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Abstract

Neurology is one of the typical disciplines where personalized medicine has been recently becoming an important
part of clinical practice. In this article, the brief overview and a number of examples of the use of biomarkers and
personalized medicine in neurology are described. The various issues in neurology are described in relation to the
personalized medicine and diagnostic, prognostic as well as predictive blood and cerebrospinal fluid biomarkers.
Such neurological domains discussed in this work are neuro-oncology and primary brain tumors glioblastoma and
oligodendroglioma, cerebrovascular diseases focusing on stroke, neurodegenerative disorders especially Alzheimer’s
and Parkinson’s diseases and demyelinating diseases such as multiple sclerosis. Actual state of the art and future
perspectives in diagnostics and personalized treatment in diverse domains of neurology are given.
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Background
The term “personalized medicine” (PM) was first
explained in detail in Kewal K. Jain’s Textbook of
Personalized Medicine, published in 1998. The first ref-
erence made to PM in the MEDLINE database dates
back to 2000. It describes the predicted effect of albute-
rol in asthma sufferers based on their DNA makeup.
This was the first example of personalized treatment
based on human genome sequencing [1]. Personalized
medicine is closely related to pharmacogenetics and
pharmacogenomics, and the field primarily grew in the
period after the complete human genome was mapped
in 2000 [2].
It is difficult to offer a precise definition of person-

alized medicine. Sometimes other terms are used,
such as therapy according to diagnosis, genomic
medicine, genotype-based therapy, individualized or
individual medicine, omics-based medicine, predictive
medicine, rational drug selection, and tailored therapy.
In this review, we provide the overview and a number

of examples where personalized medicine, or an

individualized approach to therapy, has been recently
applied in neurology domain. Our article conforms with
the recommendations of the “EPMA White Paper” [3].

Biomarkers and personalized medicine in
neuro-oncology
In recent times, there has been a significant expansion
of knowledge in the field of neuro-oncology regarding
the onset and development of neoplastic disease at the
genomic and epigenomic levels. New prognostic and
predictive biomarkers for the disease are appearing and
the basic view of the histological typing of central
nervous system (CNS) tumors is changing. In the near
future, it will likely be necessary to integrate personal-
ized medicine into standard clinical care for patients
suffering from neurological cancer. The current World
Health Organization (WHO) typing from 2007 recog-
nizes more than 130 different histopathological units of
primary CNS tumors [4]. This represents a very exten-
sive and markedly heterogeneous group of diseases, with
individual types of tumors exhibiting various biological
behaviors. Moreover, even in the given histopathological
units, further segmentation is starting to establish itself
that is based on molecular genetics profiles resulting
from international groups’ current whole exome and
whole genome sequencing studies, which focus on the
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genomics and epigenomics of neoplastic diseases. An
ambitious project that may serve as an example is a
tumor atlas of selected cancer diagnoses, The Cancer
Genome Atlas (TCGA), sponsored by the National
Institutes of Health (NIH) in the United States. In a
sample of 500 previously untreated patients, the NIH
was the first in the world to clarify changes in the
most frequent and most malignant primary brain
tumor, glioblastoma multiforme (GBM), at the DNA,
mRNA and short non-coding microRNA’s levels [5].
This led to the new division of what till then had
been a homogenous group, GBM, into four subtypes
according to dissimilar gene expression profiles with
differing responses to conventional chemotherapy. In
the future, this may contribute to the further
personalization of tumor therapy for this type of disease.
Despite the marked diversity of primary CNS tumors,
the absolute majority are tumors of neuroepithelial
tissue, specifically the astrocytoma group. It is further
divided according to growing malignancy potential into
four groups of gliomas, with GBM having the highest
representation. Despite the limited options for choosing
standard glioma therapy for now, new prognostic and
predictive biomarkers have recently appeared that will
soon allow for therapy to be “tailored” to each patient
with the aim of achieving longer survival and better
quality of life [6, 7].
The forecast of a more favorable prognosis as well

as the prediction of a better response to the therapy
administered are both important elements in the basic
principles of personalized medicine. In this regard,
several predictive CNS tumor biomarkers are import-
ant and it is expected that they will be included in
clinical practice. The predictive biomarker in GBM
patients probably closest to practice is the status of
O6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation [8–10]. The MGMT enzyme is
able to effectively repair the DNA damage caused by
temozolomide, a standard chemotherapy administered
to patients. MGMT-promoter methylation reduces the
production of the active enzyme and the patient’s re-
sponse to temozolomide therapy is higher, as has also
been reflected in the longer overall survival periods of
GMB patients at 21.7 vs. 15.3 months [11]. The status
of MGMT-promoter methylation may also serve as a
predictive biomarker in relation to radiotherapy [12].
The isocitrate dehydrogenases (IDH) mutation is an

important glioma biomarker near clinical application
that is able to contribute to determining the patient’s
prognosis. IDH is an important Krebs cycle enzyme
and has three different isoforms—IDH1 (found in the
cytoplasm and peroxisomes) and IDH2 and 3 (in the
mitochondria) [13]. Recurrent mutations in IDH were
first systematically described in patients with GBM,

