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Abstract: MET sensors for measuring motion parameters are used in many scientific and technical
fields. Meanwhile, the geometries of the transforming cell applied practically are far from
optimal, and the influence of many geometric parameters on the sensitivity has not been studied.
These parameters include the intercathode distance in a four-electrode conversion cell. In this paper,
a mathematical model that allows calculating the behavior of the conversion coefficient depending
on the frequency for a cell with flat electrodes at different intercathode distances is constructed.
The stationary current is shown to decrease monotonically with the decreasing intercathode distance
at the constancy of other system parameters. At the same time, the signal current decreases in the
low-frequency region and increases in the high-frequency range. Taking into account the results
obtained, practically speaking, it is advisable to reduce the intercathode distance to the technologically
possible minimum, which makes the frequency response more uniform and reduces the current
consumed by the sensitive element.

Keywords: MET sensor; motion sensor; conversion factor; frequency response; electrochemical cell;
diffusion; convection

1. Introduction

The design of electrochemical motion sensors, also known as molecular-electronic transfer (MET)
sensors, is based on a conversion element, which is an electrochemical cell made of several electrodes
immersed in a channel filled with a highly conductive electrolyte solution [1,2]. Most often, a system
of four electrodes is used. The electrodes are connected to the voltage source and located in the
channel in the sequence anode–cathode–cathode–anode. The operation principle of this sensor is
based on the dependence of the interelectrode current in the cell on the motion of the liquid in
the specified channel. In turn, the movement of the liquid in the cell depends on the external
mechanical influence. The main advantage of the MET sensors is high conversion rate of mechanical
action into electrical signal. Initially, the MET-based sensors were used to measure low-frequency
signals in seismometry [3–6]. Currently, the range of their application has expanded significantly and
includes seismic exploration [7,8], hydroacoustics [9–11], monitoring of buildings and structures [12,13],
medical applications [14], and inclinometry [15]. The reason for a noticeable expansion of applications
is the development of new types of converting elements providing a significant expansion of the
working frequency range in the high-frequency region.

The expansion of the frequency range posed new challenges for researchers. They are related to
the fact that, for high frequencies, the absolute value of the conversion coefficient and its changes with
frequency strongly depend on the micro-scale details of the converting element geometry, in particular,
on the distance between the electrodes and their shape. At present, the effect on the conversion
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coefficient of a limited set of geometric parameters for a small number of possible configurations [16–19]
has been studied experimentally and by simulation methods.

The influence of the intercathode distance on the MET sensors characteristics is a priori non-obvious
and, therefore, the most interesting. Among currently known results, note the work in [20], where the
conversion coefficient was proven to increase with the increasing intercathode distance. The effect
is conditioned by the influence of the electric field on the charge transfer and is manifested only at
the lowest frequencies, provided the cathode spacings are noticeably larger than the cathode–anode
distance. In [21], the linearity of the signal conversion in relation to the intercathode distance was
studied and nonlinear effects were shown to decrease with the decreasing distance. In addition,
note that, from the known variety of configurations of the converting element, planar systems are
of the most interest, as the electrodes in them are placed on the channels walls [19,22–25] due to
the simplicity of manufacture and wide possibilities for selecting the converter geometry to achieve
optimal output characteristics.

The present paper proposes a mathematical model for studying the frequency characteristics of
the output signal of a planar molecular-electronic converter. The following model is used to study the
frequency dependence of the sensitivity on the geometric parameters: the interelectrode distance and
the size of the channel in for the fluid flow. In the entire frequency range, the conversion coefficient
is found to be higher when the channel for fluid flow is narrower, and, therefore, when the main
fluid flow is closer to the electrodes. The dependence of the sensitivity on the intercathode distance is
more complex and depends on the signal frequency. At low frequencies, an increase in this distance
leads to an increase in sensitivity, and vice versa at high frequencies. From a practical point of view,
configurations with a shorter intercathode distance are preferable, since they provide a more uniform
frequency response and the extension of the operating range in the high-frequency region, which is
important for many applications.

2. Materials and Methods

In this paper, we consider an iodine–iodide electrochemical system, which is widely used in
MET sensors [26,27]. The electrolyte in this system consists of one type of active ions and has a high
concentration of the background component screening the field. An example of this scheme is a highly
concentrated aqueous solution of potassium iodide KI or lithium iodide LiI or melted iodide salts
mixed with molecular iodine I2 in a small concentration. In excess of iodide, molecular iodine passes
into triiodide, I2 + I− → I−3 , which is the active component of the electrolyte solution.

In the presence of voltage on the electrodes, redox reactions occur on their surface: I−3 + 2e→ 3I−

on the cathode and 3I− − 2e→ I−3 on the anode. During the reactions on the cathode surface,
the concentration of I−3 decreases, while on the anode surface it increases. As a result, a concentration
gradient of the active component in the electrochemical cell is created. This results in convective
diffusion of the active component of the electrolyte and consequent current emerge. When the applied
voltage is sufficient for all the triiodide ions to react immediately upon reaching the cathode surface,
saturation occurs, and the current in the system is determined by the delivery rate of the active
component ions to the cathode surface. In this case, at the cathode, the concentration of the active
component goes to zero. During a mechanical action on the system, the liquid comes in motion,
which leads to a change in the rate of delivery of the active component to the cathode and the cathode
current (which increases on one cathode and decreases on the other). The difference in the cathode
currents (which equals zero in the absence of liquid motion due to the symmetry of the system)
represents the response of the system to the external mechanical influence.

