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Abstract: Pinellia ternata Breitenbach (PTB) is a widely used herbal medicine in China, Japan, and
South Korea. It has antiemetic, anti-inflammatory, antitussive, and sedative properties. The raw
material is toxic, but can be made safer using alum solution or by boiling it for a long time. In
addition, PTB seems to be effective for gastrointestinal motility disorders (GMDs), but this is yet to
be conclusively proven. Herein, PTB compounds, targets, and related diseases were investigated
using the traditional Chinese medical systems pharmacology database and an analysis platform.
Information on target genes was confirmed using the UniProt database. Using Cytoscape 3.8.2, a
network was established and GMD-related genes were searched using the Cytoscape stringApp. The
effects of the PTB extract on the pacemaker potential of interstitial cells of Cajal and GMD mouse
models were investigated. In total, 12 compounds were found to target 13 GMD-related genes. In
animal experiments, PTB was found to better regulate pacemaker potential in vitro and inhibit GMD
signs compared to control groups in vivo. Animal studies showed that the mechanism underlying
the effects of PTB is closely related to gastrointestinal motility. The results obtained demonstrated
that PTB offers a potential means to treat GMDs, and we suggested that the medicinal mechanism of
GMDs can be explained by the relationship between 12 major components of PTB, including oleic
acid, and 13 GMD-related genes.

Keywords: Pinellia ternata Breitenbach; gastrointestinal motility disorders; network-based systems
pharmacological; traditional medicine

1. Introduction

Gastrointestinal motility disorders (GMDs) can occur anywhere in the gastrointestinal
tract. Therefore, such conditions can exhibit a variety of chronic symptoms that significantly
affect a patient’s quality of life, including nausea and vomiting [1–3]. Currently, there is no
cure for GMD, and management may involve lifestyle changes and drugs. The gastroin-
testinal process occurs in each segment of this organ, and the contents move between each
segment through active and passive peristaltic movements, which are slow waves of muscle
contraction and relaxation [4,5]. Smooth muscle cells, intestinal neurons, including telosites,
and interstitial cells of Cajal (ICCs) play an important role in gastrointestinal motility.
Various studies have shown that ICCs act as special gastrointestinal pacemaker cells [6,7].
Thus, abnormalities in ICCs are related to several GMDs such as gastroparesis [8].

Pinellia ternata Breitenbach (PTB) is one of the main ingredients in traditional herbal
medicine and has been used for antiemetic, antitussive, anti-inflammatory, and sedative
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purposes since ancient times [9]. Previously characterized phytochemicals in this herb
include alkaloids [10], volatile oils [11], and polysaccharides [12]. To investigate the effects
of PTB on GMDs and the medicinal mechanisms, we used a network-based system phar-
macological approach. We used the traditional Chinese medicine systems pharmacology
database and analysis platform (TCMSP, https://tcmsp-e.com/tcmsp.php. accessed date:
10 January 2022 to 15 March 2022), which provides comprehensive information on the
relationship between herbs and their components, molecular targets, and diseases. TCMSP
provides information on the absorption, distribution, metabolism, and excretion (ADME),
which is useful for developing new drugs or analyzing the efficacy of herbal medicines [13].
A schematic of the research protocol is shown in Figure 1. In this study, a network-based
pharmacological analysis of PTB was performed. In addition, PTB extracts were examined
for their pacemaking activity and evaluated for their therapeutic effects in mouse models
of GMDs.
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Figure 1. Schematic of the study protocol for network pharmacology exploration. ADME: absorption,
distribution, metabolism, and excretion.

2. Results
2.1. Information for 366 Targets Derived through Correlation Investigation between Compounds
and Targets

We identified 116 potentially active compounds in PTB using the TCMSP database
(Supplementary Materials Table S1). Among these, 85 compounds contained the target
information (Supplementary Materials Table S2), and it was found that these 85 compounds
and 366 targets interacted with each other through a combination of 1226 compounds
(Figure 2). As shown in Figure 2, GLY was linked to the most target genes (161 genes),
followed by DAL (65 genes), succinic acid (57 genes), L-serine (54 genes), ASI (47 genes),
oleic acid (43 genes), beta-sitosterol (38 genes), baicalein (36 genes), D-2-aminobutyrate (34
genes), threonine (30 genes), stigmasterol (30 genes), and glutamine (29 genes).

https://tcmsp-e.com/tcmsp.php
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Figure 2. Compound–target network of Pinellia ternate Breitenbach. The size of the node depends on
the number of connected edges. The compounds are expressed as red square nodes, and the targets
are expressed as blue round nodes.

