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Deep single-cell RNA sequencing 
data of individual T cells from 
treatment-naïve colorectal cancer 
patients
Yuanyuan Zhang   1, Liangtao Zheng2, Lei Zhang2, Xueda Hu1, Xianwen Ren1 & 
Zemin Zhang1,2

T cells, as a crucial compartment of the tumour microenvironment, play vital roles in cancer 
immunotherapy. However, the basic properties of tumour-infiltrating T cells (TILs) such as the functional 
state, migratory capability and clonal expansion remain elusive. Here, using Smart-seq2 protocol, we 
have generated a RNA sequencing dataset of 11,138 T cells isolated from peripheral blood, adjacent 
normal and tumour tissues of 12 colorectal cancer (CRC) patients, including 4 with microsatellite 
instability (MSI). The dataset contained an expression profile of 10,805 T cells, as well as the full-length 
T cell receptor (TCR) sequences of 9,878 cells after quality control. To facilitate data mining of our T cell 
dataset, we developed a web-based application to deliver systematic interrogations and customizable 
functionalities (http://crctcell.cancer-pku.cn/). Functioning with our dataset, the web tool enables the 
characterization of TILs based on both transcriptome and assembled TCR sequences at the single cell 
level, which will help unleash the potential value of our CRC T cell data resource.

Background & Summary
CRC is among the common causes of cancer-related mortality worldwide1,2. While immune checkpoint block-
ing antibodies (ICBs) have shown impressive clinical benefits in cancers3–6, their benefits are highly uneven 
among CRC patients. Remarkably, only CRC patients with MSI showed pronounced responses to ICBs, while 
patients with microsatellite stability (MSS) derived no benefit7,8. The underlying mechanisms of such discrim-
ination remain elusive. T cells play vital roles in killing malignant cells and are associated with responses to 
ICB-treatment9,10. It is thus important to understand the cellular underpinnings of TILs in CRC.

Single cell transcriptome analysis has become a compelling approach to decipher the properties of TILs, due 
to its ability to quantify gene expression and assemble TCR sequences simultaneously. In our recent Nature paper, 
we have performed single cell RNA sequencing of 11,138 T cells isolated from peripheral blood, adjacent normal 
and tumour tissues of 12 treatment-naïve CRC patients (Fig. 1a and Table 1), and developed STARTRAC (single 
T cell analysis by RNA sequencing and TCR tracking) indices to analyse the dynamic relationships among 20 
identified T cell subsets11. Here, we provide the detailed description of our dataset and present a webserver to 
deliver comprehensive and customizable analyses.

The dataset contained an average of 1.25 million uniquely mapped read pairs per cell, with an average map-
ping rate of 96.6% (Online-only Table 1). After quality control, we obtained an expression profile of 12,547 genes 
for 10,805 cells, with an average of 3,182 genes detected per cell (Online-only Table 1). The expression data could 
be used to elucidate the expression distributions of genes including those currently pursued as immunotherapy 
targets in clinical trials (Fig. 2a), illuminating the potentially modulated T cell populations with different immu-
notherapies. Furthermore, the dataset can serve as a resource for further T cells exploration including the iden-
tification of novel regulatory mechanisms by depicting the specific expression patterns of transcription factors 
(Fig. 2b).
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TCR sequences, composed of α- and β-chains, play major roles in the selection and activation of T cells12. Both 
α- and β-chains contribute to the determination of TCR antigen specificity, and different T cells with the same 
TCR could be functionally distinct13. To uncover information about T cell ancestry and clonality, we obtained 
full-length TCR sequences of 91.4% (9,878/10,805) cells with at least one pair of productive α-β chains after elim-
inating non-productive alleles or low-abundance TCRs (Fig. 3a and Supplementary File 1). Accordingly, T cells 
with identical TCRs were defined to be from the same clonotype, and a total of 7,274 clonotypes were obtained 
(Supplementary File 1). Indeed, a strong correlation was observed between the recurring frequencies of α-chains 
and that of β-chains, indicating a common ancestral cell of origin (Fig. 3b).

The TCR sequences can be utilized to delineate TCR sharing patterns of both inter/intra-tissues and inter/
intra-clusters (Fig. 3c), shedding light on the properties of T cells including clonal expansion, developmental 
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Fig. 1  Schematic overview of the study design and analysis pipeline. (a) The experimental flowchart of this 
study. (b) The bioinformatics pipeline used for data analysis. Softwares used in each steps were labelled in 
blue. WES, whole exome sequencing; DEG, differentially expressed gene; dist, tissue distribution; expa, clonal 
expansion; migr, cross-tissue migration; tran, developmental transition.
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transition and cross-tissue migration. Furthermore, TCR sequences, as well as the transcriptome data elucidating 
T cell functions, could serve as a data resource for the discovery of antigen specificity in therapeutic applications14.

In our related work, we have revealed important insights of the T cell biology based on STARTRAC indices11.  
For instance, tumour-resident CD8+ effector memory and dysfunctional T cells showed mutually exclusive devel-
opmental transition patterns, suggesting a TCR-based cell fate decision. In addition, we found that a special 
subset of IFNG+ TH1-like T cells with CXCL13+BHLHE40+ were preferentially enriched in MSI tumours, which 
might contribute to the favourable responses of MSI patients to ICBs.

While some discoveries have been made, the unprecedented data resource of CRC T cells is still attractive to 
many biologists. To facilitate data mining of our T cell dataset, we developed iSTARTRAC (the interactive platform 
of STARTRAC), a web server to deliver customizable functionalities for further T cell investigation. iSTARTRAC 
provides key functions including cluster visualization, gene expression demonstration, differential expression anal-
ysis, TCR sharing illustration and discrimination of differences between MSI and MSS patients (Fig. 4).

