applications. (F) Gene expression profiling with the form 
of RNAs. (G) Identification methods for RNA binding proteins and 
enrichment levels. (H) The formation of RNAs also detectable through 
sequencing applications.

NGS TECHNIQUES FOR DETECTING MODIFICATIONS 
OF DNA, CHROMATIN STRUCTURE, AND RNA

Since genome contains genetic materials of an organism, in-
vestigating the nucleotide sequence of the genome is a great 
way to examine the control systems that regulate cell func-
tions. The first DNA sequencing was produced by Sanger sequen-
cing and developed by Frederick Sanger in 1977, which was 
called the chain termination method (16). From this approach, 
the human genome project was completed and interpreting 
sequences of genes has been a great help in understanding 
human life and diseases (17, 18). However, the function of the 
non-coding region was not yet precisely known, which makes 
up the most of human genome. The development of NGS 
technology that overcomes the shortcomings of Sanger sequen-
cing has provided us with a lot of information on the features 
of the non-coding region.

Since the new invention of NGS technique, lots of particular 
sequencing methods for detecting modifications of genome, 
transcriptome and epigenome have been introduced. In this 
section, of these advanced sequencing methods, the most popu-
lar ones were summarized by categories of genome, chromatin 
and transcriptome-based studies (Fig. 1).

NGS techniques for detecting DNA modification
Genetic variation refers to variety in gene frequencies and 
mutations (Fig. 1A). The first studies using NGS techniques 
focused on finding significant mutations as disease triggers. 
Typical studies using WGS and whole exome sequencing 
(WES) can be analyzed for detection of genetic variations and 
used for target sequencing of specific regions (18). 

First, there are several methods for targeted sequencing. In 
detail, oligonucleotide-selective sequencing (OS-Seq) was 
developed for capturing target genome regions with high 
specificity analysis of cancer genomes effectively and reprodu-
cibly (19, 20). Duplex-Seq has showed increased mutation 
frequency levels of the small selected regions of the nuclear 
genome in DNA (19, 20). Repeat sequences occupy a large 
portion of the eukaryotic genome. Because of their distingui-
shable character, they have been studied in genome evolution 
like genomic diversity, and their role in genome have been 
investigated using target sequencing. For example, molecular 
inversion probes short tandem repeats (MIPSTR) method 
specifically targets short tandem repeats (STRs), which makes it 
possible to detect low-frequency somatic STR variants (21). 
The transposon insertion sequencing (TN-Seq) is a transposon 
sequencing that provides information about transposon inser-
tion sites (22). In a mutant population, the sequencing can deter-
mine gene disruptions to find some of suppressors or other 
mutations. Retrotransposon capture sequencing (RC-Seq) is the 
same mechanism to the previous one, which is applied to 
analyze HCC samples and identify activating oncogenic pathways 
(23).

SNPs and/or Single-Nucleotide Variants (SNVs) can also be 

detected by particular sequencing methods, which are related 
with restriction enzyme digesting, restriction site-associated 
DNA sequencing like restriction site associated DNA sequencing 
(RAD-Seq), specific locus amplified fragment sequencing (SLAF- 
Seq), and restriction site DNA capture (Rapture) (24-26).

Gene expression can also be regulated by methylation pat-
terns on CpG regions and/or promoter regions (Fig. 1B). DNA 
methylation is one of the reasons of epigenetic modification, 
which regulates gene expression through the change of methy-
lation and demethylation status, especially in CpG and pro-
moter regions of the target genes. Therefore, many sequencing 
techniques were developed to detect the methylation pattern 
in genome. Whole genome bisulfite sequencing (WGBS) is the 
most popular tool for confirmation of methylated cytosines in 
whole-genomic DNA and bisulfite amplicon sequencing 
(BSAS). RRBS are also used to identify the methylation of DNA 
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(27, 28). Another method for observation of methylation in 
genome is the methylase assisted bisulfite sequencing (MAB- 
Seq), which allows quantitative mapping of both 5fC and 5caC 
that indicate demethylation events (29).