though only in about 5 % of the patients [14]. In contrast,
gene mutations for IDH1 and IDH2 were found with high
frequency in diffuse astrocytomas (70–80 %) and anaplas-
tic astrocytomas (up to 50 %) [15]. Mutations in IDH1
show conservative substitution of R132H in 90 %; R132C,
R132G, R132S and R132L are also known. Mutations in
IDH2 are far more rare and primarily involve R172 substi-
tution [16]. In terms of personalized medicine in neuro-
logical cancer patients, the marked impact of these
mutations on the disease prognosis is especially import-
ant, regardless of the therapy used. It has been found that
GBM patients with IDH1/2 mutations have a significantly
longer median of overall survival than patients without
these mutations. Several different papers have shown 3.8
vs. 1.1 years, 2.6 vs. 1.3 years, 2.3 vs. 1.2 years, and 3 vs.
1 year of overall survival [14, 15, 17–20]. Even more
significant differences in overall survival were found
in patients with anaplastic astrocytomas: 5.4 vs. 1.7 years,
6.8 vs. 1.6 years and 7 vs. 2 years [15, 17, 18]. Similarly,
diffuse astrocytoma has a far better prognosis if there is
a mutation in IDH1/2: 12.6 vs. 5.5 years [17]. Recent
meta-analysis of 55 observational studies has shown
that patients with gliomas positive for IDH1/2 muta-
tions have improved both overall survival and
progression-free survival, especially patients with WHO
grade III and grade II-III tumors [21]. Moreover, the
combination of two biomarkers (IDH1 mutation and
MGMT methylation status) outperforms either IDH1
mutations or MGMT methylation alone in predicting
survival of glioblastoma patients [22].
Oligodendrogliomas are also important representatives

of neuroepithelial tumors of the CNS. WHO grade III
anaplastic oligodendrogliomas (AO) are among those
with a higher malignancy potential [4, 23]. The median
overall survival of AO patients is reported as between 2
and 6 years with standard treatment. Conventional
radiotherapy may be augmented with a combination
regimen of PCV (procarbazine, lomustine and vincris-
tine) chemotherapy, though the effect of combined
radiotherapy and chemotherapy on the overall survival
of newly diagnosed AO patients has not been sufficiently
proven for a non-selected population [24]. A certain
breakthrough in regards to adjuvant chemotherapy in
the treatment of AO occurs only with the application of
the principles of personalized medicine and predictive
biomarkers. Molecular changes in a certain group of
AOs, the co-deletion of the short arm of chromosome 1
(1p), and the long arm of chromosome 19 (19q) in neo-
plastic tissue, have been known for a relatively long time
[25, 26]. Following several dramatic responses to AO
therapy with a combination PVC regimen and radiother-
apy in the 1990s, two international phase III clinical
trials of combination chemo-radiotherapy for AO
patients were launched: Radiation Therapy Oncology
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Group (RTOG) trial 9402 and European Organization
for Research and Treatment of Cancer (EORTC) trial
26951. In these trials, the co-deletion of 1p/19q was
monitored as a potential predictive biomarker of re-
sponse to treatment. An ongoing analysis of the re-
sults of both studies in 2006 did not find a
statistically significant relationship between the overall
survival of patients who received radiotherapy alone
or radiotherapy in combination with PCV and the
presence of 1p/19q co-deletion [27, 28]. However,
data from the long-term monitoring of both inde-
pendent studies now clearly show a significant in-
crease in the overall survival of patients with proven
1p/19q co-deletion in the neoplastic genome that
were treated with combined radiotherapy and PCV
chemotherapy. With a median patient monitoring
period of 11.3 and 11.7 years in RTOG 9402 and
EORTC 26951, respectively, the increase in the overall
survival of AO patients was found to be 14.7 vs. 7.3 years
(HR = 0.47, P < 0001) and NR (median overall survival not
reached) vs. 9.3 years (HR = 0.56, P = 0.0594) for patients
with 1p/19q co-deletion who received combined therapy
[28, 29]. This clinical trial clearly demonstrates the pre-
dictive significance of the 1p/19q co-deletion biomarker in
newly diagnosed AO patients and its effect on long-term
survival for decades from the start of combined therapy.
These clinically very significant findings are successful

examples of the integration of the principles of personal-
ized medicine into modern neuro-oncology and will cer-
tainly soon become an important addition to standards
in decision algorithms regarding care for these patients
[10, 30–32] (Table 1).