Patient ID Age Gender
Histological 
typea Stage Tumour size

MSI 
statusb

TNM 
Classification Grade

P0701 68 Female Rectum ADC I 1 × 0.8 cm MSS 1,0,0 Well- differentiated

P1012 35 Female Colon ADC IIIC 7 × 6 cm MSS 4,2,0 Low-differentiated

P1207 66 Female Colon ADC II 6 × 6 cm MSS 4,0,0 Moderate-differentiated

P1212 42 Female Colon ADC II 6 × 4 cm MSS 4,0,0 Low- or moderate- 
differentiated

P1228 77 Female Colon ADC II 4.5 × 4 cm MSS 4,0,0 Low- or moderate- 
differentiated

P0215 75 Male Colon ADC IV 6.5 × 4 cm MSS 4,2,1 Low-differentiated

P0309 55 Male Rectum ADC IIIC 5 × 4.5 cm MSS 3,2,0 Moderate- differentiated

P0411 75 Male Rectum ADC IIB 6.5 × 3.5 cm MSS 4,0,0 Moderate- differentiated

P0123 65 Female Colon ADC IIIB 11.5 × 7 cm MSI 4,1,0 Moderate- differentiated

P0413 82 Female Colon ADC IIIB 10 × 10 cm MSI 4,1,0 Moderate- differentiated

P0825 83 Female Colon ADC IIB 9 × 4 cm MSI 4,0,0 Low- differentiated

P0909 45 Male Colon ADC IIIB 6 × 4 cm MSI 3,1,0 Low- differentiated

Table 1.  Clinical characteristics of 12 CRC patients. aADC, adenocarcinoma. bMSS, microsatellite stability; 
MSI, microsatellite instability.

Fig. 2  Expression patterns of selected genes. (a) Violin plots showing the expression distributions of 
known immunotherapy targets in tumour-enriched T cell clusters. (b) Bubble plots depicting expressions of 
transcription factors in different CD4+ T cell clusters.

https://doi.org/10.1038/s41597-019-0131-5


4Scientific Data |           (2019) 6:131  | https://doi.org/10.1038/s41597-019-0131-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

The comprehensive and customizable analyses with simple clicking through iSTARTRAC could greatly facil-
itate data reuse in the field of cancer immunology, and the accompanying scientific discussion will further expe-
dite the process of therapeutic discovery and understanding the mechanism of immunotherapies with respect to 
T cell functions.
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Fig. 3  The TCR profile of single T cells. (a) The abundance distributions of TCR α- or β-chain. The gray 
lines represent the fitting values. (b) The relationship between the degrees of recurrent usage of various TCR 
α-chains with that of β-chains. Each dot represents a group of TCR α/β allele expressed in a given number of 
cells. Dot size represents the proportion of such group in all TCR chains detected. (c) TCR sharing patterns of 
different CD8+ T cell clusters enriched in different tissues.
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Methods
These methods are expanded version of descriptions in our related work11, which provided detailed descriptions 
of experimental procedures including human specimens, single cell collection, cell sorting, reverse transcription, 
amplification and sequencing, and those of computational processing including quality control, data processing, 
TCR assembly, unsupervised clustering and definition of STARTRAC indices11. While most part of the methods 
described here was cited from that report, we specifically aim to emphasize the samples and the methods used to 
generate the single cell RNA-seq data.

Fig. 4  Schema describing the key functionalities of the iSTARTRAC web server. iSTARTRAC provides six 
functional modules including cluster atlas, gene expression, DEG analysis, TCR-based analysis, STRATRAC 
indices and MSI versus MSS. Each module implements several customizable analyses for user input samples.
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Clinical human specimens.  Twelve patients with CRC were enrolled and pathologically diagnosed with 
colorectal adenocarcinoma at Peking University People’s Hospital. All patients in this study provided written 
informed consent for sample collection and data analyses. This study was approved by the Research and Ethical 
Committee of Peking University People’s Hospital and complied with all relevant ethical regulations.

The patients included eight with MSS (P0701, P1012, P1207, P1212, P1228, P0215, P0411 and P0309) and 
four with MSI (P0123, P0909, P0825 and P0413) status. Among these 4 MSI patients, 3 had positive lymph nodes 
(P0123, P0413 and P0909), two of them had poorly-differentiated disease (P0825 and P0909), and none of them 
had distal metastasis. There were eight females and four males, and the median age of diagnosis was 67, ranging 
from 35 to 82. Among these 12 patients, one was diagnosed at stage I, five at stage II, five at stage III, and one 
at stage IV, which was classified according to the guidance of AJCC version 8. None of them were treated with 
chemotherapy or radiation prior to tumour resection. The available clinical characteristics are summarized in 
Table 1.

Sample collection and preparation.  Fresh tumour and adjacent normal tissue samples (at least 2 cm 
from matched tumour tissues) were surgically resected from the above-described patients. Patients P0701, P0909, 
P1212, P1228, P0215, P0411, P0413, P0825, P0123 and P0309 had peripheral blood and paired tumour and 
adjacent normal tissues, whereas patients P1012 and P1207 had only fresh tumour tissue and matched peripheral 
blood.

Tumours and adjacent normal tissues were cut into approximately 1-mm3 pieces in the RPMI-1640 medium 
(Invitrogen) with 10% fetal bovine serum (FBS; Sciencell), and enzymatically digested with MACS Tumour 
Dissociation Kit (Miltenyi Biotec) for 30 min on a rotor at 37 °C, according to the manufacturer’s instruction. 
The dissociated cells were subsequently passed through a 40-µm cell-strainer (BD) and centrifuged at 400 g 
for 10 min. After the supernatant was removed, the pelleted cells were suspended in red blood cell lysis buffer 
(Solarbio) and incubated on ice for 2 min to lyse red blood cells. After washing twice with PBS (Invitrogen), the 
cell pellets were re-suspended in sorting buffer (PBS supplemented with 1% FBS). PBMCs were isolated using 
HISTOPAQUE-1077 (Sigma-Aldrich) solution as previously described15. In brief, 3 ml of fresh peripheral blood 
was collected before surgery in EDTA anticoagulant tubes and subsequently layered onto HISTOPAQUE-1077. 
After centrifugation, lymphocyte cells remained at the plasma–HISTOPAQUE-1077 interface and were carefully 
transferred to a new tube and washed twice with PBS. Red blood cells were removed via the same procedure 
described above. These lymphocytes were re-suspended in sorting buffer.