There are several methods for detecting genetic modification 
like DNA replication, and DNA strand breaks (Fig. 1C). In fund-
amental cellular life, DNA replication is used as important 
evidence for various genome regulation. Therefore, there are 
many techniques that have been introduced for screening the 
initiation sites of the DNA replication. Repli-Seq maps sequences 
of newly replicated DNA to the phases of cell division that 
validate as active DNA replication origin (30). In a similar 
way, Bubble-Seq, nascent strand sequencing (NS-Seq) and 
nascent strand capture and release (NSCR) can be utilized to 
verify the origin of DNA replication (31-33).

DNA strand breaks is also perceived by using sequencing 
techniques. The single strand break (SSB)-Sequencing shows 
single-strand breaks in DNA by direct detection of the patho-
logical and physiological fracture of the DNA. On the other 
hand, double strand break (DSB)-Sequencing/Break-Seq/Breaks 
Labeling, enrichment on streptavidin and next-generation sequen-
cing (BLESS) make it available to find double-strand breaks 
(DSB) on a genome wide scale (34, 35). Genome-wide unbiased 
identifications of DSBs evaluated sequencing (GUIDE-Seq), 
which is another way to detect DSB, relies on the integration 
of double-stranded oligodeoxynucleotides into DSBs (36).

NGS techniques for detecting dynamic chromatin structure
Physical access to DNA is an important property of chromatin 
that plays a crucial role in cellular characteristic (Fig. 1D). Chro-
matin structures can be analyzed by MNase-Seq and Methi-
diumpropyl-EDTA sequencing (MPE-Seq), whose techniques are 
based on the observation of nucleosomes and covalent attach-
ment of tags to capture histones and identify turnover (CATCH- 
IT), which measures the nucleosome turnover and disruption 
that use metabolic labeling followed by capture of newly synthe-
sized histones (37-39). In addition to these methods, DNase- 
Seq, formaldehyde assisted isolation of regulatory elements 
sequencing (FAIRE-Seq), and transposase hypersensitive sites 
sequencing (THS-Seq) could be selected to reveal genomic 
accessibility and open chromatin structure through representing 
nucleosome positioning and occupancy (40-42). Assay for trans-
posase accessible chromatin sequencing (ATAC-Seq) relies on 
the hyperactive Tn5 transposase at capable regions in a genome. 
Proteins could bind on open chromatin regions. For this reason, 
active chromatin regions are used to elucidate the possibility 
of protein binding regions. In detail, DNA-Protein interactions 
could be drawn by ChIP-Seq, chromatin immunoprecipitation – 
exonuclease digestion (ChIP-Exo), Chem-Seq, and systematic 
evolution of ligands by exponential enrichment sequencing 
(SELEX-Seq) (43-45).

In the nucleus, the 3D structure of the genome should be 
related to gene expression and the importance that has been 
steadily increasing. Therefore, many scientists are paying atten-

tion to study and reveal chromatin looping and physical inter-
actions (Fig. 1E). Thus, various techniques have been proceed 
to illustrate the structure of chromatin, such as ChIA-PET, Hi-C, 
Capture-C, Tethered Conformation Capture (TCC) and 4C-Seq 
(46-49). Chromatin interaction analysis by paired-end tag 
sequencing (ChIA-PET) that incorporates ChIP based technique 
and used for a new model of CTCF function identifying 
chromosome structure organization, gene transcription regula-
tion, and linking enhancers to promoters (50).

NGS techniques for detecting RNA modification
At the level of transcription, the proceeding of measurement of 
gene expression status could be defined as gene expression 
profiling (Fig. 1F). In this step, under specific conditions, gene 
expression levels are usually compared to each other. For this, 
RNA-Seq is a commonly used technique that can examine 
whole transcriptome for gene expression patterns (51). RNA- 
mediated oligonucleotide annealing, selection and ligation 
sequencing (RASL-Seq) and capture-Seq are similar techniques 
to quantify gene expression levels (52-54). Non-coding RNAs 
(ncRNAs) have been unveiled as other regulators for gene 
expression. MicroRNAs, one of the ncRNAs, also play an essen-
tial role in the control of gene expression levels and they are 
detected by miRNA-Seq (55). For profiling the transcriptional 
diversity in a single cell, massively-parallel RNA sequencing 
(MARS-Seq), cell expression by linear amplification sequencing 
(CEL-Seq), DROP-Seq were used in the study (56, 57). Several 
techniques are focused on specific regions. Cap analysis gene 
expression sequencing (CAGE-Seq) and simultaneous mapping 
of RNA ends sequencing (SMORE-Seq) could be used to 
uncover the presence of transcription start site and measure 
gene expression levels (58, 59). Additionally, there are other 
methods for detecting specific regions of RNA. Transcript leader 
sequencing (TL-Seq) could be suggested for sequencing of 5’ 
UTR and TAIL-Seq reveals 3’ends of RNAs (60). In addition, 
TAIL-Seq allows to estimate Poly A tail length (61).