2.2. Twenty Active Compounds Met the Criteria for ADME Parameters

Twenty compounds were included in the active compound screening criteria (Table 1)
as follows: EIC, (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, 10,13-eicosadienoic
acid, 12,13-epoxy-9-hydroxynonadeca-7,10-dienoic acid, 24-ethylcholest-4-en-3-one, 6-
shogaol, 8-octadecenoic acid, baicalein, beta-sitosterol, cavidine, coniferin, cyclo-(leu-tyr),
cyclo-(val-tyr), cycloartenol, gondoic acid, linolenic acid, methyl palmitelaidate, oleic acid,
pedatisectine a, and stigmasterol.

Table 1. Active compounds of Pinellia ternate Breitenbach.

Molecule Name Structure MW OB (%) * Caco-2 * DL *

(3S,6S)-3-(benzyl)-6-(4-
hydroxybenzyl)piperazine-

2,5-quinone
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Table 1. Cont.

Molecule Name Structure MW OB (%) * Caco-2 * DL *

10,13-eicosadienoic
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Molecule Name Structure MW OB (%) * Caco-2 * DL *
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Table 1. Cont.

Molecule Name Structure MW OB (%) * Caco-2 * DL *
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* OB: oral bioavailability; Caco-2: Caco-2 permeability; and DL: drug likeness.

2.3. Identification of 53 Compounds Related to Gastrointestinal (GI) Disease in PTB

We also investigated the compound–target–disease relationship using the TCMSP
database. We found that 53 compounds were associated with GI diseases (Table 2). In par-
ticular, EIC, 6-shogaol, cavidine, baicalein, beta-sitosterol, methyl palmitelaidate, (3S,6S)-3-
(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, linolenic acid, stigmasterol, coniferin,
oleic acid, pedatisectine a, and cyclo-(val-tyr) were found to be active compounds associated
with GI, and other compounds, including 3,4,5-trihydroxybenzoic acid, ANN, ASI, beta-
D-ribofuranoside, xanthine-9, beta-elemene, caffeic acid, cis-p-coumarate, crysophanol,
D-2-aminobutyrate, DAL, DTY, DUR, eciphin, ferulic acid (CIS), GLY, gamma-aminobutyric
acid, glutamine, OMD, gynesine, HMF, hydroquinone, isolariciresino, istidina, L-arginine,
leucinum, L-Ile, L-valine, L-pseudoephedrine, norharman, palmitic acid, pedatisectine f,
pentadecylic acid, protocatechuic acid, sitogluside, stearic acid, succinic acid, threonine,
THM, vanillic acid, and zoomaric acid, associated with gastrointestinal diseases, were
classified as not active (Figure 3).
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Table 2. Compounds and targets related to gastrointestinal (GI) disease.

Molecule Name Gene Name Disease Name

(3S,6S)-3-(benzyl)-6-(4-
hydroxybenzyl)piperazine-2,5-quinone PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

3,4,5-trihydroxybenzoic acid HSP90AA1 Gastrointestinal stromal tumors (GIST)

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

6-shogaol PPARG

Crohn’s disease, unspecified
Inflammatory bowel disease

Pancreatic cancer
Ulcerative colitis

ANN PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

ASI
ALOX5

Gastrointestinal cancers
Inflammatory bowel disease

Pancreatic cancer
Ulcerative colitis

NOS1 GI motility disorder 1

baicalein

FOS GI motility disorder 1

HSP90AA1 Gastrointestinal stromal tumors (GIST)