Single-cell sorting, reverse transcription, amplification and sequencing.  Single-cell suspen-
sions were stained with antibodies against CD3, CD4, CD8 and CD25 (anti-human CD3, UCHT1; anti-human 
CD4, OKT4; anti-human CD8, OKT8; anti-human CD25, BC96; eBioscience) for fluorescence-activated cell 
sorting (FACS), performed on a BD Aria III instrument. Single cells of different subtypes including cytotoxic 
T (TC) cells, T helper (TH) cells and regulatory T (Treg) cells were enriched by gating 7AAD−CD3+CD8+, 
7AAD−CD3+CD4+CD25−/+ and 7AAD-CD3+CD4+ CD25++ T cells, respectively, and sorted into 96-well plates 
(Axygen) chilled to 4 °C, prepared with lysis buffer with 1 µl 10 mM dNTP mix (Invitrogen), 1 µl 10 µM Oligo 
dT primer, 1.9 µl 1% Triton X-100 (Sigma), and 0.1 µl 40 U µl-1 RNase Inhibitor (Takara). The single-cell lysates 
were sealed and stored frozen at −80 °C immediately. Single-cell transcriptome amplifications were performed 
according to the Smart-Seq2 protocol15,16. The External RNA Controls Consortium (ERCC; Ambion; 1:4,000,000) 
was added into each well as the exogenous spike-in control before the reverse transcription. The amplified cDNA 
products were purified with 1× Agencourt XP DNA beads (Beckman). A procedure of quality control was 
performed following the first round of purification, which included the detection of CD3D by qPCR (forward 
primer, 5′-TCATTGCCACTCTGCTCC-3′; reverse primer, 5 primer, 5′-TCATTGCCACT) and fragment analysis 
by analyser AATI. For those single-cell samples with high quality after quality control (cycle threshold <30), the 
DNA products were further purified with 0.5× Agencourt XP DNA beads, and the concentration of each sample 
was quantified by Qubit HsDNA kits (Invitrogen). Multiplex (384-plex) libraries were constructed and amplified 
using the TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme Biotech). The libraries were then purified 
with Agencourt XP DNA beads and pooled for quality assessment by fragment analyser. For all the 12 patients, 
purified libraries were analysed by an Illumina Hiseq 4000 sequencer with 150-bp pair-end reads. For patient 
P1207, only CD8+ T cells were collected due to the temporary lack of CD4 antibody.

Bulk DNA isolation and sequencing.  Genomic DNA of peripheral blood and tissue samples of patients 
with CRC were extracted using the QIAamp DNA Mini Kit (QIAGEN) according to the manufacturer’s specifi-
cation. The concentrations of DNA were quantified using the Qubit HsDNA Kits (Invitrogen) and the qualities 
of DNA were evaluated with agarose gel electrophoresis. Exon libraries were constructed using the SureSelectXT 
Human All Exon V5 capture library (Agilent). Samples were sequenced on the Illumina Hiseq 4000 sequencer 
with 150-bp paired-end reads.

Multi-colour immunohistochemistry.  OpalTM multi-colour immunohistochemistry (IHC) staining 
were performed with antibodies of rabbit anti-human CD3 (Abcam, clone SP7, 1:400), mouse anti-human CD8 
(Abcam, clone 144B, 1:500), rabbit anti-human CD4 (Abcam, clone EPR6855, 1:400) and mouse anti-human 
FOXP3 (Abcam, clone mAbcam22510, 1:500) to validate the existence of infiltrating TC, TH and Treg cells in tumour 
tissues. The specimens were collected and prepared for the formalin-fixed paraffin-embedded tissues sections as 
previously mentioned15. Antigen was retrieved by AR9 buffer (pH 6.0, PerkinElmer) and boiled in the oven for 
15 min. After a pre-incubation with blocking buffer at room temperature for 10 min, the sections were incubated 
at room temperature for 1 h with aforementioned antibodies. A secondary horseradish peroxidase-conjugated 
antibody (PerkinElmer) were added and incubated at room temperature for 10 min. Signal amplification was  
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performed using TSA working solution diluted at 1:100 in 1× amplification diluent (PerkinElmer) and incu-
bated at room temperature for 10 min. The multispectral imaging was collected by Mantra Quantitative Pathology 
Workstation (PerkinElmer, CLS140089) at 20× magnification and analysed by InForm Advanced Image Analysis 
Software (PerkinElmer) version 2.3. For each patient, a total of 8–15 high-power fields were taken based on their 
tumour sizes.

Microsatellite instability testing.  DNA purified from tumour tissues using QIAamp DNA Mini Kit 
(QIAGEN) was subjected to multiplex fluorescent PCRbased assay (Promega) by amplifying seven loci includ-
ing five mononucleotide repeats (NR21, BAT26, BAT25, NR24 and Mono27) and two pentanucleotide repeats 
(PentaC and PentaD) and was compared with DNA extracted from matched adjacent normal tissues. Multiplex 
PCR products were analysed by ABI PRISM 3100 Genetic Analyzer (Applied Biosystems).

Quality control and preprocessing of single cell RNA-seq data.  Low-quality read pairs of single-cell 
RNA sequencing (scRNA-seq) data were filtered out if at least one end of the read pair met one of the following 
criteria: (1) ‘N’ bases account for ≥10% of the read length; (2) bases with quality <5 account for ≥50% of the read 
length; and (3) the read contains adaptor sequence. The filtered read pairs were processed using HTSeqGenie 
pipeline (R package version 4.8) to obtain the gene expression table. Specially, read pairs were then mapped to 
human ribosomal RNA (rRNA) sequences (download from RFam database) and the read pairs with both ends 
unmapped were kept for downstream analysis. Read pairs passing this filter for rRNA were aligned to human 
reference sequence (hg19) using GSNAP17, with parameters ‘–novelsplicing 1 -n 10 -i 1 -M 2’. To calculate the 
expression levels of genes, the gene model file ‘knownGene.txt’ (30 June 2013 version), downloaded from UCSC, 
was used. The R function findOverlaps was used to count the number of uniquely mapped read pairs located in 
each gene and the count table tabulated as genes by cells was used for downstream analysis. The transcripts per 
million (TPM) table was derived from the count table and the TPM value was calculated by

C length of gene i
C length of gene i

10 /
/
ij

i ij

6 ×

∑

where Cij is the count value of gene i in cell j. It should be noticed that the TPM here is a simplified version based 
on the hypothesis that all mapped reads are approximate the same length.