Some proteins have a role in RNA regulation through bin-
ding to RNA (Fig. 1G). In unwound DNA strand, RNA poly-
merase and some other proteins interact with it, then RNA 
transcripts are produced. In order to analyze that circumstance, 
precision nuclear run-on sequencing (PRO-Seq) presents the 
site of active RNA polymerase, bromouridine sequencing 
(Bru-Seq) and global run-on sequencing (GRO-Seq) show 
nascent RNA transcripts to analyze synthesis and stability of 
RNAs (62, 63). In addition to that, GRO-Seq has also been 
performed to identify enhancer RNAs (64). In order to predict 
the protein binding sites of RNAs, RNA immunoprecipitation 
sequencing (RIP-Seq), and targets of RNA binding proteins 
identified by editing (TRIBE) used to determine RNA-protein 
association and identify the target RNA sequences of RNA 
binding proteins (RBP) (65-67). After transcription, ribosomes 
interact with RNAs for protein synthesis. Ribo-Seq is a ribosome 
profiling technique that figures out the location of ribosome in 
mRNA translation (68). Translating ribosome affinity purification 
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sequencing (TRAP-Seq) is another method used to clarify trans-
lating mRNAs and profile cell type specific translatomes (69).

RNA methylation is another method of regulating gene ex-
pression epigenetically at the transcriptional level (Fig. 1H). 
Since these variations of RNA have been discovered in cancer, 
many studies have been carried out to affirm the methylation 
patterns of RNAs (70). Methylated RNA immunoprecipitation 
sequencing (MeRIP-Seq) was developed to show m6A methy-
lated RNA, also miCLIP indicates m6A locations (71, 72). Degra-
dation of RNAs can be also detected using sequencing tech-
niques. Parallel analysis of RNA end sequencing (PARE-Seq) 
was published to identify microRNA cleavage sites as degra-
ding RNA and genome wide mapping of uncapped and cleaved 
transcripts (GMUCT) was brought out to discover uncapped 
and cleaved transcripts (73, 74). Today, the secondary structure 
of RNA is also focalized to understand RNA modification in 
between processes of transcription and translation. Therefore, 
several techniques have been published. Selective 2’hydroxyl 
acylation analyzed by primer extension (SHAPE-Seq) is the 
RNA structure analysis technique (75). Additionally, structure-seq 
and parallel analysis of RNA secondary structure sequencing 
(PARS-Seq) are probing RNA secondary structures in genome 
wide scale (76, 77). These techniques can simultaneously 
measure single nucleotide resolution secondary and tertiary 
information for a lot of RNA molecules of arbitrary sequence.

DISCOVERING BIOMARKERS FOR LIVER DISEASE 
THROUGH NGS DATA

As liver disease could be caused by a variety of factors, such 
as viruses and alcohol, the treatment methods differ depending 
on the cause. Liver disease is developed through several stages 
for a long time. Unfortunately, liver disease patients are often 
asymptomatic and can remain unaware of their condition until 
late stages of the disease. Chronic liver disease is characterized 
by progressive hepatic fibrosis and it leads to the formation of 
cirrhosis, HCC, and liver failure, often requiring liver transplanta-
tion. However, it is only possible to reversibly return to a 
favorable state in the early stages of the disease (10). That is 
the reason why detection of biomarkers is needed for early 
diagnosis. Many studies have been conducted to find the dif-
ference between cirrhosis and cancer, which is the late stages 
of the disease (10). Therefore, it is necessary to discover bio-
markers capable of detecting liver diseases at an early stage by 
comparatively analyzing specific markers for each stage of 
liver disease.