MPO GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

beta-D-Ribofuranoside, xanthine-9 PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

beta-elemene PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

beta-sitosterol

HSP90AA1 Gastrointestinal stromal tumors (GIST)

OPRM1
GI motility disorder 1

Diarrhea
Opioid-induced bowel dysfunction

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

SLC6A4 GI motility disorder 1

caffeic acid
PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

TNF
GI motility disorder 1

Crohn’s disease, unspecified

Cavidine

HSP90AA1 Gastrointestinal stromal tumors (GIST)

HTR3A

Chemotherapy-induced nausea and vomiting
Diarrhea

Irritable bowel syndrome
Postoperative nausea and vomiting

OPRM1
GI motility disorder 1

Diarrhea
Opioid-induced bowel dysfunction

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

SLC6A4 GI motility disorder 1
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Table 2. Cont.

Molecule Name Gene Name Disease Name

cis-p-Coumarate PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

coniferin

CA2 Pancreatic cancer

OPRM1
GI motility disorder 1

Diarrhea
Opioid-induced bowel dysfunction

PPARG

Crohn’s disease, unspecified
Inflammatory bowel disease

Pancreatic cancer
Ulcerative colitis

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

Crysophanol
HSP90AA1 Gastrointestinal stromal tumors (GIST)

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

cyclo-(val-tyr) PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

D-2-Aminobutyrate NOS1 GI motility disorder 1

DAL
MMP12

Crohn’s disease, unspecified
Gastrointestinal ulcers

Ulcerative colitis
NOS1 GI motility disorder 1

DTY
ACHE GI motility disorder 1

NOS3 Colon cancer

PTGS2 GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

DUR
CA2 Pancreatic cancer

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

Eciphin

ACHE GI motility disorder 1

NOS3 Colon cancer

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

SLC6A4 GI motility disorder 1

EIC
PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
TRPV1 GI motility disorder 1

FERULIC ACID (CIS)
LTA4H Oesophageal cancer

NOS3 Colon cancer

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
gamma-aminobutyric acid IL6 GI motility disorder 1
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Table 2. Cont.

Molecule Name Gene Name Disease Name

GLY

AMY2A Pancreatic disease

CTNNB1 Colorectal cancer

LTA4H Oesophageal cancer

MMP12
Crohn’s disease, unspecified

Gastrointestinal ulcers
Ulcerative colitis

NOS1 GI motility disorder 1

PTGS2
GI motility disorder 1

Adenomatous polyposis

Colorectal cancer
Peutz–Jeghers syndrome

Gulutamine
LTA4H Oesophageal cancer

NOS1 GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

gynesine PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

HMF
ACHE GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

hydroquinone TNF
GI motility disorder 1

Crohn’s disease, unspecified

isolariciresino

CA2 Pancreatic cancer

HSP90AA1 Gastrointestinal stromal tumors (GIST)

MAPK14 Crohn’s disease, unspecified

NOS3 Colon cancer

PPARG

Crohn’s disease, unspecified
Inflammatory bowel disease

Pancreatic cancer
Ulcerative colitis

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

Istidina PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

L-Arginin NOS1 GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
Leucinum NOS1 GI motility disorder 1

L-Ile NOS1 GI motility disorder 1

linolenic acid
ACTB GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
TRPV1 GI motility disorder 1

l-Pseudoephedrine

NOS3 Colon cancer

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

SLC6A4 GI motility disorder 1
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Table 2. Cont.

Molecule Name Gene Name Disease Name

L-Valin
NOS1 GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

Methyl palmitelaidate PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

Norharman PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

oleic acid

CCK GI motility disorder 1

CRP GI motility disorder 1

GCG GI motility disorder 1

INS GI motility disorder 1

MPO GI motility disorder 1

PPARG

Crohn’s disease, unspecified
Inflammatory bowel disease

Pancreatic Cancer
Ulcerative colitis

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
PYY GI motility disorder 1

OMD PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

palmitic acid

IL10 GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

TNF
GI motility disorder 1

Crohn’s disease, unspecified

pedatisectine a PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

pedatisectine f ACHE GI motility disorder 1

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

PENTADECYLIC ACID PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

protocatechuic acid ALOX5
Gastrointestinal cancers

Inflammatory bowel disease
Pancreatic cancer
Ulcerative colitis

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

Sitogluside

HSP90AA1 Gastrointestinal stromal tumors (GIST)

HTR3A

Chemotherapy-induced nausea and vomiting
Diarrhea

Irritable bowel syndrome
Postoperative nausea and vomiting

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1
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Table 2. Cont.