Biomarkers and personalized medicine in
cerebrovascular diseases
Care for patients suffering from cerebrovascular diseases
is highly sophisticated, based on high-quality diagnostics
that allow physicians to determine the cause and extent
of stroke and select the optimal treatment. In addition
to clinical examinations and basic laboratory parameters,
imaging methods (CT, CT perfusion, CT angiography, or

MRI) are needed. In cases of acute cerebrovascular acci-
dents, the rapid administration of the target treatment is
essential to success. What else can biomarkers and con-
cept of personalized medicine offer to this field?
The determination of blood biomarkers is an area that

offers promise but as yet little applicability [33–35]. The
ideal blood biomarker should be highly specific and sen-
sitive, able to differentiate stroke mimics, determine the
type and extent of stroke and have a predictive value for
serious stroke complications, such as the risk of malig-
nant edema or risk of hemorrhagic transformation of is-
chemic stroke.
However, such a single biomarker does not exist. In

spite of this, the field is being carefully studied and cer-
tain partial successes have been described. Ischemic and
hemorrhagic stroke lead to rapid changes in the signal-
ing pathways and metabolic processes. Brain damage, is-
chemic cascade, activation of the immune system and
blood-brain barrier dysfunction lead to an expression of
biomarkers and the possible detection of these markers
in peripheral blood.
The ischemic cascade includes the activation of glia,

oxidative stress, the release of inflammatory mediators
and neuron damage [36]. Biomarkers with relative
specificity towards these processes could be detected
in blood [37]. Biomarkers for glial activation include
S100 beta, glial fibrillary acidic protein and myelin
basic protein. S100 beta is also marker of astrocyte
activation and brain tissue injury with low specificity
for ischemic stroke. Glial fibrillary acidic protein dif-
fered in hemorrhagic stroke compared with ischemic
stroke (p < 0.0001) within 4.5 h of symptom onset
[38]. Myelin basic protein is one of the main compo-
nent of CNS myelin and could be found in cerebro-
spinal fluid (CSF) and blood within first hours after
stroke onset. Determination in blood is sufficient. The
release of these biomarkers after stroke is associated
with the volume of brain lesions. PARK-7 and malon-
dialdehyde are biomarkers of oxidative stress. Their
potential clinical application is in early diagnosis of
stroke and in prediction of stroke prognosis. Biomarkers

Table 1 Examples of molecular biomarkers in gliomas and their clinical relevance

Molecular biomarker Assessment method Biomarker relevance

Diffuse gliomas (grade II) Anaplastic gliomas (grade III) Glioblastoma (grade IV)

1p/19q co-deletion FISH, PCR Positively prognostic Positively prognostic for RT or CHT
Predictive for PCV and RT

Very rare, unclear

IDH1/2 mutations RT-PCR, IHC, sequencing Positively prognostic Positively prognostic Positively prognostic, rare
Distinguishing secondary GBM

MGMT promoter methylation Methylation-specific PCR Unclear Positively prognostic Predictive for temozolomide

G-CIMP Methylation-specific PCR Positively prognostic Positively prognostic Positively prognostic

Abbreviations: IDH1/2 Isocitrate dehydrogenase 1 and 2, MGMT O6 methylguanine, DNA methyltransferase, G-CIMP Hypermethylator phenotype of cytosine-
phosphate-guanine islands in gliomas genome, GBM Glioblastoma multiforme, RT Radiotherapy, CHT Chemotherapy, FISH Fluorescent in situ hybridization, RT-PCR
Real time polymerase chain reaction, IHC Immunohistochemistry
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of inflammation include C-reactive protein, matrix metal-
loproteinase (MMP) 9, interleukin 6 (IL-6) and tumor ne-
crosis factor alpha (TNF-alpha). Namely MMP 9 have
been widely investigated for its role in disruption of the
blood-brain barrier and extracellular matrix following
stroke [37, 39].
The main biomarkers of neuronal damage are neuron

specific enolase and N-methyl-D-aspartate receptor
(NMDA-R). D-dimmer, fibrinogen, fibronectin, von
Willebrand factor and thrombomodulin are biomarkers
of endothelial dysfunction. Additional biomarkers are
lipoprotein-associated phospholipase A2 and brain natri-
uretic peptide (BNP). Blood biomarkers can help in dis-
tinguishing the etiology of stroke (BNP in cardioembolic
stroke), in predicting early neurological deterioration
and clinical outcome (S100 beta, MMP, IL-6, TNF-
alpha), and in predicting hemorrhagic transformation
(cellular fibronectin, MMP 9) [37, 40, 41]. However,
most of these biomarkers do not have a sufficient level
of sensitivity, specificity or both. Moreover the hetero-
geneity of different cell populations in the brain and
their ischemia tolerance and distributions within the
central nervous system, the complexity of the ischemic
cascade, and presence of the blood-brain barrier cause
that no single biomarker has ever been demonstrated to
be clinically useful. For this reason, batteries of bio-
markers are described that offer greater predictive value
when applied. For example, a panel of biomarkers for
the ischemic cascade can distinguish patients with acute
stroke from age and gender-matched control subjects
with a sensitivity and specificity of 90 % [42].
Another prospect is the use of biomarkers that signify

changes in the gene expressions that occur in minutes
and hours after the onset of stroke. These include cap-
turing changes in certain mRNA in the peripheral blood
and circulating leukocytes [43] or determining several
circulating microRNA [44, 45].
The clinical application of blood and gene biomarkers

in the acute phase of stroke has thus far run up against
technical limitations, speed of detection and especially
high cost. However, they may offer valuable additional
information about the type and prognosis of stroke.
Biomarkers can also be used in the field of stroke pre-

vention. Clopidogrel is transformed into an active me-
tabolite with a significant anti-platelet effect by
cytochrome P-450. Carriers of at least one of the trans-
formed allele of the enzyme CYP2C19 (about 30 % of
the population) have an increased risk of vascular acci-
dents. In the TRITON TIMI-38 study, they had a 53 %
greater risk of stroke, heart attack, and cardiovascular
death when treated with clopidogrel [46]. Dicumarol is
used for a 30 % reduction in the relative risk of cardio-
embolic stroke. Its individually transformed effect is tied
to polymorphisms in the genes VKORC1 and CYP2C9