Low-quality cells were filtered if the library size or the number of expressed genes (counts larger than 0) was 
smaller than predefined thresholds. Both thresholds were defined as the medians of all cells minus 3× the median 
absolute deviation. Furthermore, if the proportion of mitochondrial gene counts was larger than 10%, these cells 
were discarded. Only cells with the average TPM of CD3D, CD3E and CD3G larger than 10 were kept for sub-
sequent analysis. We further identified CD4+, CD8+, CD4−CD8− (double negative) and CD4+CD8+ (double 
positive) T cells based on the gene expression data. Given the average TPM of CD8A and CD8B, one cell was 
considered as CD8 positive or negative if the value was larger than 30 or less than 3, respectively; given the TPM 
of CD4, one cell was considered as CD4 positive or negative if the value was larger than 30 or less than 3, respec-
tively. Hence, the cells can be in silico classified as CD4+CD8−, CD4−CD8+, CD4+CD8+, CD4−CD8− and other 
cells that cannot be clearly defined.

While TPM is an intuitive and popular measurement to standardize the total number of transcripts between 
cells, it is insufficient and could bias downstream analysis because TPM can be dominated by a handful of highly 
expressed genes. Therefore, we mainly used TPM for preliminary data processing and gene expression visuali-
zation. Recently, methods for normalizing scRNA-seq data including scran18 have been proposed to implement 
robust and effective normalization, and thus we used the size-factor normalized read count for main analyses in 
our study including dimensionality reduction, clustering and finding markers for each cluster.

After discarding genes with average counts of fewer than or equal to 1, the count table of the cells passing the 
above filtering was normalized by a pooling strategy. We applied the R package scran18 in Bioconductor to per-
form the normalization process. Specifically, cells were pre-clustered using the ‘quickCluster’ function with the 
parameter ‘method = hclust’. Size factors were calculated using ‘computeSumFactors’ function with the parameter 
‘sizes = seq (20,100,by = 20)’ which indicates the number of cells per pool. Raw counts of each cell were divided 
by their size factors, and the resulting normalized counts were then scaled to log2 space and used for batch 
correction.

Scran utilizes a pooling strategy implemented in ‘computeSumFactors’ function, in which size factors for 
individual cells were deconvoluted from size factors of pools. To avoid violating the assumption that most genes 
were not differentially expressed, hierarchical clustering based on Spearman’s rank correlation was performed 
with ‘quickCluster’ function first, then normalization was performed in each resulting cluster separately. The size 
factor of each cluster was further re-scaled to enable comparison between clusters.

To remove the possible effects of different donors on expression, the normalized table was further centred by 
patient. Thus, in the centred expression table, the mean values of the cells for each patient were zero. A total of 
12,548 genes and 10,805 cells were retained in the final expression table. If not explicitly stated, ‘normalized read 
count’ or ‘normalized expression’ in this study refers to the normalized and centred count data for simplicity.

Unsupervised clustering analysis of CRC single T cell RNA-seq dataset.  The cell clusters used 
here were the same as defined in our related Nature paper11. The expression tables of CD8+CD4− T cells and 
CD8−CD4+ T cells as defined by the aforementioned in silico classification but excluding MAIT cells and iNKT 
cells, were fed into an iteratively unsupervised clustering pipeline separately. Specifically, given expression table, 
the top n genes with the largest variance were selected, and then the expression data of the n genes were analysed 
by single-cell consensus clustering (SC3)19. n was tested from 500, 1000, 1500, 2000, 2500 and 3000. In SC3, 
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the distance matrices were calculated based on Spearman correlation and then transformed by calculating the 
eigenvectors of the graph Laplacian. Then the k-means algorithm was applied to the first d eigenvectors multiple 
times where d was chosen from 4% to 7% of the total number of input cells. Finally, hierarchical clustering with 
complete agglomeration was performed on the SC3 consensus matrix and k clusters were inferred. The SC3 
parameters k, which was used in the k-means and hierarchical clustering, was tried from 2 to 10. For each SC3 
run, the silhouette values were calculated, the consensus matrix was plotted, and cluster specific genes were iden-
tified. Such information was used to determine the optimal k and n. Once the stable clusters were determined, 
the above procedure was iteratively applied to each of these clusters to reveal the sub-clusters. After obtained the 
stable clusters by SC3, we further redefined the cluster labels of indeterminate cells with the silouatte values less 
than zero by R package XGBoost20. The training datasets were composed of cells with the silouatte >0, while cells 
to be reclassified with the silouatte <0 were then redefined to clusters with the largest predicting score. The in 
silico classified CD8+CD4− MAIT cells had distinct gene expression patterns compared with other CD8+CD4− T 
cells, and were defined as cluster “CD8_C08-SLC4A10”.

When the clustering results were obtained, one-way ANOVA implemented by R function aov was performed 
to identify the differentially expressed genes among the clusters. R function TukeyHSD was used to identify which 
cluster pairs showed a significant difference. A gene was defined as being significantly differentially expressed 
based on the following criteria: 1) adjusted P-value (Benjamini-Hochberg method) of F test less than 0.05; 2) the 
absolute difference of any one significant cluster pair (P-value of Tukey’s ‘Honest Significant Difference’ method 
less than 0.01) larger than 1. The significantly differentially expressed genes were categorized in the cluster that 
showed the highest expression.

The t-SNE method implemented in R package Rtsne was used for clustering visualization. To visualize the cell 
density on the t-SNE plot, kernel density estimation was performed using R function kde (ks package), and the 
contour lines encompassing the top 10%, 20%, …90% cells with highest densities were shown. A total of 8,530 
T cells, including 3,628 CD8+CD4− and 4,902 CD8−CD4+ T cells with clustering definitions, were used in the 
t-SNE projection. Other cells such as CD8+CD4+ and CD8−CD4− T cells were not included in this visualization.

Analysis pipelines of bulk exome sequencing data.  The bulk exome sequencing data were cleaned 
following the same procedure for the scRNA-seq data processing. The cleaned read pairs were then processed 
according to the BWA-Picard/ Genome Analysis Toolkit (GATK)-Strelka pipeline. In brief, the cleaned read pairs 
were aligned to human genome reference version b37 (downloaded from ftp://ftp.broadinstitute.org:/bundle) 
by the BWA-MEM algorithm21. The alignments were then sorted and de-duplicated by Picard (Broad Institute). 
GATK22 was used to realign multiple reads around putative INDEL by Smith–Waterman alignment algorithm 
and re-calibrate base quality. The analysis-ready bam files were input into the GATK UnifiedGenotyper module to 
call SNP/INDEL and into Strelka23 to call somatic SNV/INDEL and into ADTEx24 (version 1.0.4) to call somatic 
copy number alterations. The mutations were annotated with ANNOVAR25.