Molecule Name Gene Name Disease Name

stearic acid PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

Stigmasterol
LTA4H Oesophageal cancer

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
SCN5A GI motility disorder 1

succinic acid NOS1 GI motility disorder 1

THM
CA2 Pancreatic cancer

HSP90AA1 Gastrointestinal stromal tumors (GIST)

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

Threonin
NOS1 GI motility disorder 1

PTGS2 GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

vanillic acid
NOS3 Colon cancer

PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome

zoomaric acid PTGS2

GI motility disorder 1

Adenomatous polyposis
Colorectal cancer

Peutz–Jeghers syndrome
1 After investigating the relationship between Pinellia ternata Breitenbach and GI motility disorder using Cytoscape
stringApp, genes related to GI motility disorder were added to this table.
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2.4. All 52 GI Disease-Related Compounds, Except 6-Shogaolin, in PTB Are Related to GMDs

To determine the relationship between PTB and GMDs, we used the Cytoscaping
app to check for GMD-related genetic information. First, 100 GMD-related genes were
identified by applying a reliability (score) cutoff of 0.40 and a maximum of 100 proteins
(Supplementary Materials Table S3). From the results obtained, a network of GMD-related
genes and PTB target genes was created (Figure 4). It was confirmed that there were 13 genes
corresponding to both sets of genes. The GMD-related genes targeted by PTB were actin,
cytoplasmic 1 (ACTB), cholecystokinin (CCK), C-reactive protein (CRP), proto-oncogene
c-Fos (FOS), glucagon (GCG), insulin (INS), myeloperoxidase (MPO), Mu-type opioid
receptor (OPRM1), prostaglandin G/H synthase 2 (PTGS2), peptide YY (PYY), sodium
channel protein type 5 subunit alpha (SCN5A), sodium-dependent serotonin transporter
(SLC6A4), and transient receptor potential cation channel subfamily V member 1 (TRPV1).
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Figure 4. Network of gastrointestinal motility disorder-related genes and Pinellia ternate Breitenbach-
targeting genes. The 13 genes included in both “genes related to gastrointestinal motility disorder”
and “Pinellia ternate Breitenbach-target genes” are collected in the center.

2.5. The Network of GMD-Related Genes and Compounds for Identifying Molecules of Interest

Figure 5 illustrates the network of relationships between PTB compounds and GMD-
related target genes. The results showed that oleic acid and PTGS2 are most closely
related to GMD. In summary, EIC, 6-shogaol, cavidine, baicalein, beta-sitosterol, methyl
palmitelaidate, (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, linolenic
acid, stigmasterol, coniferin, oleic acid, pedatisectine a, and cyclo-(val-tyr) were determined
to be active compounds that target GMD-related genes, indicating that these compounds
might be potential medicinal candidates. However, as shown in Figure 2, PTB contained
many compounds with multi-targeting characteristics; thus, the synergistic effects of PTB
compounds on GMD were investigated in vitro and in vivo.
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2.6. Effects of PTB Extract on the Pacemaker Potential of ICCs

ICCs regulate gastrointestinal motility by acting as pacemakers in the GI tract [6–8].
The whole-cell technique showed that ICCs spontaneously induced pacemaker poten-
tials with an average resting membrane potential of −56.8 ± 1.6 mV and amplitude of
24.9 ± 1.2 mV (Figure 6). PTB extract (10–300 µg/mL) depolarized pacemaker potentials
and decreased the amplitude (Figure 6A–D). The average depolarization was 6.9 ± 0.9 mV
(p < 0.0001) at 10 µg/mL, 11.2 ± 1.0 mV (p < 0.0001) at 50 µg/mL, 24.8 ± 1.2 mV (p < 0.0001)
at 100 µg/mL, and 31.8 ± 1.1 mV (p < 0.0001) at 300 µg/mL (Figure 6E). The average ampli-
tude was 24.2 ± 0.8 mV at 10 µg/mL, 9.8 ± 1.2 mV (p < 0.0001) at 50 µg/mL, 2.9 ± 1.0 mV
(p < 0.0001) at 100 µg/mL, and 1.5 ± 0.5 mV (p < 0.0001) at 300 µg/mL (Figure 6F). These
results indicated that PTB extract regulates the pacemaker potential of ICCs.