[47, 48]. Statins are used for the relative reduction of
around 20 % in the onset of stroke. Statin-induced
myopathy is a risk associated with their use. This ef-
fect is tied to rs4149056 polymorphism in the
SLCO1B1 gene located on chromosome 12. Persons
with one variant allele have a 4.5 times greater risk of
statin-induced myopathy. Homozygotes with both
variant allele (2.1 % of the investigated population)
have as much as a 17-times greater risk of statin-
induced myopathy [49].

Biomarkers and personalized medicine in
neurodegenerative diseases
Biomarker research in neurodegenerative disease is a
rapidly advancing area in personalized medicine. The
good biomarker should have specificity more than
80 % and the same level of sensitivity (more than
80 %). The role of these markers is not only diagnos-
tic; they have also prognostic potential or role in de-
velopment of new treatment [50, 51]. A large number
of molecules have been evaluated and associated with
different neurodegenerative disorders, but only several
of them are validated and well-established. Current
status of the development of new biochemical bio-
markers for Alzheimer’s disease and Parkinson’s dis-
ease, two most common neurodegenerative disorders,
is discussed.

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common neuro-
degenerative disorder with prevalence from 2 % in
seventh decade to 25 % in ninth decade of life [52].
Diagnosis is difficult especially at early stages before
all of sings meeting criteria of AD are presented. So,
there is a great field for exploration of novel specific
and sensitive biochemical markers which do not con-
stitute discomfort for the patient and which are cost-
effective. Useful candidates have been found in blood
and in CSF [53]. Potential and already used bio-
markers of AD can be divided according to assumed
mechanisms of pathogenesis into markers related to
the amyloidogenic pathway and cholesterol metabolism,
markers of oxidation, markers of immunologic mechanism
and inflammation, markers associated with microvascular
changes and proteome-based plasma biomarkers [54].
Major CSF biomarkers that are used in clinical

practice are tau proteins (T-tau, P-tau) and amyloid β
(especially Aβ40, Aβ42). Amount of T-tau correlates
with the intensity of neuroaxonal degeneration, level
of P-tau reflects tangle pathology and Aβ correlates
with plaque pathology [55–57]. The specificity and
sensitivity of these biomarkers is between 80 and
90 % [58]. However, the lumbar puncture is relatively
invasive practice, especially repeated and in elderly
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patients. More comfortable tests are searched espe-
cially in blood and plasma.
Several studies deal with antibodies against amyloid β

as a biomarker of AD. Du at al. describe significantly
lower titres of Aβ antibodies in patients with AD [59],
but not in another study [60]. It was hypothesized that
more relevant target provides detection of low molecular
weight oligomeric cross linked Aβ protein species
(CAPS) and anti-CAPS antibodies [61]. Anti-CAPS are
significantly reduced in AD patients. These results sug-
gest possibility of using anti-CAPS as a plasma bio-
marker of AD and promising possibility of therapeutic
use in the future.
Further very interesting results provides a research of

amyloid precursor protein (APP). This protein is present
in central nervous system, but it is also expressed in per-
ipheral tissues such as in circulating cells. The isoforms
of APP can be detected in platelets membrane. The in-
tact 150 kDa weight APP is divided into two forms after
platelet activation [62]. The ratio of forms with molecu-
lar weight 120–130 kDa and of 110 kDa weight are
called “platelet APP isoform ratio,” and it is decreased in
AD and mild cognitive impairment (MCI) not in other
dementias [63, 64].
Markers related to cholesterol metabolism are total

cholesterol plasma level, CSF and plasma level of
24S-hydroxycholesterol, plasma level of apolipoprotein
E and apolipoprotein E genotype. There are three
major human apolipoprotein E isoforms—ε2, ε3, and
ε4; they are encoded by different alleles with different
risk for development of the AD [65–67]. These all
provide different and ambiguous results and the inter-
pretation for clinical use remains to be clarified in fu-
ture studies [68]. The promising biomarker would be
24S-hydroxycholesterol that is elevated in AD pa-
tients’ CSF and plasma [69]. New studies demonstrate
a sensitive and a powerful specific biomarker for early
and easy AD diagnosis—desmosterol. Desmosterol
was found to be decreased in AD plasma versus con-
trols and more significant in females [70].
Promising but also inconsistent results provided