The circuit of the electrochemical cell studied here with planar electrodes located on one of the
channel walls is shown in Figure 1.
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Figure 1. The circuit of the electrochemical cell with flat electrodes (A, anodes; C, cathodes).

The channel has length L, thickness d, and width s, s� L� d. The crosswise size of the electrodes
is equal to the channel width, the longitudinal size of the cathodes equals b, for the anodes it equals a,
the distance between the cathodes and the anodes of one pair is la, and the distance between the cathodes
is 2lc. The thickness of the electrodes is small compared to their crosswise and longitudinal dimensions.

The X-axis is directed along the channel, the Z-axis is perpendicular to the electrodes plane,
and the Y-axis complements the right coordinate system. The origin of coordinates is in the center of
the wall on which the electrodes are located.

Since the channel width is significantly larger than the remaining dimensions of the system,
the system can be considered uniform throughout the channel width (along the Y-axis). That fact
allows studying a flat channel, which is a section of the electrochemical cell by XZ plane.

Considering the electrolyte solution to be incompressible liquid, write the Navier–Stokes equations,
the continuity equation describing the movement of the electrolyte solution, and the convective diffusion
equation for the active component of the electrolyte, which describes the process of the convective ion
transport of the active component between the electrodes in the electrochemical cell:

∂v
∂t = ν∆v− 1

ρ∇p
divv = 0
∂c
∂t = D∆c− (v∇)c

, (1)

where v is the velocity of the electrolyte solution in the channel, ν is the kinematic viscosity of the
electrolyte solution, ρ is the density of the electrolyte solution, D is the diffusion coefficient of the
active component of the electrolyte solution, and c is the concentration of the active component of the
electrolyte solution.

Model the external mechanical signal effect on the liquid in the electrochemical cell by applying
pressure to the left edge of the channel, which varies according to the harmonic law ple f t = p0 + p,
while, at the right end of the channel, the pressure is maintained unchanged pright = p0, where p0

denotes the pressure at the ends of the channel in the absence of an external signal and p = pωeiωt is
the external signal (ω is the angular frequency of the external signal). As a result, at the ends of the
channel, obtain the pressure difference that varies according to the harmonic law, which causes the
flow of the electrolyte solution through the channel section.

As L� d, then vx � vz. Considering the homogeneity of the system along the Y-axis, rewrite the
Navier–Stokes equation and the continuity equation from Equation (1):

∂vx
∂t = ν∂

2vx
∂z2 −

1
ρ
∂p
∂x = ν∂

2vx
∂z2 +

pωeiωt

ρL
∂vx
∂x = 0

, (2)
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where ∂p
∂x = −

ple f t−pright
L = −

p
L .

The boundary conditions for the system in Equation (2) on the channel walls have the form:

vx(z = 0) = vx(z = d) = 0. (3)

The solution of Equation (2) is sought in the form: vx = vωxeiωt. Taking into account the boundary
conditions in Equation (3), obtain the expression for the x-component of the velocity of the electrolyte
solution in the channel:

vx(z, t) =
p

iωρLsinh(αd)
(sinh(αd) − sinh(αz) − sinh(αd− αz)), (4)

where α =
√
ω
2ν (1 + i).

Now, proceed to the solution of the convective diffusion equation from Equation (1). At low
speeds of the electrolyte solution, the concentration of the active component can be shown as an
expansion in powers of speed [22,28]:

s = s0 + s1, (5)

where s0 is the concentration of the active component in the stagnant electrolyte solution and s1 is the
linear in speed addition to the active component of the concentration. Substituting Equation (5) into the
convective diffusion equation and discarding the terms of second and higher order of smallness, obtain: ∆c0 = 0

∂c1
∂t −D∆c1 = −(v∇)c0

. (6)

The solution of the second equation in Equation (6) is sought in the form: c1 = c1ωeiωt, the index
ω from c1ω is omitted in further calculations. Applying the Fourier transform by x to Equation (6),
and taking into account the homogeneity of the system along the Y-axis and vx � vz, obtain:

∂2c0(k,z)
∂z2 − k2c0(k, z) = 0

∂2c1(k,z)
∂z2 −

(
k2 + iω

D

)
c1(k, z) = ikvx

D c0(k, z)

. (7)

Obtain the boundary conditions for c0,1(k, z) from determining the current density on the
electrodes surface:

j0,1(x) = −Dq
∂c0,1(x, 0)

∂z

∣∣∣∣∣∣
x∈Sel

, (8)

where q is the ion charge of the active component of the electrolyte solution.
Whence after applying the Fourier transform by x follows:

∂c0,1(k, 0)
∂z

= −
j0,1(k)

Dq
, (9)

where j0,1(k) = 1
√

2π

∫
Sel

j0,1(x)e−ikxdx is the Fourier image of current density. Sel denotes the
electrodes surface.

Thus, the solution of the system in Equation (6) with the boundary conditions in Equation (9) has
the form:

c0(k, z) =
cosh(kd− kz)

sinh(kd)
j0(k)
Dqk

, (10)

s1(k, z) = cosh(βd−βz)
sinh(βd)

j1(k)
Dqβ −

cosh(βd−βz)
β

∫ d
0

cosh(βd−βζ)
sinh(βd)

ikvx(ζ)
D c0(k, ζ)dζ++ 1

β

∫ d
0 sinh(βz−

−βζ)
ikvx(ζ)

D c0(k, ζ)dζ,
(11)
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where β =
√

k2 + iω
D , Reβ > 0.