2.7. Importance of Ca2+ in PTB Extract-Induced Pacemaker Potential Depolarization of ICCs

To investigate the importance of Ca2+ in PTB extract-induced responses, we used
external Ca2+-free conditions or thapsigargin. Pre-treatment with an external Ca2+-free so-
lution or thapsigargin suppressed pacemaker potentials and inhibited PTB extract-induced
responses (Figure 7A,B). The average depolarization was 1.1 ± 0.5 mV (p < 0.0001) with
Ca2+-free solution and 1.2 ± 0.3 mV (p < 0.0001) with thapsigargin (Figure 7C). However,
the average amplitude did not change significantly (Figure 7D). These results indicated
that the PTB extract-induced responses are controlled by Ca2+.
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Figure 7. Effects of Ca2+ on PTB extract-induced pacemaker potential depolarization. (A) For external
Ca2+-free solution, PTB extract did not result in depolarization. (B) With thapsigargin, PTB extract
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are summarized. Means ± SEs. **** p < 0.0001. PTB: Pinellia ternate Breitenbach. CTRL: control.
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2.8. Importance of Muscarinic M3, 5-HT3, and 5-HT7 Receptors in PTB Extract-Induced
Pacemaker Potential Depolarization of ICCs

Muscarinic and 5-HT receptors are expressed in the GI tract and associated with gas-
trointestinal motility [14,15]. Murine small intestinal ICCs express muscarinic M2, M3, or
5-HT3,4,7 receptors [16,17]. Pre-treatment with 4-DAMP (a muscarinic M3 receptor antago-
nist) inhibited the PTB-induced effects (Figure 8A). However, methoctramine, (a muscarinic
M2 receptor antagonist) had no effect (Figure 8B). In addition, Y25130 (a 5-HT3 antagonist)
and SB269970 (a 5-HT7 antagonist) inhibited PTB-induced effects (Figure 8C,E). However,
RS39604 (a 5-HT4 antagonist) showed no effect (Figure 8D). The average depolarization was
6.9 ± 0.8 mV (p < 0.0001) with 4-DAMP, 25.6 ± 1.2 mV with methoctramine, 6.1 ± 0.7 mV
(p < 0.0001) with Y25130, 23.6 ± 1.2 mV with RS39604, and 6.0 ± 0.9 mV (p < 0.0001) with
SB269970 (Figure 8F). The average amplitude was 13.5 ± 0.7 mV (p < 0.0001) with 4-DAMP,
3.5 ± 1.1 mV with methoctramine, 14.2 ± 0.4 mV (p < 0.0001) with Y25130, 4.2 ± 0.9 mV
with RS39604, and 14.2 ± 0.8 mV (p < 0.0001) with SB269970 (Figure 8G). These results
suggested that PTB affects pacemaker potentials via the M3, 5-HT3, and 5-HT7 receptors.
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addition, AA decreased ITR (32.5 ± 4.2% vs. 50.3 ± 2.6% in normal mice; P < 0.0001; Figure 
9B). However, PTB extract restored this response to 52.5 ± 1.7% (p < 0.0001), 51.3 ± 3.8% (p 
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Figure 8. Effects of muscarinic and 5-HT receptor antagonists on PTB extract-induced pacemaker
potential depolarization. (A) Pre-treatment with 4-DAMP inhibited PTB extract-induced effects.
(B) Pre-treatment with methoctramine had no effects on PTB extract-induced effects. (C,E) Pre-
treatment with Y25130 or SB269970 inhibited PTB extract-induced effects. (D) Pre-treatment with
RS39604 had no effects on PTB extract-induced effects. (F,G) Depolarization and amplitude responses
to PTB extract are summarized. Means ± SEs. **** p < 0.0001. PTB: Pinellia ternate Breitenbach.
CTRL: control. Metho.: methoctramine.