TCR assembly.  TraCeR26 was used to deduce the TCR sequences of each cell. The outputs of TraCeR include 
the assembled nucleotide sequences for both α and β chains, the coding potential of the nucleotide sequences 
(that is, productive or not), the translated amino acid sequence, the CDR3 sequences and the estimated TPM 
value of α or β chains. Only cells with TPM values larger than 10 for the α chain and larger than 15 for the β 
chain were kept. For cells with two or more α or β chains assembled, the α–β pair that was productive and of the 
highest expression level was defined as the dominant α–β pair in the corresponding cell. If two cells had identical 
dominant α–β pairs, the dominant α–β pair was identified as clonal TCRs.

To integrate with the gene expression data, the TCR-based analysis was performed only for cells that passed 
the aforementioned quality control pipeline (total 10,805). Thus, 9,878 cells with TCR information were used in 
the integrative analysis27 (Supplementary File 1). If one cell had an α chain composed of V segment TRAV1-2 
and one of the following J segments (TRAJ33, TRAJ20 and TRAJ12), the cell was classified as a MAIT cell28. If 
the α chain of one cell was rearranged by V segment TRAV10 and J segment TRAJ18, the cell was classified as 
an invariant natural killer T cell29. In the 9,878 cells with at least one pair of productive α and β chains, only 3 
cells were identified as invariant natural killer T cells, and 102 cells were identified as MAIT cells, including 71 
CD8+CD4− T cells classified in silico.

Definition of STARTRAC indices.  We present STRATRAC as a framework, defined by four indices, to 
analyse different aspects of T cells based on paired single cell transcriptomes and TCR sequences. The first index, 
named as STARTRAC-dist (STARTRAC-distribution), utilizes the ratio of observed over expected cell numbers 
in tissues to measure the enrichment of T cell clusters across different tissues. Given a contingency table of T cell 
clusters by tissues, we first apply Chi-squared test to evaluate whether the distribution of T cell clusters across 
tissues significantly deviates from random expectations. We then calculate the STARTRAC-dist index for each 
combination of T cell clusters and tissues according the following formula:

I R Observed
Expecteddist

STARTRAC
o e/= =

where Ro/e is the ratio of observed cell number over the expected cell number of a given combination of T cell 
cluster and tissue. The expected cell number for each combination of T cell clusters and tissues are obtained from 
the Chi-squared test. Idist

STARTRAC can indicate whether cells of a certain cluster are enriched (Ro/e > 1) or depleted 
(Ro/e < 1) in a specific tissue.
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The other three STARTRAC indices, STARTRAC-expa (STARTRAC-expansion), STARTRAC-migr 
(STARTRAC-migration) and STARTRAC-tran (STARTRAC-transition), are designed to measure the degree of 
clonal expansion, tissue migration, and state transitions of T cell clusters upon TCR tracking, respectively. The 
MAIT cells were not included in these types of analyses because they have distinct TCRs. For STARTRAC-expa, 
which uses the standard TCR clonality measurement30 but is specifically applied to different T cell clusters 
in our analyses, we first adopt the normalized Shannon entropy to calculate the evenness of the TCR reper-
toire of the given T cell cluster and then define the STARTRAC-expa index as 1-evenness. Mathematically, the 
STARTRAC-expa index of a specific cluster with N clonotypes is defined by the following formula:

I eveness
p p

N
1 1

log
logexpa

STARTRAC i
N

i i1 2

2

= − = −
−∑ =

where pi is the cell frequency of clonotype i in the cluster, and a clonotype is defined by identical, full-length, 
paired α and β TCR chains. STARTRAC-expa ranges from 0 to 1, with 0 indicating no clonal expansion for each 
clonotype while 1 indicating that the cluster is composed of only one clonally expanded clonotype, with high 
STARTRAC-expa indicating high clonality.

For T cells with identical TCR clonotypes, even if they are present in different tissues or in different develop-
ment states, logically they could be likely derived from a single naïve T cell, clonally expanded initially at one 
location and migrated across tissues or have undergone state transitions. Based on this principle, we define 
STARTRAC-migr and STARTRAC-tran to evaluate the extent of tissue migration and state transition of each 
clonotype, respectively. For each clonotype, given its distribution across tissues (peripheral blood, adjacent nor-
mal mucosa and tumour), we define its STARTRAC-migr index Imigr

t  as:

I p plogmigr
t

j

J

j
t

j
t

1
2∑= −

=

where pj
t is the ratio of the number of cells with TCR clonotype t in tissue j to the total number of cells with TCR 

clonotype t and ∑ == p 1j
J

j
t

1 . For two T cell clusters with similar clonal expansion and clonal size, the one with 
clonal cells broadly distributed in various tissues would likely be more mobile. Similarly, its STARTRAC-tran 
index Itran

t  can be defined as:

∑= −
=

I p plogtran
t

k

K

k
t

k
t

1
2

where pk
t is the ratio of the number of cells with TCR clonotype t in cluster k to the total number of cells with TCR 

clonotype t, ∑ == p 1k
K

k
t

1 , and K is the total number of cell clusters. The input of STARTRAC-migr is the observed 
cell frequency across tissues of a certain clonotype, while the input of STARTRAC-tran is the observed cell fre-
quency across cell clusters of a certain clonotype. By contrast, the input of STARTRAC-expa is the observed cell 
frequency across clonotypes of a certain cell cluster, and the input for the traditional TCR clonality measure is the 
observed sequence frequency across a TCR repertoire of a given sample.

After the extent of tissue migration of each clonotype is quantified by STARTRAC-migr, given a cluster with 
total T clonotypes, the STARTRAC-migr index at the cluster level Imigr

STARTRAC can be defined as the weighted aver-
age of all TCR clonotype migration indices contained in the cluster:

I p Imigr
STARTRAC

t

T

cls
t

migr
t

1
∑=
=

where pcls
t  is the ratio of the number of cells with clonotype t in cluster cls to the total number of cells in cluster cls.