After the inverse Fourier transform in Equations (10) and (11), obtain the expressions for the
concentrations of the active component of the electrolyte on the plane z = 0, on which the electrodes
are located:

c0(x) =
1

2πDq

∫
∞

−∞

eikxdk
k

cosh(kd)
sinh(kd)

∫
Sel

j0(ξ)e−ikξdξ, (12)

c1(x) = 1
2πDq

∫
∞

−∞

eikxdk
β

cosh(βd)
sinh(βd)

∫
Sel

j1(ξ)e−ikξdξ−

−
1

2πDq
i

D
∫
∞

−∞

eikxdk
β

cosh(βd)
sinh(βd)

∫
Sel

j0(ξ)e−ikξdξ
∫ d

0
cosh(βζ)
sinh(βd)

cosh(kζ)
sinh(kd) vx(ζ)dζ.

(13)

In the second term in Equation (11), a change is made: ζ→ d− ζ . Moreover, it is considered that
vx(ζ) = vx(d− ζ).

Divide the electrodes into equal segments in width, while the current density within one segment
has a constant value. Thus, the density of the stationary current j0 and linear in the velocity current j1
within the plane z = 0 can be represented as:

j0(x) =
∑N

n=1 A0,n
(
θ
(
x− xa

n−1

)
− θ(x− xa

n) + θ(x + xa
n) − θ

(
x + xa

n−1

))
+

+
∑N

n=1 B0,n
(
θ
(
x−−xc

n−1

)
− θ(x− xc

n) + θ(x + xc
n) − θ

(
x + xc

n−1

))
,

(14)

j1(x) =
∑N

n=1 A1,n
(
θ
(
x− xa

n−1

)
− θ(x− xa

n) − θ(x + xa
n) + θ

(
x + xa

n−1

))
+

+
∑N

n=1 B1,n
(
θ
(
x−−xc

n−1

)
− θ(x− xc

n) − θ(x + xc
n) + θ

(
x + xc

n−1

))
,

(15)

where xa
n = lc + b + la + n

N a, xc
n = lc + n

N b, N is the number of segments, A0,1n are the current densities
on the nth segment of the anode partition (

[
xa

n−1, xa
n

]
), and B0,1n is the value of current densities on

the nth segment of the cathode partition (
[
xc

n−1, xc
n

]
). Equations (14) and (15) take into account that,

due to the geometry of the system, the stationary current is an even function of x, and the current in
Equation (15) linear in velocity is an odd function of x.

Placing Equations (14) and (15) into Equations (12) and (13), obtain for the points on the
electrodes’ surfaces:

4
πDq

∫
∞

0 dk cos(kx)
k2

cosh(kd)
sinh(kd)

∑N
n=1 A0,n sin

(
ka
2N

)
cos

(
k

xa
n+xa

n−1
2

)
+

+ 4
πDq

∫
∞

0 dk cos(kx)
k2

cosh(kd)
sinh(kd)

∑N
n=1 B0,n sin

(
kb
2N

)
cos

(
k

xc
n+xc

n−1
2

)
=

{
ca, x ∈ anode
0, x ∈ cathode

,
(16)

4
πDq

∫
∞

0 dk sin(kx)
βk

cosh(βd)
sinh(βd)

∑N
n=1 A1,n sin

(
ka
2N

)
sin

(
k

xa
n+xa

n−1
2

)
+

+ 4
πDq

∫
∞

0 dk sin(kx)
βk

cosh(βd)
sinh(βd)

∑N
n=1 B1,n sin

(
kb
2N

)
sin

(
k

xc
n+xc

n−1
2

)
+

+ 4
πDq

1
D

∫
∞

0 dk sin(kx)
βk

∑N
n=1 A0,n sin

(
ka
2N

)
cos

(
k

xa
n+xa

n−1
2

) ∫ d
0

cosh(βζ)
sinh(βd)

cosh(kζ)
sinh(kd) vx(ζ)dζ+

4
πDq

1
D

∫
∞

0 dk sin(kx)
βk

∑N
n=1 B0,n sin

(
kb
2N

)
cos

(
k

xc
n+xc

n−1
2

) ∫ d
0

cosh(βζ)
sinh(βd)

cosh(kζ)
sinh(kd) vx(ζ)dζ= 0, x ∈ Sel.

(17)

Here, ca denotes the concentration of the active component of the electrolyte solution on the
surface of the anodes.

Now, turn to dimensionless quantities: b̃ = 1, ã = a/b, d̃ = d/b, L̃ = L/b, l̃c,a = lc,a/b, x̃ = x/b,
x̃a,c

n = xa,c
n /b, z̃ = z/b, ξ̃ = ξ/b, ζ̃ = ζ/b, c̃a = 1, c̃0,1(x̃, z̃) = c0,1(x, z)/ca, j̃0,1(x̃) = j0,1(x)b/(Dqca),

Ã0,1,n = A0,1,nb/(Dqca), B̃0,1,n = B0,1,nb/(Dqca), k̃ = kb, β̃ = βb =
√

k̃2 + iω̃, ω̃ = ωD/b2, f̃ = f D/b2,
~
v~

x(z̃) = vx(z)b/D, where f = ω/(2π) is the frequency of external signal
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After replacing the quantities with dimensionless ones in Equations (16) and (17), obtain:

4
π

∫
∞

0 dk̃
cos(k̃x̃)

k̃2

cosh(k̃d̃)
sinh(k̃d̃)