NGS techniques have been substantially utilized to identify 
functional mechanisms and novel biomarkers in diverse diseases 
(3, 6, 17, 78-82). In previous studies using NGS techniques, 
significant characters of different tissue/cell status have been 
identified with a single type or multiple types of NGS data in 
disease, development or specific condition. Biomarkers identified 
with NGS technique for liver disease were as summarized in 
Table 1. At the start, genome sequencing is one of the most 

popular approaches in the identification of genomic mutations 
and figure out the mechanisms of diseases. Analysis of muta-
tions using WGS or WES enables the prediction of diseases 
degeneration or discover influential driver genes. Marker genes 
have been identified by undermining essential meanings of 
somatic mutation patterns varied in accordance with different 
disease states. In progress of HCC, normal hepatocellular cells 
into carcinoma cells, analysis of genetic alterations using WES 
data was carried out to verify irregular interruption of cellular 
pathways related to the cancer occurrence and identify driver 
genes (83). Genomic variations were also observed in disease 
stages before tumorigenesis. In detail of the liver disease before 
tumorigenesis, hepatitis virus, alcohol abuse, and non-alco-
holic steatohepatitis (NASH) are commonly known as the 
causal factors and they ultimately lead to cirrhosis, a stage of 
liver fibrosis (6, 84, 85). A research with WGS analysis focused 
on cirrhosis derived from chronic liver disease states – alco-
hol-related liver disease (ARLS) and non-alcoholic fatty liver 
disease (NAFLD) (6). They observed heterogeneity through 
somatic mutations and the results suggested that chronic liver 
disease has increased rates of mutation, complex structural 
variation, and low mutations targeting known HCC genes (6). 
In another research, the researchers were more focused on the 
chronic liver disease states before cirrhosis (84). Recurrent 
mutations on chronic liver diseases tissue were found through 
WES analysis (84). It provided evidence that the somatic muta-
tions are highly related to liver fibrosis stage and specific 
mutations – PKD1, KMT2D, ARID1A and PPARGC1B – pro-
mote hepatic fitness and regeneration against liver injury but 
non-existent in cancers (84). 

In addition, a large-scale study is underway to confirm the 
correlation between abnormality including mutation in the 
genome and liver disease (3, 6). For example, copy-number 
variations (CNVs) in 38 types of cancers were found as a part 
of the pan-cancer analysis of whole genomes (PCAWG) 
consortium analyzing 2,658 cancers and the result suggested 
that the CNVs could be used as diagnostic markers in the early 
stage of cancers (86). In addition, somatic mutations found in 
the hepatocellular carcinoma (HCC) were related to highly 
expressed hepato-specific genes, providing evidence of liver 
tumorigenesis (7). A research revealed that genomic markers of 
liver cancer could also be identified with WGS by genomic 
subtyping (3). In the process, they figured out the correlation 
between single nucleotide variations (SNVs) load and two 
types of heterozygosity mutations – gain-of-heterozygosity 
(GOH) and loss-of-heterozygosity (LOH) – by categorizing the 
SNV loads of 110 liver cancers obtained by paired blood- 
tumor WGS (3). Additionally, it was showed that the recurrent 
somatic survival-related CNVs (srCNVs) are linked to the LOHs, 
as they are more relevant to HCC short survival (3). The analy-
sis of WGS data along with prognostic survival analysis indi-
cated that malignant cancers tend to have a large number of 
SNV, LOHs, and CNV mutations (3). Based on the result, SNV 
load, LOH%, Signature a%, or srCNV were suggested as remark-
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able factors as genomic markers (3). 
Furthermore, a transcriptome research of the liver showed 