studies of oxidation and immunologic biomarkers. AD
and vascular dementia are associated with decrease of
plasma and serum levels of vitamins A, C, E, and
dietary intakes of the three antioxidants can lower the
risk of AD [71]. Sano et al. found that supplementa-
tion of vitamin E delayed progression of AD [72] and
elevated levels of tocopherol and tocotrienol forms
are associated with reduced risk of cognitive impair-
ment in older adults [73]. A significant association
between AD and low levels of vitamin D has been
demonstrated [74]. Plasma level of isoprostane 8,12-
iso-iPF2α-VI as a specific and sensitive marker of
lipid oxidation is increased in AD and correlates with

level of cognitive and activities of daily living impair-
ment [75]. Other results show that plasma or urine
level of this marker do not accurately reflect situation
in the central nervous system [76]. Controversial data
have been published about α1—Antichymotrypsin
(ACT)—which is one of the components of senile
plaque. High plasma levels of ACT would be associ-
ated with an increased risk of AD [77].
The next candidate biomarker is Alzheimer-associated

neuronal thread protein (AD7c-NTP) which can be de-
tected in CSF, brain-tissue extracts, cortical neurons,
and urine. Its level also positively correlated with degree
of dementia [78].
Neuroimaging techniques can disclose signature ab-

normalities of brain morphology and function many
years before AD symptoms appear. A number of neu-
roimaging candidate markers are promising, such as
hippocampus, amygdala, and entorhinal cortex vol-
umes, basal forebrain nuclei or atrophy of the grey
matter of the medial temporal and dorsolateral frontal
lobes [58, 79, 80]. Sabuncu et al. examined a total of
317 participants with baseline cerebrospinal fluid bio-
marker measurements and 3 T1-weighted magnetic
resonance images obtained within 1 year. Their re-
sults show that AD-specific cortical thinning and hip-
pocampal volume loss are consistent with a sigmoidal
pattern, with an acceleration phase during the early
stages of the disease [81]. Fluorodeoxyglucose positron
emission tomography has shown a specific pattern of re-
gional hypometabolism. Hippocampal glucose metabolism
reduction was found in both mild cognitive impairment
and Alzheimer disease and contributes to their diagnostic
classification [82, 83]. Fleisher et al. used positron
emission tomography (PET) and florbetapir F18 to
image cortical amyloid in patients with mild cognitive
impairment or dementia due to Alzheimer disease.
Their analysis confirmed the ability of florbetapir-PET
to characterize amyloid levels in clinically probable
AD and mild cognitive impairment [84, 85].

Parkinson’s disease
Parkinson’s disease (PD) is another most common neu-
rodegenerative disease in human population with preva-
lence of about 1 % after the sixth decade. It is expected
a doubling of prevalence until 2030 [86]. Cardinal motor
symptoms of the disease (tremor at rest, rigidity, brady-
kinesia, and postural instability) are presented after more
than 50 % of dopaminergic nigral cells are damaged [87].
PD is not just motor disorder and its non-motor symp-
toms often precede the motor ones. These premotor
markers include olfactory and autonomic dysfunction,
sleep disorder, depression, and cognitive disturbances
[88, 89]. Biomarkers of PD are required for detection
persons at risk, for recognition of PD before clinical
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symptoms are presented, prediction of disease progres-
sion, for stratification of success of treatment or for dis-
tinguishing PD from parkinsonism. Unfortunately, no
validated diagnostic biomarker of PD is available.
Similar to AD, perspective biomarkers of PD can be

divided into biomarkers belonging to oxidative stress,
dopamine metabolism, α synuclein, auto antibodies
against α synuclein and inflammatory markers. Novel
approach is also demonstrated by research in the field of
metabolomic profiling.
The most promising results are provided by the re-

search of α synuclein which is one of the main compo-
nent of Lewy bodies and has been detected in serum,
plasma, saliva and CSF [86]. Studies of Mollenhauer
and Devic showed decreased level of α synuclein in
CFS in PD and in parkinsonism [90, 91]. Measurements
of α synuclein and phosphorylated α synuclein concen-
trations can distinguish PD from multiple system atro-
phy (MSA) and progressive supranuclear palsy (PSP)
[92]. MSA is a rare neurodegenerative disorder previ-
ously called Shy-Drager syndrome. It is classified into
two types: parkinsonian and cerebellar phenotypes. It is
characterized by abnormal accumulation of α-synuclein
but in contrast to PD with mainly accumulation in glial
cytoplasmic inclusions [93]. And PSP is a neurodegen-
erative syndrome that is clinically characterized by pro-
gressive postural instability, supranuclear gaze palsy,
parkinsonism, and cognitive decline [94]. El Agnaf re-
ported that oligomeric soluble forms of α synuclein are
significantly elevated in plasma of PD patients [95].
Also auto antibodies against α synuclein are elevated in
90 % of familiar PD cases and 51 % sporadic cases [96].
Several studies show abnormalities of inflammatory