∑N
n=1 Ã0,n sin

(
k̃ã
2N

)
cos

(
k̃

x̃a
n+x̃a

n−1
2

)
+

+ 4
π

∫
∞

0 dk̃
cos(k̃x̃)

k̃2

cosh(k̃d̃)
sinh(k̃d̃)

∑N
n=1 B̃0,n sin

(
k̃b̃
2N

)
cos

(
k̃

x̃c
n+x̃c

n−1
2

)
=

{
1, x̃ ∈ anode
0, x̃ ∈ cathode

,
(18)

4
π

∫
∞

0
dk̃ sin(k̃x̃)

β̃k̃
cosh(k̃d̃)
sinh(k̃d̃)

∑N
n=1 Ã1,n sin

(
k̃ã
2N

)
sin

(
k̃

x̃a
n+x̃a

n−1
2

)
+

+ 4
π

∫
∞

0
dk̃ sin(k̃x̃)

β̃k̃
cosh(k̃d̃)
sinh(k̃d̃)

∑N
n=1 B̃1,n sin

(
k̃b̃
2N

)
sin

(
k̃

x̃c
n+x̃c

n−1
2

)
+

+ 4
π

∫
∞

0
dk̃ sin(k̃x̃)

β̃k̃

∑N
n=1 Ã0,n sin

(
k̃ã
2N

)
cos

(
k̃

x̃a
n+x̃a

n−1
2

) ∫ d̃
0

cosh(β̃ζ̃)
sinh(β̃d̃)

cosh(k̃ζ̃)
sinh(k̃d̃)

~
v~

x

(
ζ̃
)
dζ̃+

+ 4
π

∫
∞

0
dk̃ sin(k̃x̃)

β̃k̃

∑N
n=1 B̃0,n sin

(
k̃b̃
2N

)
cos

(
k̃

x̃c
n+x̃c

n−1
2

) ∫ d̃
0

cosh(β̃ζ̃)
sinh(β̃d̃)

cosh(k̃ζ̃)
sinh(k̃d̃)

~
v~

x

(
ζ̃
)
dζ̃ = 0, x̃ ∈ Sel.

(19)

It can be noted that Equations (18) and (19) are the systems of linear equations relative to Ã0,n,
B̃0,n and Ã1,n, B̃1,n, respectively. In the matrix form, the system Equation (18) looks the following way:(

Ra
0 Sa

0
Rc

0 Sc
0

)(
Ã0

B̃0

)
=

(
E
0

)
, (20)

where

Ra,c
0,mn =

4
π

∫
∞

0
dk̃
k̃2

cosh
(
k̃d̃

)
sinh

(
k̃d̃

) cos

k̃
x̃a,c

m + x̃a,c
m−1

2

 sin
(

k̃ã
2N

)
cos

(
k̃

x̃a
n + x̃a

n−1

2

)
, (21)

Sa,c
0,mn =

4
π

∫
∞

0
dk̃
k̃2

cosh
(
k̃d̃

)
sinh

(
k̃d̃

) cos

k̃
x̃a,c

m + x̃a,c
m−1

2

 sin
(

k̃b̃
2N

)
cos

(
k̃

x̃c
n + x̃c

n−1

2

)
. (22)

As x̃ in Equations (21) and (22) take the segmentation midpoints of the anodes and the cathodes,

the coordinate of the middle of the mth segment can be written in the following form: x̃ =
x̃a,c

m +x̃a,c
m−1

2 .
Note that the coefficients of the matrices Ra,c

0,mn and Sa,c
0,mn in Equations (21) and (22) are divergent

integrals. That does not allow solving the system (20) in this form. Therefore, divide the integration
gap (0,∞) in Equations (21) and (22) into two parts: (0, h) and (h,∞), h > 0. The integrals converge on
the gap (h,∞) and diverge on the gap (0, h).

Consider the gap (0, h) in more detail. Expanding the integrands in Equations (21) and (22) in
powers of k, obtain:

1
k̃2

cosh(k̃d̃)
sinh(k̃d̃)

cos
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃ã
2N

)
cos

(
k̃

x̃a
n+x̃a

n−1
2

)
=

ã
2Nd̃

1
k̃2 +

ã
2Nd̃

(
d̃2

3 −
ã2

24N2 −
(x̃a,c

m +x̃a,c
m−1)

2

8 −
(x̃a

n+x̃a
n−1)

2

8

)
+

(
k̃2

)
,

(23)

1
k̃2

cosh(k̃d̃)
sinh(k̃d̃)

cos
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃b̃
2N

)
cos

(
k̃

x̃c
n+x̃c

n−1
2

)
=

b̃
2Nd̃

1
k̃2 +

b̃
2Nd̃

(
d̃2

3 −
b̃2

24N2 −
(x̃a,c

m +x̃a,c
m−1)

2

8 −
(x̃c

n+x̃c
n−1)

2

8

)
+

(
k̃2

)
.