differentially expressed genes between NAFLD and HCC by 
analyzing RNA-Seq (87). By using RNA-Seq data, co-expres-
sion analysis was performed between NAFLD and HCC by 
focusing FANS known as putative key regulatory gene in 
progressive and development to several disease stages was 
screened and the result confirmed that the expression levels of 
PCSK9, PNPLA3, and PSCK9 were associated with disease 
severity (87). Similarly, significant non-coding RNAs like micro 
RNAs for disease progression were found using sequencing 
techniques, such as small RNA-Seq and miRNA-Seq (88-90). 
These sequencing techniques are also conducted with RNA- 
Seq application (91-93). IMP2 was implicated in HCC develop-
ment as a risk factor through miRNA regulation (93). Deregu-
lation of HAND2-AS1 caused CNVs, and DMRs was revealed 
as a metastasis and tumorigenesis risk feature in HCC, which 
was confirmed with the correlation among RNA-Seq, small 
RNA-Seq, CNVs Affymetrix CytoscanHD array, and DNA methy-
lation microarrays (91).

INTEGRATIVE ANALYSIS WITH TRANSCRIPTOME AND 
OTHER SEQUENCING APPLICATIONS

Although NGS data have been accumulated according to the 
advances in technical methods of sequencing, it is still not 
enough to uncover all of the biological phenomena. In this 
respect, integration of numerous NGS data types could be 
utilized to find further biological meanings. However, it is not 
a simple problem to design integrative analysis. The reason is 
due to the diversity of research purpose as it can even make or 
break the overall research. Hence, recently, how to integrate 
multiple sequencing data is the most remarkable point in 
researches discovering molecular mechanisms. Previous studies 
were adopted integration analysis to understand pathology of 
carcinoma or diseases in the liver.

In spite of previously discovered relations between mutations 
and diseases through genomic sequencing data analysis, there 
are still many limitations on understanding gene regulations 
relevant to diseases progression. Besides the significance of 
genome analysis in contribution to verify mutations, it is also 
essential to estimate expression levels of genes for researches 
on mechanisms of gene regulation. Thus, most of sequencing 
integration studies have been based on RNA-Seq to obtain 
transcriptomic information and to realize uncovered parts of 
different cancers or complex diseases in specific organs (82, 
94-100). Through integrative analysis, previously studied theories 
have been confirmed with RNA-Seq adopted to other sequen-
cing techniques, such as WGS, small RNA-Seq or miRNA-Seq, 
ATAC-Seq or DNase-Seq, ChIP-Seq, and/or WGBS or RRBS 
(Fig. 2A). The correlation between altered expression levels of 
genes and genetic variations with integrative analysis of RNA- 
Seq and Genome sequencing including WGS and WES could 
be confirmed (2, 13, 82, 101). As mentioned above, RNA-Seq Ta
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Fig. 2. Integrative analysis with complex biological meanings. (A) 
Integrative analysis pipeline for RNA-Seq data based and several atta-
ched optional sequencing applications with biological meanings. 
(B) Genome data could be integrated with transcriptome data. (C) 
Integrative analysis of Methylation patterns on CpG islands and 
RNA expression patterns could be explained with together. (D) The 
effect between chromatin modifications on genome and transcrip-
tome patterns could be used to investigate gene regulation. (E) Chro-
matin structures involved in regulating gene expression levels.

and small RNA-Seq or miRNA-Seq that have been used to 
reveal the regulation of non-coding RNAs could also be 
associated with gene expression levels (91-93). Enhancer 
formations and activities are also considered with gene expres-
sion levels and this consequential meaning has been studied 
with RNA-Seq, ATAC-Seq or DNase-Seq, and ChIP-Seq (14). 
Combined of RNA-Seq, ChIP-Seq, and Hi-C or TCC data en-
ables to explain that chromatin structural modifications and 
enhancer activities are components for the alterations of gene 
expression levels (11, 12, 98). RNA-Seq and BS related tech-
niques, like WGBS and RRBS, can be used to find the inverse 
correlation between gene expression levels and methylation 
patterns in CpG and/or promoter regions (15, 82). 