Similarly, when the extent of state transition of each clonotype is quantified by STARTRAC-tran, given a clus-
ter with total T clonotypes, the STARTRAC-tran index at the cluster level can be defined as the weighted average 
of all TCR clonotypes state transition indices contained in the cluster:

∑=
=

I p Itran
STARTRAC

t

T

cls
t

tran
t

1

where pcls
t  is the ratio of the number of cells with clonotype t in cluster cls to the total number of cells in cluster cls.

Besides the overall evaluation of the extents of migration and state transitions by STARTRAC-migr and 
STARTRAC-tran, we also define pairwise STARTRAC-migr (pSTARTRAC-migr) and STARTRAC-tran 
(pSTARTRAC-tran) indices for precise quantification. For example, given a clonotype t and two tissue types (e.g., 
blood and tumour), the pSTARTRAC-migr index pImigr

t
 is calculated by the following formula:

p p plogI

j
j
t

j
t

1

2

2
migr
t

∑= −
=

where pj
t is the ratio of the number of cells with TCR clonotype t in tissue j to the total number of cells with TCR 

clonotype t in tissues 1 and 2 (i.e., blood and tumour), and ∑ == p 1j j
t

1
2 . In other words, pSTARTRAC-migr uses 

the same formula as STARTRAC-migr but limits the number of tissues to two and the frequencies of cells between 
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two specified tissues are re-calculated. Likewise, given a clonotype t and two T cell clusters (e.g., TEM and TEX), the 
pSTARTRAC-tran index pItran

t
 is calculated by the following formula:

p p plogI

k
k
t

k
t

1

2

2
tran
t

∑= −
=

where pk
t is the ratio of the number of cells with TCR clonotype t in cluster k to the total number of cells with TCR 

clonotype t in clusters 1 and 2 (i.e., TEM and TEX), and p 1k k
t

1
2∑ == . Thus, pSTARTRAC-tran uses the same for-

mula as STARTRAC-tran but limits the number of clusters to two and the frequencies of cells between the two 
specified clusters are re-calculated. Once pairwise STARTRAC-migr and STARTRAC-tran for clonotypes are 
obtained, the corresponding indices for clusters are calculated via weighted average according to their clonotype 
compositions.

Summary of scRNA-seq data and bioinformatics workflow used for data processing.  For all the 
12 patients, a total of 35.5 G raw reads and 5.4 T raw bases were obtained after sequencing. After preprocessing, we 
obtained 32.5 G high-quality reads with an average high-quality rate of 91.3% (Online-only Table 1). Accordingly, we 
summarized the data processing procedures and tools used in each step in a flowchart, consisting of quality control 
filtering, TCRs assembly, expression quantification, data normalization and downstream analyses (Fig. 1b).

Data Records
As described in our related research paper11, the raw sequencing data have been deposited in the European 
Genome-phenome Archive database under study accession id EGAS00001002791 and dataset accession id 
EGAD0000100391031, which are available in FASTQ file format upon request and approval. The DATA ACCESS 
AGREEMENT is provided at https://github.com/zhangyybio/single-T-cell-data-access. Applicants can request access 
to the data by directly downloading it or by sending an email to cancerpku@pku.edu.cn. The process that is used to 
approve an application includes verifying the institution, participants and research purposes of the application, and 
the authorization by EGA. In general this process will take about two weeks. In principal, any academic research 
institutions complying with the laws and bioethic regulation policies of China will be approved. The publication mora-
torium described in the Data Access Agreement officially expires concurrent with publication of this Data Descriptor. 
The processed gene expression data were deposited in the Gene Expression Omnibus database under accession id 
GSE10898932. The clinical data recording available clinical characteristics of the collected 12 CRC patients are sum-
marized in Table 1 and the genomic features are summarized in Table 2 and Online-only Table 2. Online-only Table 3 
lists the DNA fragment sizes of short tandem repeat loci from tested patients in microsatellite instability testing exper-
iment. Basic statistics of single cell sequencing data are provided in Online-only Table 1. The cluster information and 
TCR typing data are presented in Supplementary File 1, which has also been uploaded to Figshare27.

Technical Validation
Validating the presence of tumour-infiltrating lymphocytes.  OpalTM multi-colour IHC staining 
were performed with anti-CD3, CD8,CD4, and FOXP3 antibodies to validate the existence of infiltrating TC, TH 
and Treg cells in tumour tissues (Fig. 5a).

Validating the genomic features of CRC patients.  Exome sequencing of bulk tumours from 12 patients 
showed that four patients harboured mutations in TP53 and five patients harboured mutations in APC/FBXW7. 
These genomic alterations were consistent with the characteristics of colon adenocarcinoma (COAD) and rectum 
adenocarcinoma (READ) from The Cancer Genome Atlas (TCGA)33. Summarized tables were provided for the 

Patienta
Frameshift 
insertion

Frameshift 
deletion

Frameshift 
substitution Stopgain Stoploss

Nonframeshift 
insertion

Nonframeshift 
deletion

Nonframeshift 
substitution

Missense 
SNVb

Synonymous 
SNVb Unknown Total

P0123 27 129 0 51 2 0 4 0 869 389 1 1,472

P0825 125 422 0 56 3 5 35 0 1,181 494 2 2,323

P0909 114 190 0 46 3 0 3 0 1,440 582 0 2,378

P0413 27 156 0 60 0 1 11 0 929 427 3 1,614

P0215 5 22 0 9 1 6 14 0 79 42 0 178

P0411 2 6 0 6 0 1 2 0 68 29 0 114

P0701 2 3 0 11 0 2 0 0 102 46 0 166

P1012 4 11 0 10 0 0 2 0 180 63 0 270

P1207 2 5 0 3 0 1 7 0 59 36 0 113

P1212 6 5 0 4 0 2 3 0 135 52 0 207

P1228 3 7 0 7 0 0 1 0 88 46 0 152

P0309 0 1 0 2 0 0 0 0 40 15 0 58

Table 2.  Statistics of somatic mutations detected by whole exome sequencing of CRC tumours. Somatic 
mutations were detected by variant caller Strelka and were annotated with ANNOVAR. aMSI pateints are 
labelled in bold. bSNV,single nucleotide variant.
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statistics of somatic mutations (Table 2) and selected cancer-associated somatic mutations (Online-only Table 2) 
that were detected in these patients.