(24)

The integrals from the second and third terms of Equations (23) and (24) from (0, h) converge,
and, from the first terms diverge, however, after multiplying the first terms in Equations (23) and (24)
by A0n and B0n, respectively, and the subsequent summation, obtain:

∑N

n=1

(
1
k̃2

ã
2Nd̃

Ã0n +
1
k̃2

b̃
2Nd̃

B̃0n

)
=

1
2k̃2d̃

(∑N

n=1

ã
N

Ã0n +
∑N

n=1

b̃
N

B̃0n

)
=

1
2k̃2d̃

(
Ĩ0a + Ĩ0c

)
≡ 0,
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where Ĩ0a and Ĩ0c are the total current in the stagnant electrolyte solution at the anode and the
cathode, respectively. The sum of these currents after establishing equilibrium in such solution
is identically equal to zero because of the charge conservation law. Therefore, the diverging part
in the integrals in Equations (21) and (22) leaves when summed over all segments. Consequently,
in Equations (23) and (24), the first terms can be discarded. Thus, after the described transformations
of the coefficients of the matrix of the system in Equation (20), obtain:(

R̃a
0 S̃a

0
R̃c

0 S̃c
0

)(
Ã0

B̃0

)
=

(
E
0

)
, (25)

where Ã0 is the vector with components Ã0n, B̃0 is the vector with components B̃0n, and
(

E
0

)
is the

vector in which the first N components are units, while the remaining components are zero,

R̃a,c
0,mn = 2

π

∫ h
0 dk̃ ã

Nd̃

(
d̃2

3 −
ã2

24N2 −
(x̃a,c

m +x̃a,c
m−1)

2

8 −
(x̃a

n+x̃a
n−1)

2

8

)
+

4
π

∫
∞

h
dk̃
k̃2

cosh(k̃d̃)
sinh(k̃d̃)

cos
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃ã
2N

)
cos

(
k̃

x̃a
n+x̃a

n−1
2

)
,

S̃a,c
0,mn = 2

π

∫ h
0 dk̃ b̃

Nd̃

(
d̃2

3 −
ã2

24N2 −
(x̃a,c

m +x̃a,c
m−1)

2

8 −
(x̃c

n+x̃c
n−1)

2

8

)
+

4
π

∫
∞

h
dk̃
k̃2

cosh(k̃d̃)
sinh(k̃d̃)

cos
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃b̃
2N

)
cos

(
k̃

x̃c
n+x̃c

n−1
2

)
.

Taking h small enough, a solution to the system in Equation (20) can be obtained with the
required accuracy.

The matrix form Equation (19) is similar to Equation (20):(
Ra

1 Sa
1

Rc
1 Sc

1

)(
Ã1

B̃1

)
=

(
ra sa

rc sc

)(
Ã0

B̃0

)
, (26)

where Ã1 is the vector with components Ã1,n and B̃1 is the vector with components B̃1,n,

Ra,c
1,mn = 4

π

∫
∞

0
dk̃
β̃k̃

cosh(β̃d̃)
sinh(β̃d̃)

sin
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃ã
2N

)
sin

(
k̃

x̃a
n+x̃a

n−1
2

)
,

Sa,c
1,mn = 4

π

∫
∞

0
dk̃
β̃k̃

cosh(β̃d̃)
sinh(β̃d̃)

sin
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃b̃
2N

)
sin

(
k̃

x̃c
n+x̃c

n−1
2

)
,

ra,c
mn = − 4

π

∫
∞

0
dk̃
β̃k̃

sin
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃ã
2N

)
cos

(
k̃

x̃a
n+x̃a

n−1
2

) ∫ d̃
0

cosh(β̃ζ̃)
sinh(β̃d̃)

cosh(k̃ζ̃)
sinh(k̃d̃)

~
v~

x

(
ζ̃
)
dζ̃,

sa,c
mn = − 4

π

∫
∞

0
dk̃
β̃k̃

sin
(
k̃

x̃a,c
m +x̃a,c

m−1
2

)
sin

(
k̃b̃
2N

)
cos

(
k̃

x̃c
n+x̃c

n−1
2

) ∫ d̃
0

cosh(β̃ζ̃)
sinh(β̃d̃)

cosh(k̃ζ̃)
sinh(k̃d̃)

~
v~

x

(
ζ̃
)
dζ̃.

The solution of the systems Equations (25) and (26) is described by the following formulas:(
Ã0

B̃0

)
=

(
R̃a

0 S̃a
0

R̃c
0 S̃c

0

)−1(
E
0

)
, (27)

(
Ã1

B̃1

)
=

(
Ra

1 Sa
1

Rc
1 Sc

1

)−1(
ra sa

rc sc

)(
Ã0

B̃0

)
. (28)

3. Results

Since the output signal in this electrochemical cell is the difference of the cathode currents, only the
current at the cathodes is considered further.
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The dimensionless difference cathode current J̃1, which is linear in speed, is calculated by
the formula:

J̃1 =
∫

Scath1
j̃1(x̃)dx̃−

∫
Scath2

j̃1(x̃)dx̃ =
2b̃
N

∑N

n=1
B̃1,n, (29)

where Scath1 and Scath2 are the surfaces of the left and right cathodes from the circuit in
Figure 1, respectively.

Equation (29) describes the response of an electrochemical cell to an external signal.
For subsequent considerations, take the following parameters which are typical for practical

electrochemical cells: b̃ = 1, ã = 1, l̃a = 1, L̃ = 100. For the d̃ parameter, take d̃ = 2, which can also be
considered as close to optimal [24,29] because at lower d̃ the flow of the liquid will be difficult due to
the large hydrodynamic resistance, while at large d̃ a significant part of the flow will be away from the
electrodes, which also leads to a decrease in the signal conversion coefficient. In this case, the electrodes
are divided into N = 25 equal segments. Divide the frequencies into three regions: low (λ̃D > d̃/2),

medium (λ̃D ∼ d̃/2), and high (λ̃D � d̃/2). λ̃D =
√

1/ω̃ =
√

1/
(
2π f̃

)
is the dimensionless diffusion

length of the active component of the electrolyte solution (diffusion particle length is defined as:
λD =

√
D/ω).