markers. Chen reported that higher level of IL-6 is
associated with greater risk of PD [97] and Scalzo
found that higher levels of soluble TNF receptor-1
are connected with early onset of disease [98]. Inter-
esting role in pathogenesis of PD plays increased oxi-
dative stress. For example, significant reductions of
mitochondrial complex I was found in platelets mem-
brane in PD patients [99] but these results were not
confirmed in another study [100]. Coenzyme Q10
(CoQ10) related to PD is also studied. Platelet CoQ10
redox ratio (reduced CoQ10 to oxidized CoQ10) was
significantly decreased in de novo PD patients. Redox
ratio was not correlated to disease severity [101].
Schwarzschild reported that high level of serum urate
is connected with slower progression of PD and
therefore urate is the first molecular factor linked dir-
ectly to the progression of typical PD [102].
Recent studies in personalized medicine of neurode-

generative diseases are focused on metabolomic bio-
markers. That means identification and quantification of
intracellular metabolites, small changes in mRNA and

exploration of small molecules in tissues, cells and body
fluid that can be significant for specific disease or
process including PD. A lot of another studies investi-
gate a role of different molecules in PD. Chen discovered
that low level of epidermal growth factor in plasma is
linked with cognitive function and can be used as a
marker of cognitive decline in patients with PD [103].
Over 25 genetic factors have also been shown to

constitute risk factor for PD [104]. For example,
homozygous and heterozygous mutations of the glu-
cocerebrosidase gene are a major risk factor for PD
[105]. The mutations in the gene for α-synuclein in
familial forms of Parkinson’s disease have led to the
belief that this protein has a central role and is asso-
ciated with more rapid disease progression; dementia
or hallucinations [106]. Newly Azuma et al. reported
mutation of the cyclic nucleotide phosphodiesterase
8B gene as one of the causal gene mutation of this
disease [107].
Magnetic resonance imaging (MRI) positron emis-

sion tomography, transcranial sonography or single-
photon emission tomography (SPECT) allow the non-
invasive tracking of molecular targets of relevance to
neurodegeneration [108]. MRI can provide informa-
tion about disease-induced changes in the structure
and nigral abnormalities and about reduction of brain re-
gional N-acetyl-aspartate that is biomarker of neuronal
loss [109, 110]. Fibrillar amyloid load can be quantitfied in
vivo with PET [111]. Next PET biomarkers include e.g., F-
18 fluorodeoxyglucose uptake for mitochondrial bioener-
getics [112, 113], F-18 DOPA uptake which is associated
with an increased risk for later motor complications and
comprises a disease-intrinsic predisposing factor for their
development [114] or a dopamine transporter marker
[(11) C] CFT and [(11) C] (R)-PK11195 to investigate
changes in microglial activity [115]. Siderowf et al. tried to
evaluate the relationship between [99mTc] TRODAT-1
SPECT imaging, odor identification skills, and motor func-
tion in patients with early PD and they found that olfac-
tory function is highly correlated with dopamine
transporter imaging abnormalities [116] and also that it
correlated with anxiety and depression symptoms [117].
Impulse control disorders including compulsive gambling,
buying, eating, and hypersexuality are relatively frequent
especially in younger male PD patients, especially in those
treated with dopamine agonists. It may cause catastrophic
consequences, including financial ruin, divorces, loss of
employment, and others. Pharmacological treatment
should be individualized based on patient’s unique neuro-
psychiatric profile, social support, medical comorbidities,
tolerability, and motor symptoms [118, 119].
Several markers have shown the potential of effective

biomarkers but they need verification in further studies.
It is likely that a single measure and one biomarker are
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not sufficient and that only combination of various bio-
markers as well as the clinical relevant patient character-
istics can provide complex and useful information on
disease.

Biomarkers and personalized medicine in
demyelinating diseases
The current interest in the field of demyelinating disease
focuses on multiple sclerosis (MS), not just for its fre-
quency of occurrence, but also because it is a disease
that disables young working-age population.
Recently, the diagnosis of this disease was very care-

fully worked up and also simplified, especially through
the use of MRI. The MRI of brain and spinal cord is cur-
rently used as the main supporting diagnostic method
[120, 121]. Among other supportive parameters in MS
diagnosing belongs the testing for cerebrospinal fluid-
restricted oligoclonal bands (OCB) by isoelectric focus-
ing, which is used to detect intrathecally produced total
IgG. Another characteristic findings in patients with MS
is the polyspecific intrathecal B cell response against
neurotropic viruses, specifically against measles virus,
rubella virus, and varicella zoster virus, also known as an
MRZ (Measles antibody index, Rubella antibody index,
Zoster antibody index) reaction and abnormalities in
visual, auditory, somatosensory, and motor-evoked po-
tentials [122–126].
In the last few, years the treatment of MS achieved a

huge progress with the arrival of disease-modifying
drugs (interferons and glatiramer acetate, natalizumab or
fingolimod and lately also alemtuzumab, dimethyl fu-
marate, teriflunomid). Moreover new oral and parenteral
drugs are already on the verge of clinical use, which can
bring more hope in the treatment of MS. Currently there
is a number of drugs that differs in their efficiency and
safety profile, due to this fact the problem is how to se-
lect patients according to their susceptibility to treat-
ment with specific drug and how to prevent or minimize
the adverse effects. The timing of the treatment is cru-
cial for the patient’s prognosis. The best is to start when
only clinically isolated syndrome (CIS) is present. But
not only early treatment is important, huge role plays
also the choice of the most suitable drug according to
the clinical and MRI findings, the presence of underlying
diseases and other related aspects. The aim is to stabilize
the process of this disease and minimize the adverse ef-
fects. That is the goal of personalized medicine in pa-
tients with MS.
Personalized medicine in the field of MS is based on

couple of aspects of the disease. These are demyelination
and progression of inflammation, neurodegeneration
(axonal loss), progression of disability, and therapeutical
response. It is very important to keep all these aspects in
mind when choosing the best therapy.