Validating the genomic alterations of MSI patients.  Among the 12 CRC patients, 4 patients (P0123, 
P0909, P0825 and P0413) showed deficient in DNA mismatch repair based on IHC testing of four markers 
(MLH1, MSH2, MSH6, and PMS2)11, which was also supported by the much higher mutation load (Table 2). 
To further confirm the MSI status of these patients, we performed microsatellite instability testing by multiplex 
fluorescent PCR-based assay. Indeed, we found that 4 tumours from MSI patients were characterized by MSI-H 
phenotypes with two or more mononucleotide loci showing instability (Online-only Table 3).

Validation of RNA samples & RNA-seq libraries.  Quality control procedure was performed following 
the first round of purification of amplified cDNA products, including the detection of CD3D by qPCR and frag-
ment analysis. For single cell samples with high quality (cycle threshold <30), the DNA products were further 
purified and the concentration of each sample was quantified (Fig. 5b). The constructed multiplex libraries were 
purified and pooled for quality assessment (Fig. 5c).

Validating the quality of scRNA-seq data.  Quality control analyses revealed that the raw sequence data 
were of high quality, with an average high-quality rate of 91.3% (Online-only Table 1). We assessed the qualities of 
clean data by statistics of per sequence quality scores and per sequence GC contents. For each sequence, an aver-
age of 87.9% bases have a quality score higher than phred quality 30 (Q30), and 94.5% bases have a quality score 
higher than phred quality 20 (Q20) (Online-only Table 1). In addition, the GC contents of each sample showed a 
similar normal distribution, with a mean value of 46.2% (Fig. 5d and Online-only Table 1). These statistics indi-
cated that high-quality RNA-seq reads were obtained for downstream analysis.

Validating cell types by marker genes.  To evaluate the accuracy of FACS, we examined the expression 
of conventional marker genes of T cell subsets, including CD3D, CD3E, CD3G, CD8A, CD8B, CD4, IL2RA and 
FOXP3 (Fig. 5e). While dropout event is prevalent and challenging in single cell RNA-seq data, the gene expres-
sion levels of classical T cell markers were consistent with protein levels measured by FACS. Specifically, all T 
cells were characterized by high expression of CD3 genes (CD3D, CD3E and CD3G). Most TC cells expressed 
high-level of CD8 (CD8A, CD8B) but low-level of CD4, whereas TH cells and Tregs exhibited the opposite pattern. 
Tregs showed high expressions of IL2RA encoding transmembrane protein CD25 and regulatory transcription fac-
tor FOXP3 compared with TH cells (Fig. 5e). Therefore, the expression patterns of classic T cell markers confirmed 
the reliability of T cell subtypes.

Usage Notes
To facilitate reuse of our T cell dataset and broaden the user community, we developed a web server and will use 
the following sections to elaborate the design and functionalities provided by iSTARTRAC. iSTRATRAC is avail-
able at http://crctcell.cancer-pku.cn/.

Design and implementation.  Although we have provided an online portal at http://crc.cancer-pku.cn to 
depict gene expressions, only limited functionalities were presented, hindering the wide usage of our data. Here, 
to facilitate further exploration of our T cell data, we have developed a much enhanced web server iSTARTRAC 
to enable the comprehensive and customizable analyses.

The iSTARTRAC website is deployed on server with 64GB RAM and CPU Gold 6149 × 16 cores running the 
Ubuntu (version 16.04.4) Linux (version 4.4.0) operating system. The interface is constructed using the Shiny 
web application framework (version 1.2.0) in R (version 3.5.0) running on the Shiny-server (version 1.5.6.875).

iSTARTRAC is freely available to all users with no login requirement, and can be accessed by most web browsers 
including Google Chrome, Mozilla Firefox, Safari and Internet Explorer. The website automatically adjusts the look and 
feel according to different browsers and devices, but Google Chrome is recommended to achieve the best visualization.

Sample options panel.  In each module of iSTARTRAC, four categories of basic options are available for 
modulating the input samples of interest, including Cluster, Cell Type, Tissue Type and Patient. The Cluster icon 
consists of 20 clusters including 8 for CD8+ T cells and 12 for CD4+ T cells, and the Cell Type icon is composed 
of five cell types including CD8+ T cells, CD4+ T cells, CD4+ CD25− T cells, CD4+ CD25+ T cells and CD4+ 
CD25++ T cells defined by FACS. Peripheral blood (P), adjacent normal (N) and tumour infiltrating (T) are 
included in the Tissue Type icon. The Patient icon contains eight MSS patients, as well as four MSI patients.

Moreover, iSTARTRAC presents interactive sliders that can be adjusted to change the dot sizes and line widths 
to achieve optimal visualization of the plots. Plots are regenerated on-the-fly as the user changes sliders or sam-
ples, providing an interactive experience that makes it possible to perform customizable analyses.

Functionalities.  iSTARTRAC provides key interactive and customizable functions including cluster visu-
alization, gene expression demonstration, differential expression analyses between clusters or cell types, TCR 
sharing illustration, customizable analysis of STARTRAC indices and discrimination of differences between MSI 
and MSS patients (Fig. 4).

Cluster atlas.  iSTARTRAC dynamically demonstrates the tSNE plot of cell clusters for user-defined T cells derived 
from given cell clusters, tissue origins, cell types and patients (in the ‘tSNE Plot’ tab). In addition, an annotation table 
of basic information of T cells is shown and users are allowed to download the table by clicking the DOWNLOAD 
button (in the ‘Table’ tab).