3.1. Stationary Current Density at the Cathodes

Compare the density distribution of the stationary cathode current on the cathode surface at
different intercathode distances. For definiteness, consider the cathode, to the right of which there is
an anode and to the left of which there is another cathode. In Figure 1, the right cathode corresponds
to this. Due to the symmetry of the system and the consequent parity of the stationary current density
along the X-axis for the other cathode, the distribution is the same. The corresponding distributions at
2l̃c = 0, 2l̃c = 0.5, 2l̃c = 1 are shown in Figure 2.

Figure 2. Distribution of stationary current density over the cathode surface at different distances
between the cathodes (red line, 2l̃c = 0; orange line, 2l̃c = 0.5; green line, 2l̃c = 1).

The negative value of the density of the stationary current at the cathode is related to the form of
the definition Equation (8) and expresses the physical fact that the stationary current flows from the
anode to the cathode.

Figure 2 shows that the absolute value of the density of the stationary current decreases slightly in
the middle part and in the part of the cathode closest to the adjacent anode. However, in the opposite
part of the electrode, a significant increase (up to three times) in the absolute value of the density
of the stationary current is observed, and the growth value decreases from the edge to the center of
the cathode.
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As a result, the total stationary cathode current increases with increasing distance between
the cathodes.

3.2. Density of the Current Linear in Velocity at the Cathodes

The density of the current linear in velocity, unlike the stationary one, can significantly differ in
phase in different parts of the electrodes. Therefore, compare the dependences of the density of the
current linear in velocity on time at the opposite ends of the cathodes at 2l̃c = 0, 2l̃c = 1 and f̃ = 0.025
(λ̃D = 2.52, low frequencies), f̃ = 0.5 (λ̃D = 0.56, medium frequencies), and f̃ = 10 (λ̃D = 0.13,
high frequencies). The graphs of these dependences are given in Figures 3–5.

Figure 3. A change in time of a linear density current at the edges of the cathodes during the period of
an external signal with the frequency f̃ = 0.025 at: (a) 2l̃c = 0; and (b) 2l̃c = 1. B̃1,1 (orange lines) is the
cathode edge from the side of the other cathode and B̃1,25 (blue lines) is the cathode edge from the side
of the adjacent anode.

Figure 4. A change in time of a linear density current at the edges of the cathodes during the period of
an external signal with the frequency f̃ = 0.5 at: (a) 2l̃c = 0; and (b) 2l̃c = 1. B̃1,1 (orange lines) is the
cathode edge from the side of the other cathode and B̃1,25 (blue lines) is the cathode edge from the side
of the adjacent anode.
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Figure 5. A change in time of a linear density current at the edges of the cathodes during the period of
an external signal with the frequency f̃ = 10 at: (a) 2l̃c = 0; and (b) 2l̃c = 1. B̃1,1 (orange lines) is the
cathode edge from the side of the other cathode and B̃1,25 (blue lines) is the cathode edge from the side
of the adjacent anode.

Figures 3–5 show that, in all frequency ranges, at zero distance between the cathodes, the amplitude
B̃1,1 is negligible compared to the amplitude B̃1,25. As the distance between the cathodes increases,
B̃1,1 increases significantly; B̃1,25 also increases, but not so significantly. Besides:

• In the field of low frequencies, B̃1,1 and B̃1,25 are practically in phase.
• In the medium range, the phase difference between B̃1,1 and B̃1,25 is already quite significant and

is about π/5.
• At high frequencies, the oscillations B̃1,1 are B̃1,25 close to the opposite phase. Thus, from the

expression for the response, the following conclusions have been made:
• With an increase in the distance between the cathodes, the difference contribution of the part

adjacent to the cathode surface into the total current is positive due to an increase in the amplitude
of the current density in this part and the proximity of the phases of the current densities in the
parts adjacent to the cathode and the anode.

• At high frequencies, an increase in the amplitude of the current density in the part adjacent to
the cathode leads to a decrease in the total current due to the phase difference between the parts
adjacent to the anode and the cathode parts, which is close to π.

3.3. Electrochemical Cell Sensitivity

Define the sensitivity of the electrochemical cell W̃ as the ratio of the difference cathode current to
the two-dimensional flow rate of the electrolyte solution through the channel cross section Q̃:

W̃ =
J̃1

Q̃
, (30)

where
Q̃ =

∫ d̃
0

~
v~

x(z̃)dz̃. (31)

As can be seen from Equations (4) and (31), the two-dimensional flow rate is linear with respect
to the external signal p, since J̃1 is also linear in the external signal according to Equations (4) and
(27)–(29). Thus, Equation (30) depends only on the frequency of the external signal and the parameters
of the electrochemical cell and does not depend on the amplitude of the external signal.

3.3.1. Dependence of the Sensitivity on the Intercathode Distance

Study the dependence of the sensitivity on the frequency and distance between the cathodes.
The graphs of the corresponding dependences are presented in Figures 6–8.
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Figure 6. Dependence of the sensitivity on the intercathode distance at f̃ = 0.025.

Figure 7. Dependence of the sensitivity on the intercathode distance at f̃ = 0.5.

Figure 8. Dependence of the sensitivity on the intercathode distance at f̃ = 10.
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As Figures 6–8 show, as the intercathode distance between the cathodes increases to certain values,
an increase in sensitivity is observed in all frequency ranges. Wherein:

• At high frequencies, this increase is negligible and is replaced by a decrease already at small
distances between the cathodes (2l̃c ∼ 0.1).