Integrative analysis of transcriptome with genome
For instance, related studies published strong correlations of 
genome and transcriptome (Fig. 2B) (2, 13, 101-103). These 
showed that somatic variations caused over-expression of 
oncogenes in HCC and emphasized the necessity of the 
integrative analysis (101). As another trial to integrate genome 
and transcriptome sequencing in HCC, differentially expressed 
genes (DEGs) were found in large CNV segments and func-
tional analysis was performed to examine the results (2). TTK, 
a protein kinase related to p53 signaling, was identified with 

the integrative analysis for a prognostic marker in HCC (2). 
Further, for therapeutic purpose, integrative analysis was per-
formed to discover alternative drugs to sorafenib, a pre-found 
drug of HCC, which turned out to have limited usage due to 
high toxicity on HCC based on a clinical trial (13). The multi- 
omics analysis included genetic, transcriptomic, and additional-
ly proteomic data of 34 liver cancer cell lines (LCCLs), inclu-
ding HepG2 and Huh6 of hepatoblastoma (13). Genome analy-
sis with WES was conducted to validate similarities of genetic 
alterations between LCCLs and HCC and expression patterns 
through miRNA and mRNA analysis were integrated by elastic 
net regression (13). The integrated results were used to predict 
the sensitivity of the drugs followed by identification of 
molecular markers (13). In sum, integrative analysis of genetic, 
transcriptomic, and proteomic profiles was performed to find 
novel candidates of therapeutic markers in HCC (13). The 
result was combined with single agents, validated combinations, 
or drug screening, which were previously approved or being 
in clinical development. Thus, it provided possibilities of applica-
tion of identified markers to clinical trials (13).

Integrative analysis of transcriptome with epigenome
Data integration approaches, which include epigenome but 
independent on DNA sequences, have been increasing in 
studies of various influential factors on gene regulatory mecha-
nisms in diseases (97). Integrative analysis based on transcrip-
tomic data was conducted with varied combinations of epi-
genome data for ascertaining disease progression. Environ-
mental gene regulations could be explained with epigenetic 
modifications obtained by sequencing data. As a representa-
tive, the epigenetic factors include interactions of transcription 
factors (TFs) with specific genomic regions, DNA methylation pat-
terns, histone acetylation or methylation, and formations of 
chromatin looping. We summarized previously published studies 
working with integrative analysis of epigenetic data based on 
the transcriptomic data, largely categorized as three classes – 
methylome, chromatin modification, and chromatin structure. 
In those studies, individual sequencing methods were selected 
depending on the particular purpose of each research.

Methylome: DNA methylation has been expected to play a 
central role for epigenetic changes and reported to have in-
verse relation with gene expression levels (Fig. 2C) (15, 82, 
104, 105). There were tries to manifest the relation between 
the pattern of methylated genome regions and gene regulation, 
independent on the observed somatic mutations in HCC. A 
study clarified the inverse correlation between methylome 
landscape of C3H mice and gene expression levels through 
the analysis of RRBS and microarray expression analysis (105). 
For deeper understanding of human liver in epigenetics, sequen-
cing data, including RNA-Seq, RRBS, DNase1-Seq, and ChIP- 
Seq, were analyzed (15). As an attempt to identify biomarkers 
in liver disease, the integration of sequencing data of epigenetic 
modification and transcriptome contribute to better understand-
ing of regional tissue organization programs changing in 
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disease progress. The distinguishable epigenetic changes were 
observed based on the data among zonal networks of peri-
central, intermediate, and periportal areas in different disease 
states of hepatocytes (15). In the point of integrated analysis of 
transcriptome and methylome, DEGs and differentially-methylated- 
regions (DMRs) of CpGs on transcriptional start sites (TSSs) 
were recognized using principal component analysis (PCA) 
(15). Gene ontology (GO) was analyzed with the DEGs repre-
senting negatively correlated expression patterns with DMRs 
(15). The result confirmed the certainty of functional driver 
genes in point zonated metabolic enzymes, which showed the 
consistency of hypomethylation and overexpression patterns 
(15). Another integrative analysis was performed to focus on 
an epigenetically regulated protein complex including E3 ubiqui-
tin-like containing PHD and RING finger domain 1 (UHRF1) 
involved in DNA methylation and regulation on promoter 
regions in human hepatoblastoma (HB) cell lines – HUH6, 
HepT1, and HepG2 (106). Through integrative analysis of bisulfite- 
treated DNA pyrosequencing and RNA-Seq, epigenetic func-
tions of UHRF1 were validated by finding HB-specific transcrip-
tional changes on HHIP, IGFBP3, and SFRP1 which were 
highly expressed with decreased methylation levels on UHRF1 
depleted HB model (106). In addition, the overexpression of 
UHRF1 was shown in patients with poor disease status (106). 
As a result, the role of UHRF1 was identified as a critical 
epigenetic gene in HB and UHRF1 was suggested as a 
prognostic biomarker in HB (106).