https://doi.org/10.1038/s41597-019-0131-5
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Gene expression.  In this module, iSTARTRAC interactively plots expression distribution of a given gene in dif-
ferent clusters according to user-defined sample selections. The results can be presented in tSNE plot (in the ‘tSNE 
Plot’ tab), violin plots (in the ‘Violin Plot’ tab), or box plots (in the ‘Box Plot’ tab).
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Fig. 5  Quality assessment of single cell RNA-seq data. (a) OpalTM multi-colour IHC staining to validate the 
existence of T cells in CRC tumours (exemplified by P0215 and P1212). (b) One representative example of cDNA size 
distribution derived from tumour of P0309. (c) One representative fragmentation profile of sequencing library after 
tagmentation prepared from pooled amplicons produced by PCR amplification of cDNA from samples of P0413. 
(d) The densities of GC content per sequence for two representative samples of P1212 and P1228. (e) Heatmaps 
demonstrating the expression levels of classic marker in each T cell subtypes. The right-sided barplots showed the 
percentages of cell with the expression of corresponding genes (TPM > 0). RFU, relative fluorescence unit.
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Differential expression analysis.  iSTARTRAC performs differential expression (DE) analyses and identifies dif-
ferentially expressed genes (DEGs) between any two given clusters (in ‘Cluster DEG’ tab) or cell types (in ‘Cell 
Type DEG’ tab), illustrating the results in volcano plots. Single cell transcriptome data is exceptionally appropriate 
for dissecting the intrinsic cellular heterogeneity. In addition to the commonly used unsupervised clustering, 
pairwise gene expression distribution, a simple and effective approach similar to FACS with proteins, can also be 
utilized to detect cell subpopulations. Accordingly, iSTARTRAC allows users to input a pair of genes to dynami-
cally compartmentalize cell subpopulations and performs differential expression analysis for any two subdivided 
populations (in ‘in silico FACS’ tab). Users can adjust the thresholds of low/high-expression, as well as the signifi-
cance thresholds of fold change and p-values after multiple testing adjustments. Furthermore, summary tables of 
signature gene for CD8+ and CD4+ T cells are provided and can be downloaded (in ‘Table’ tab).

TCR-based analysis.  For any user-defined frequency of clonal cells, iSTARTRAC provides a tSNE plot to illus-
trate the distribution of clonal cells in each cluster, with non-clonal cells (cells harbouring TCRs with a frequency 
below the defined threshold) coloured in grey as background (in ‘tSNE Plot’ tab). The enormous TCR repertoire, 
which is essential for recognising foreign antigens and tumour neoantigens, could serve as tags to track T cell lin-
eages. Accordingly, iSTARTRAC plots a heatmap to depict the TCR sharing patterns of various clusters enriched 
in different tissues (in ‘TCR Sharing’ tab), providing the clues of cross-tissue migration and state transition. In 
addition, iSTARTRAC presents bar plots to show the clonotype statistics of user-defined samples (in ‘Clonotype 
Statistics’ tab). A summary table of TCR typing is displayed and can be downloaded, which contains the informa-
tion of TCR sequences and corresponding samples (in ‘Table’ tab).

STRATRAC indices.  For given samples, iSTARTRAC dynamically illustrates the STRATRAC-dist indices to 
dissect the tissue preference of T cell clusters, yielding a discrete enrichment table decorated with colours (in 
‘STARTRAC-dist’ tab). Users are allowed to adjust the thresholds for discretizing enrichment levels quantified 
by Ro/e (the ratio of observed over expected cell numbers in tissues to measure the enrichment of T cell clusters 
across different tissues). To reveal dynamic relationships of T cell subsets with respect to clonal expansion, migra-
tion and development transition, iSTARTRAC plots STRATRAC-expa/migr/tran indices for samples of user 
interest (in ‘STRATRAC-expa/migr/tran’ tab). Furthermore, pairwise STRATRAC-migr (in ‘pSTRATRAC-migr’ 
tab) and pairwise STRATRAC-tran (in ‘pSTRATRAC-tran’ tab) could also be dynamically illustrated according 
to user defined sample selections.

MSI versus MSS.  With this module, users can delineate differences in term of cell compositions (in ‘Cell 
Percentage’ tab), STARTRAC indices (in ‘STARTRAC-expa/migr/tran’ tab) and gene expressions (in ‘DEG 
Analysis’ tab) between MSI and MSS patients for user-specified dataset of interest.

Summary of scRNA-seq data application.  The compendium dataset provided here, was produced pri-
marily to illustrate the dynamic relationships of tumour-infiltrating lymphocytes in CRC, including functional 
states, clonal expansions, migrations and developmental transitions11.

The dataset can be further utilized to detect the transcript isoforms, non-coding transcripts and the potential 
splice variants. The differential isoform usages of T cell subtypes will shed new light on the underlying regulatory 
mechanisms of phenotypic differentiation and will provide opportunities for immuno-oncology modulation by 
determining the subtype specific expression of known and novel isoforms in TILs.

In addition, our dataset could serve as a resource for the comparison of different library preparation meth-
ods such as Smart-seq2 protocol and 10X platform, providing specific features of RNA-seq data produced with 
Smart-seq2 protocol.

The interactive platform, iSTARTRAC, could be explored by experimental biologists to dissect regulatory 
mechanisms of T cell differentiation, identify novel targets of immunotherapy, as well as to compare the dif-
ferences of T cell compositions, gene expressions and STARTRAC indices between MSI and MSS patients. The 
comprehensive and customizable analyses with simple clicking through iSTARTRAC will facilitate data mining in 
cancer immunology community and help unleash the potential value of our CRC T cell data resource.

Code Availability
Sequencing data were processed using SAMtools (version 0.1.19), Picard (version 2.18.9) and GATK (version 3.8-
1-0). Clean reads were aligned to human reference genome (hg19) using GSNAP (version 2014-10-22). TraCeR 
(version 2015-10-21) was used to assemble the TCR sequences of single T cells.

All downstream analyses were performed using open source R (version 3.5.0). A series of R package were uti-
lized for data analyses including HTSeqGenie (version 4.8.0) for expression quantification, single-cell consensus 
clustering (SC3, version 1.7.2) for unsupervised clustering and Rtsne (version 0.13) for dimension reduction.

Static visualizations of iSTARTRAC are rendered as Portable Document Format (PDF). Tables are generated 
with R package DT (version 0.5), which provides R interface to the JavaScript library DataTables and allows for 
data querying, selection and download.

Other R packages used by iSTARTRAC includes ggplot2 (version 3.1.0) for plotting box plots, violin plots and 
volcano plots, ComplexHeatmap (version 1.18.1) for plotting heatmaps, limma (version 3.36.5) for detecting 
DEGs, ks (version 1.11.3) for plotting cell densities, Startrac (version 0.1.0) for obtaining indices of STARTRAC, 
RColorBrewer (version 1.1-2) for colour palettes and org.Hs.eg.db (version 3.6.0) for converting gene names etc.

Code for preliminary data processing including size-factor normalization, dimensional reduction and cluster-
ing is available on Figshare (https://doi.org/10.6084/m9.figshare.8204624.v1), and code for STARTRAC is availa-
ble on GitHub (https://github.com/Japrin/STARTRAC).
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