The key question seems to be how to determine the
risk of conversion from clinically isolated syndrome
to clinically definitive diagnosis of MS. The answer to
this question brings the multicentre studies published
in 2015. The results showed the higher risk of con-
version in patients with the presence of OCB in CSF,
higher number of lesions on MRI and younger age
patients. Low level of vitamin D has also showed a
small predictive value to conversion to clinically def-
inite multiple sclerosis (CDMS), but this parameter is
still the subject of investigation. On the other hand
other observed parameters such as sex, smoking, CSF
cytology, type of clinical presentation of CIS, the
presence of IgG antibodies against EB virus or IgG
antibodies against CMV, did not show any predictive
value for conversion from CIS to CDMS. Multivari-
able regressive analysis has shown that accumulation
of single risk parameters leads to increasing risk of
conversion from CIS to CDMS and malignant course
of diseases [127]. Another recent study dealt with
similar topic, specifically focusing on predictive fac-
tors for conversion from CIS to CDMS. The results
came out of long term data collection already since
1995. Clinical status of the patients was thoroughly
examined in the interval from 3 to 6 months and
brain MRI was done after 12 months and then every
5 years. Based on this analysis the risk variables were
established for developing CDMS and expanded dis-
ability status scale (EDSS) 3.0—the count of lesions
on brain MRI, the presence of oligoclonal bands in
CSF, type of clinical presentation of CIS, sex, and age.
Thanks to all these variables it was possible to ana-
lyse the risk of developing CDMS or risk of reaching
EDSS 3.0 for every patient with CIS. It is a very dy-
namic model, which is able to valorize the risk again
after 12 months based on the presence of relapses,
new T2 lesions on MRI and type of treatment in the
last 12 months. Regarding all the results it is possible
to re-analyze the risk of progression of the disease
and therefore change the treatment if necessary [128].
Another biomarker that has been recently followed in

patients with MS is vitamin D. Its role in bone metabol-
ism and calcium homeostasis is already well-known,
but recently it has been proved also its immunomodu-
latory, anti-inflammatory and neuroprotective effect.
Therefore, many studies now focus on the influence of
vitamin D to the development and course of auto-
immune diseases such as MS. Many epidemiologic, pre-
clinical and clinic data showed that low level of vitamin
D had proven to be one of the risk factors in developing
MS and is often linked with higher activity and progres-
sion of the disease [129–131]. In 2014, Kimbourgh et
al. published the results of a study examining the risk
factors of transversal myelitis reoccurring. Low level of
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vitamin D during the first attack of transversal myelitis
was proven among the highest risk factors of develop-
ing another attack [132].
In 2013 a team Sormani published a new modified Rio

score, which helps to identify patients with positive re-
sponse to treatment with interferon beta. Those patients
are called responders. This score analyses the presence
of new T2-weighted lesions on MRI, the number of re-
lapses after a 1 year of treatment with interferon beta.
Based on those results patients are divided into three
groups; first group involves patients with the lowest risk
of progression of the disease and therefore patients with
the best response to treatment—no relapse and max. five
new T2-weighted lesions on MRI after 12 months of
treatment. Patients with moderate risk of progression
so-called partial responders belong to the second group.
Those patients had only one relapse and max. five new
lesion on MRI in the past year or they had no relapse at
all but more than five new T2-weighted lesions on MRI.
The last group contains patients with the highest risk of
progression, so called non-responders to interferon beta,
they showed more than two relapses in 1 year and max.
five new lesions on MRI or 1 or 2 relapses and more
than five new T2-weighted lesions on MRI. This scoring
system comes from the original Rio et al. score pub-
lished in 2009 with the addition of new parameter the
progression of disability evaluated with EDSS [133, 134].
Stangel et al. suggested another scheme which includes
more parameters that should be followed in patients
with MS, regarding the aim of “no evidence of disease
activity”. New parameters such as depression, anxiety, fa-
tigue, quality of life and cognitive function were added
to the already existing parameters (relapses, disability
progression, and new lesions on MRI). It was proven as
a very broad and sensitive tool, which helps to follow the
disease progression even at the very beginning. These
tools are nowadays very important not only for examin-
ing the stability of the disease but also for deciding
about treatment escalation [135, 136].
The measuring of retinal nerve fibre layer thickness