Recently, integrative analysis of transcriptome and methylome 
was carried out to identify biomarkers in osteoporosis (82). 
Multi-omics data, including transcriptome, methylome, and meta-
bolome, was integrated by sparse multiple discriminative cano-
nical correlation analysis (SMDCCA), a multivariate integrating 
method that is used for searching optimal linear combination 
of features, and the integrated data was combined with ge-
nome (82). SMDCCA is a valid method of finding potential 
biomarkers. The integrated result was evaluated with pre-inte-
grated data of 1,5994 DEGs with 1,219 DMRs and 204 DMPs 
to investigate potential causal effects of the pre-found biomar-
kers (82).

Chromatin modification: It is common to perform ChIP-Seq 
and combine with gene expression patterns. ChIP-Seq is the 
most popular method to reach out for the aim of realizing the 
chromatin structure in whole genome including non-coding 
regulatory regions (Fig. 2D). Using the technique, chromatin 
modifications could be observed as active and/or repressive 
regulatory regions through detecting histone modifications and 
protein bindings, such as TFs binding. Gene regulatory systems 
are operated on proximal and also distal regulatory regions 
followed by RNA transcription process. Additionally, the regu-
latory regions are occupied by bindings of TFs along with 
accessible chromatin structure. In a research of enhancers 
related to the Kupffer Cell (KC), DEGs of repopulating liver 
macrophages (RLMs) were selected by RNA-Seq analysis and 
the expressions of pre-defined identity genes were obtained 

simultaneously (14). Open chromatin regions of the DEGs 
were found by ATAC-Seq and putative KC specific enhancers 
were identified in recruited monocytes using histone3 lysine27 
acetylation (H3K27ac) ChIP-Seq, which is known as active 
histone marker (14). In addition to the integrative analysis of 
ATAC-Seq and ChIP-Seq, motif search in previously found 
distal open chromatin regions of RLMs was conducted and 
LXR, SMAD4, and RBPJ ChIP-Seq – TF ChIP-Seq – were 
performed (14). The result showed that liver environmental 
signals induce expression of regulatory related TFs, which 
have an influence on additional enhancers of KC differenti-
ation (14). With more concentration on the integrative analysis 
of RNA-Seq and ChIP-Seq data, a recent study of gene regu-
lations related to hepatic lipid handling compared the tran-
scriptome and cistrome of B cell lymphoma 6 (BCL6) (98). 
BCL ChIP-Seq peaks were annotated to TSS and they were 
grouped according to their transcriptional change as ‘Repres-
sed’, ‘Activated’, and ‘Unchanged’ (98). Grouped genes were 
analyzed by gene ontology analysis and enrichment analysis 
and the similar methods was selected for the PPAR, 
BCL6-PPAR analysis (98). As a result, it led to conclusion that 
BCL6 in hepatocytes is related with repressed fatty acid oxida-
tion and functions as a negative regulator (98).