• At medium frequencies, the increase goes to the distance between the cathodes 2l̃c ≈ 1. Then,
the sensitivity starts to decrease. In this case, the maximum sensitivity is greater than the sensitivity
at zero distance between the cathodes at 10–15%.

• At low frequencies, there is a significant, more than 50%, increase in sensitivity in the interval
from 2l̃c = 0 to 2l̃c = 2, which continues even at 2l̃c > 2.

3.3.2. Dependence of the Sensitivity on the Frequency

Now, study the frequency dependence of the sensitivity of the electrochemical cell at various
intercathode distances.

The graphs of the frequency dependence of the sensitivity at 2l̃c = 0, 2l̃c = 0.5, 2l̃c = 1, and 2l̃c = 2
are presented in Figure 9.

Figure 9. Frequency dependence of the sensitivity at different distances between the cathodes (red line,
2l̃c = 0; orange line, 2l̃c = 0.5; green line, 2l̃c = 1; blue line, 2l̃c = 2).

Figure 9 shows that the dependence of the sensitivity on the frequency becomes more uniform with
a decrease in the intercathode distance. As a result, the upper cutoff frequency of the electrochemical
cell increases with decreasing intercathode distance and becomes maximum at zero distance between
the cathodes.

3.3.3. The Experimental Validation

The experimental sample of the sensor with planar sensitive element described in [22] was
used for the experimental validation of the model. The microstructure of the sensitive element was
manufactured based on the silicon technology. The cell has eight electrodes 20 µm in width, combined
in two groups deposited on a silicon plate. Two samples with different electrode distance were
produced. The interelectrode distances for the said stricture are presented in Figure 10 (left) and
in Table 1. The plate with the electrodes was glued on one of two non-conductive plates with the
plates placed parallel to each other with 100 µm gap between them. In the experimental samples,
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the housings were produced so that the said gap between the plates worked as a channel for liquid
motion under the influence of external acceleration. Rubber membranes were fixed on the ends of the
channel, and a magnet was glued to one of the membranes and placed inside a coil, this building a
calibration mechanism. Other details of the design as well as the description of the measurements
using the excitation coil can be found in [22]. It should be noted that the channel sizes used in this
design are not optimal for a practical converting structure, since a significant part of the flow is far
from the electrodes and does not participate in the signal conversion. Meanwhile, the results obtained
with its help are quite suitable for experimental verification of the developed model.

Figure 10. The experimental sample design (a) and two methods for powering and signal readout (b).

Table 1. Electrode cell dimensions.

A, µm B, µm C, µm

Sample 1 5 20 100

Sample 2 20 20 80

The electrodes of the experimental sample were connected to the power source and the signal
conditioning electronics. The output signal Iout was the difference between the currents passing through
two cathodes. Generally, for this setup, the Iout could be presented as the following:

Iout/Icoil = WmechWel−chemK (32)

Here, Icoil is the excitation current passing in the coil; K is the coil force constant; Wmech is
the transfer function for the mechanical subsystem, which characterizes the conversion of the force
produced by the excitation coil into the pressure difference across the ends of the channel; and Wel−chem
is the transfer function of electrochemical cell.

Two methods of the electrode’s connection are shown in Figure 10 (right). Different connection
methods can be seen to correspond to the electrochemical conversion cells with different distances
between cathodes. They are B for the configuration marked as “Configuration 1” and C for the
“Configuration 2” shown in Figure 10 (right). Two samples were produced with different geometrical
parameters, as shown in Table 1.

The relative electrochemical cell transfer function, which characterizes the influence of the
intercathode distance at different frequencies, was found from the experimental data according to the
following formula:

Wel−chem, relative ≡
Wel−chem, 1

Wel−chem,2
=

(Iout/Icoil)1

(Iout/Icoil)2
(33)

Here, Indices 1 and 2 correspond to Configurations 1 and 2 shown in Figure 10.
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The resulting experimental points are presented as squares in Figure 11. The modeling results for
the same parameters are shown by a solid line. The upper curve corresponds to Sample 1 and the
lower curve to Sample 2.

Figure 11. Relative frequency response for the cells with different distance between cathodes vs.
dimensionless frequency. (a)—Sample 1; (b)—Sample 2.

At low frequencies, the sensitivity for the configuration with a larger intercathode distance is
noticeably higher, while at high frequencies above 1 Hz the situation is the opposite. This result
agrees with the theoretical model presented in the current study and qualitatively validates the model
presented in the paper.

For Sample 1 the experimentally measured relative transfer function changes 1.3 times in the
given frequency range while the calculated value is 1.4. This accuracy in correspondence between
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the experimental and the theoretical data could be considered as a quite satisfactory taking into
account the production tolerances in the experimental setup. Most important is the difference in the
distance between the cathodes and adjusted anodes for Configurations 1 and 2 shown in Figure 10.
The importance of this type of tolerances is a result of two factors: In Equation (1), there is strong
dependence of the amplitude vs. frequency response on the distance between the cathode and the
anode as noticed in previous publications [29,30], and, in Equation (2), the distance between the cathode
and the anode is the smallest geometrical parameter for the system under consideration, thus it is the
most sensitive to manufacturing tolerance.

For Sample 2, the experimental and theoretical data agree with each other with better accuracy,
since the distance between cathodes and adjusted anodes is four times larger, which decreases the
effect of production tolerances.

4. Discussion

This paper is the first one to study the effect of the space between the cathodes in a
molecular-electron cell on the magnitude and distribution of the stationary background current
and signal current. Therewith, the nature of that effect on stationary and signal (linear in speed)
currents will be different.