(RNFL) in the peripapilar area using the optical coher-
ence tomography (OCT) is another very useful method
with great potential. It is used for tracking the disability
progression in patients with MS [137]. This method is
non-invasive and can be relatively quickly and easily per-
formed. Studies comparing the findings in the peripapi-
lar area RNFL in patients with MS, neuromyelitis optica
(NMO) and NMO spectrum disorders (NMOSD)
showed a more severe infliction in patients with NMO
and NMOSD. In patients with MS subclinical decrease
of RNFL using the OCT can be found but this method
still cannot be used as an independent method to differ-
entiate MS and NMOSD in clinical praxis [138, 139].
One possible cause of not responding to treatment with

interferon beta is the production of neutralizing anti-
bodies (NAbs). These antibodies are bonded directly to
the epitope of interferon beta and that disables its bind-
ing to the receptor. Up to 42 % of patients has shown
the occurrence of these antibodies which usually form
after 6 months of therapy. Their appearance after 2 years
of therapy is very rare. NAbs are non-direct biomarkers
and their presence only rises the possibility of decreased
efficiency of interferon beta [140–142].
Commonly used direct biomarker in clinical practice is

the production of MxA mRNA in patients treated with
interferon. It is a protein produced by mononuclears
due to stimulation of interferon protein. The evidence of
MxA is based on determination of mRNA using PCR
(polymerase chain reaction) method. Its transcription
correlates with the efficiency of the drug [143–145].
Biomarkers that would currently seem as possible

predictors of disease progression and that could warn
against high risk of malignant course of disease are
cerebral atrophy, atrophy of brain gray matter, diffu-
sion tensor imaging (DTI) abnormalities, corpus callo-
sum DTI abnormalities, upper cervical cord atrophy
(UCCA), and early MR spectroscopy abnormalities.
Based on the presence of these parameters the treat-
ment of MS should be led the most effectively from
the disease diagnosis [146–149].
Very crucial complication in using one of the most

efficient drug natalizumab for treating the patients
with MS is the occurrence of progressive multifocal
leukoencephalopathy (PML). This important side-
effect has appeared already during the treatment with
other immunomodulatory drugs such as fingolimod
and dimethyl fumarate, but now it is the center of at-
tention in treatment with natalizumab. There are
three main parameters to optimize the risk of PM
occurrence—the duration of treatment, former immu-
nomodulatory treatment, and seropositive tests to
PML. There was an effort to find some other parame-
ters, which could be used to select patients with low
risk of PML during the treatment with natalizumab
and also some parameters which could draw the at-
tention to new or increasing risk during the treat-
ment. One of the new parameters found is the
antibody JCV (John Cunningham virus) index. The
risk of PML increases with the increasing level of JCV
antibodies. Also, antibodies seroconversion showed higher
risk of PML occurrence. Another parameter is low count
of T-lymphocytes expressing L-selectin (CD62L) which
also leads to higher risk of PML appearance [150–153].
In last few years, the diagnosis of neuromyelitis optica

drew big attention. The interest increased especially in
2004, when a highly specific serum antibody IgG was
found. This antibody is aimed against aqua channel
aquaporin 4 (AQP4) occurring especially in astrocytes.
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This key finding together with former findings of
humoral pathogenic mechanisms led to distinguishing
this diagnosis from MS even though the clinical pic-
ture and paraclinical findings often overlap. Sensitivity
of this method is about 80 % combined with specifi-
city reaching over 99 %. Couple recent studies have
also proven the presence of antibodies against myelin
oligodendrocyte glycoprotein (MOG-Ab) in patients
with NMOSD. However, clinical meaning of these
antibodies in the field of CNS demyelinating diseases
remains uncertain. The highest profit is hoped to be
in seronegative patients with NMOSD [154–157].

Conclusions
The role of biomarkers and personalized medicine in
neurology is becoming extensively important. The ac-
tual state of knowledge in several domains of neurology
(neuro-oncology, cerebrovascular, neurodegenerative,
and demyelinating diseases) was discussed in this art-
icle. A huge amount of perspective biomarkers could be
routinely used in the neurological practice in many dis-
tinct settings. Especially in more precise diagnostics,
better determination of patient prognosis or in predic-
tion of treatment response. Future perspectives in
neuro-oncology will bring the concurrent assessment of
IDH1/2 mutations and MGMT promoter methylation
status for glioblastoma and 1p/19q co-deletion for
oligodendroglioma. In cerebrovascular diseases, the
panels of blood biomarkers would be widely accessible
and will serve especially for the outcome prediction.
The anti-CAPS antibodies and β amyloid as well as
amyloid precursor protein markers are promising in
Alzheimer’s disease and α-synuclein in Parkinson’s dis-
ease. In demyelinating diseases, the goal for the future
is to implement biomarkers that could help to distin-
guish patients with high risk of serious course from pa-
tients with potentially benign course of disease.
Nevertheless, further validation of these biomarkers is
necessary before their incorporation into standard clin-
ical decision-making algorithms. Personalized medicine
will certainly play the crucial role in the more effective,
cheaper, and better tailored treatment of various neuro-
logical diseases in the near future.
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