Chromatin structure: In respect to chromatin looping struc-
ture, mapping 3D chromatin organization is a prior aim in 
integrative analysis of the NGS technique. As ChIP-Seq detects 
either cis-acting elements or trans-acting factors, the integrative 
analysis often involves ChIP-Seq with RNA-Seq data in addi-
tion to chromatin conformation capture sequencing data (Fig. 
2E). CCCTC binding factor (CTCF) was revealed as a highly 
conserved zinc finger TF and it plays a key role in maintenance 
of topologically associating domains (TADs) relevant to establi-
shment of chromatin structure (11). Integration of multi-omics 
data was processed by comparing each data to describe how 
CTCF contributes to the stability of TADs (11). CTCF binding 
regions were detected by analyzing genome-wide ChIP-Seq 
and gene expressions affected by the CTCF binding was 
obtained by integrating ChIP-Seq and RNA-Seq analyses (11). 
The integrated result was compared to the TAD boundaries 
identified by Hi-C, an NGS technique to capture the confor-
mations of chromosome in mouse liver tissue (11). Conse-
quently, clustered CTCF sites were found to stabilize cohesin 
and transcriptional regulation (11). Similarly, another previous 
study in mouse hepatocytes figured out the role of CTCF and 
cohesin and measured the effect on chromosome organization 
through tethered chromatin capture (TCC) (12). TCC is a 
modified Hi-C technique that was developed to improve map-
ping of low-frequency interactions on the reaction phase (49). 
In addition to the result, RAD21 and SMC3 ChIP-Seq were 
used to observe non-dividing hepatocytes when cohesin was 
lost by the depletion of cohesin loading factor, NIPBL/SCC2 
(12). The depletion of NIPBL caused elimination of TADs even 
when the pattern of CTCF occupancy on chromatin boundary 
was not changed (12). The result suggested that the CTCF has 
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a distinct function with cohesin on chromosome looping (12). 
Moreover, the loss of NIPBL involved in dysregulation of 
genes meant communication impairment for gene expression 
between H3K27ac and H3K4me3 enriched in promoters and 
enhancers (12). In summary, the integrative analysis of 
transcriptome and chromatin conformation discovered an 
ability of cohesin to alter gene expressions regulated with 
enhancers through modification of chromatin folding (12). 
ChIA-PET adopted the advantage of ChIP-Seq and chromo-
some conformation capture system, and it could be an alter-
native technique to show the interactions of regulatory regions. 
In a previous study, CTCF-mediated ChIA-PET was used to 
evaluate the results from integrative analysis of Hi-C and ChIP- 
Seq, which was conducted to identify a super-enhancer (SE) 
associated with chromatin interactions, including CTCF and 
cohesin in K562 cell line (99). In human liver, to figure out 
chromatin interaction maps of gene regulatory network, disease- 
relevant genes involved in regulatory system were character-
ized by various omics data including RNA-seq, H3K4me3 and 
H3K27ac ChIP-seq, genome-wide associated study (GWAS), 
and Capture-C, all extracted from human liver tissues except 
Capture-C from HepG2 cell line (107). The integrative analysis 
of chromatin looping structure and transcriptome profiling 
showed the effect of enhancer activity on gene regulation like 
KPNB1 and SORT1 which had promoters interacted with H3K27ac 
peaks (107). It could be suggested that the genotype-depen-
dent regulatory elements and driver genes related to complex 
trait pathogenesis could be discovered by integrative analysis 
of genotypes, expression levels, regulatory loci, and chromatin 
looping (107). 

CONCLUSION

The development of NGS sequencing technique has been 
dramatically increased during the past two decades. Therefore, 
lots of different attempts have also been increased to contrive 
the improved techniques to specific purposes. As a result, 
various kinds of methods using NGS have been come into the 
world to discover the whole process of genomic and epige-
netic regulation on biological phenomena in more details. 
Based on the discoveries, identification of novel biomarkers 
gets another approach. In contrast to previous biomarkers un-
covered by radiology, sequencing data provide more convinced 
evidences in a microscopic aspect. Although trends on novel 
biomarkers of diverse diseases increase with abundance of 
biological data from sequencing, the procedure of data analysis 
has not yet been constructed systemically. Even with same 
type of data, integration depends considerably on analysis 
tools (100). Therefore, integration analysis is still figuring it out 
with careful consideration of how to integrate various sequen-
cing data that have different properties and how to deal with 
huge size of sequencing data. In most of the previous studies, 
traditional statistical methods have conducted research on data 
analysis. However, following the generation speed and trend 

of bulk size sequencing data, nowadays, many studies have 
aggressively implemented to apply computational algorithms, 
such as AI (97). AI is an upcoming big trend in data analysis 
field especially with classification. With the results of analysis 
data using NGS as an input, iterative modeling process of AI 
makes it possible to classify samples into several disease stages 
and it can also suggest significant genes as biomarkers. The 
advanced integrative analysis of NGS and the modeling more 
elaborate AI algorithms will let us discover novel biomarkers 
unseen before.
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