In particular, an increase in the intercathode distance leads to an increase in the stationary current
for all the studied parameters of the converting cell, as shown above.

The obtained result can be explained by comparing the distributions of the stationary concentration
of the active component of the electrolyte solution at zero and nonzero distances between the cathodes
shown in Figures 12 and 13.

Figure 12. The distribution of the stationary concentration of the active component of an electrolyte
solution in an electrochemical cell at 2l̃c = 0.

Figure 13. The distribution of the stationary concentration of the active component of an electrolyte
solution in an electrochemical cell at 2l̃c = 1.
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The main difference between the distributions shown in Figures 10 and 11 is observed in the
intercathode region. The figures show that the intercathode region is an additional source of the active
component. The ions diffusion of ions of the active component of the electrolyte solution from this
region leads to an increase in the current density in the near-cathode parts.

As for the signal current linear in speed, according to the calculations, the influence of the
intercathode region on its value has different nature at low and high frequencies. At low frequencies,
the conversion coefficient is higher for a cell with a large intercathode spacing, and vice versa at
high frequencies.

The nature of such a nontrivial behavior of the signal current can be explained by referring to
Equation (6). In its form, Equation (6) is a diffusion equation, where, on the right-hand side, the term
-

~
v~

x∂c0(x̃, z̃)/∂x̃, depending on its sign, represents either sources or drains for the active ions of an
electrochemical cell. At the same time, at low frequencies, the value of the output current is affected by
sources and drains located in a significant part of the cell volume. At high frequencies, diffusion to the
electrodes is only possible from the volume of the cell directly adjacent to the cathodes and only ion
sources located near the electrodes affect the output current.

The distribution
~
v~

x∂c0(x̃, z̃)/∂x̃ for the positive direction of speed is shown in Figure 14 (2l̃c = 0)

and Figure 15
(
2l̃c = 1

)
.

Figure 14. Distribution
~
v~

x
∂c0(x̃,z̃)
∂x̃ in an electrochemical cell at 2l̃c = 0.

Figure 15. Distribution
~
v~

x
∂c0(x̃,z̃)
∂x̃ in an electrochemical cell at 2l̃c = 1.

Consider, for definiteness, the left half of the cell. Active ions, introduced into this region by a liquid
flow, diffuse to the left anode and cathode. Accordingly, the sources in this area increase the current of
the left cathode in absolute value, while the drains decrease it. In Figure 12, which corresponds to the
case 2l̃c = 0, in the whole half of the studied cell, it can be seen that

~
v~

x∂c0(x̃, z̃)/∂x̃ < 0. The geometry
with a nonzero intercathode distance (Figure 13) is distinguished by the presence and influence of the
intercathode region corresponding to −0.5 < x̃ < 0.5. Figure 13 shows that, for the left half of the cell,
~
v~

x∂c0(x̃, z̃)/∂x̃ > 0 at z̃ ≤ 0.5 and
~
v~

x∂c0(x̃, z̃)/∂x̃ < 0 at z̃ ≥ 0.5. At the lowest frequencies, the entire
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cathode region contributes to the output cathode current, in most of which the sign of the quantity
~
v~

x∂c0(x̃, z̃)/∂x̃ is the same as in the rest of the studied half of the cell. Thus, for low frequencies,
the influence of the intercathode region leads to an increase in the cathode current, while the cell with
a nonzero intercathode distance has a higher conversion coefficient compared to the case of 2l̃c = 0.
For high frequencies, the situation is different: diffusion to the cathode is only possible from the region
immediately adjacent to it, where for the left half of the cell

~
v~

x∂c0(x̃, z̃)/∂x̃ is negative. Accordingly,
in this case, the influence of the intercathode space on the signal current is opposite to the influence of
the rest of the cell, and the absolute value of the signal current decreases.

For the right half of the cell, the situation is similar with the difference: all ion sources are replaced
by drains and vice versa, and the cathode current has the opposite sign at the same absolute value.

5. Conclusions

Summarizing the results obtained, we can conclude that the influence of the intercathode region size
on the stationary and signal currents of the converting electrochemical cell is different. The stationary
current decreases monotonically with a decrease in the intercathode distance with the constancy of
other system parameters.

At the same time, the signal current decreases in the low-frequency region and grows in the
high-frequency range.

A simple experimental setup proved the model.
The current dependences on the intercathode distance, which are found in this paper, have clear

physical explanation. The explanation is based on inhomogeneity of a concentration gradient in the
intercathode region. It leads to significant dependence of the signal current on the cathode edge close
to the other cathode that depends on the external signal frequency.

Given the results obtained, practically speaking, it is advisable to reduce the intercathode distance.
The fact is that, as a rule, at low frequencies, the conversion coefficient of the electrochemical cell is
already quite high, and its further increase does not make any practical sense. On the other hand,
an increase in sensitivity at high frequencies broadens the operating frequency range, and a decrease
in stationary current reduces energy consumption.

Moreover, the results of the performed analysis and their physical interpretation can have a
significant effect on the search for new engineering solutions that make it possible to increase the
sensitivity of the conversion cell. For example, the data presented in Figures 3–5 show that the signal
currents in different parts of the electrodes behave differently, depending on the frequency of the
external stimulus: they are added at low frequencies and subtracted at high frequencies, thus reducing
the sensitivity of the converting element. In fact, this means that it is expedient to split the electrode
into two or more parts, the currents from which must be summed up with frequency-dependent
complex coefficients. Necessary specific technological solutions for the practical implementation of
such ideas still need to be created.
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