2.9. Effects of PTB Extract on the ITR

The ITR was 51.0 ± 3.2% (Figure 5). The PTB extract increased the ITR to 50.1 ± 3.2%
at 0.01 g/kg, 58.9 ± 6.3% at 0.1 g/kg, and 76.1 ± 6.1% (p < 0.0001) at 1 g/kg (Figure 9A). In
addition, AA decreased ITR (32.5 ± 4.2% vs. 50.3 ± 2.6% in normal mice; P < 0.0001; Fig-
ure 9B). However, PTB extract restored this response to 52.5 ± 1.7% (p < 0.0001), 51.3 ± 3.8%
(p < 0.0001), and 56.8 ± 1.9% (p < 0.0001), respectively (Figure 9B). These results indicated
that the PTB extract can increase the normal ITR and recover the ITR in GMD mice.
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3. Discussion

PTB is a monocotyledonous perennial herbaceous plant that is widely used in tradi-
tional herbal medicine in China, Japan, and South Korea. It has been used for antiemetic,
anti-inflammatory, antitussive, and sedative purposes [18]. In addition, experiments using
a mouse model have shown that PTB induces efferent activity in the gastric branches of the
vagus nerve, which is known to be effective in GMDs, but the pharmacological mechanisms
underlying this have yet to be studied [19]. Therefore, this study was conducted using a
combination of network-based pharmacological analyses and experimental verification to
identify the physiologically active ingredients and medicinal mechanisms of PTB. Addi-
tionally, 116 compounds were identified in PTB, including 19 active compounds (Sup. 1).
Of these 116 compounds, 85 had target information and 365 target genes were collected
(Sup. 2). Twelve genes were associated with GMD (Figure 5), including ACTB, CCK,
CRP), FOS, GCG, INS, MPO, OPRM1, PTGS2, PYY, SCN5A, SLC6A4, and TRPV1 (Figure 4).
These results are the same as those of past studies. Specifically, as shown in Table 2 and
Figure 5, PTGS2 was the target of all GMD-related PTB compounds, suggesting that PTB
compounds can adjust PTGS2 levels synergistically. PTGS2 plays the most important role
in the treatment of mucosal defense and gastrointestinal inflammation and ulcers. PTGS2
also contributes to normalization of gastrointestinal function after inflammation [20]. In
addition, SCN5A and OPRM1 were found to be targets of multiple PTB compounds. The
voltage-gated mechanosensitive Na+ channel NaV1.5, encoded by SCN5A, is present in
ICCs and human gastrointestinal smooth muscle cells. SCN5A contributes to the electrical
slow wave and mechanical sensitivity of smooth muscles [21]. OPRM1 is linked to the
inhibition of acetylcholine release from intestinal and motor neurons and the inhibition
of purine and nitrogen release from motor neurons, thereby inhibiting propulsion kinetic
patterns [22]. OPRM1 activation induces the inhibition of submucosal secretion by motor
neurons, which reduces active Cl secretion and passive liquid movement to the colon
lumen [23]. This effect on mobility and secretion results in constipation induced by OPRM1.
These results indicate that the medicinal mechanism of GMDs is related to the effects of
PTB on PTGS2, SCN5A, and ORPM1. The GMD-related active compounds EIC, (3S,6S)-3-
(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, baicalein, beta-sitosterol, cavidine,
coniferin, cyclo-(val-tyr), linolenic acid, methyl palmitelaidate, oleic acid, pedatisectine
a, and stigmasterol were identified (Figure 5). In addition, 12 compounds were found
to target PTGS2, and oleic acid was found to target PTGS2, MPO, CCK, CRP, GCG, INS,
and PYY. Beta-sitosterol targets PTGS2, SCN5A, OPRM1, and SLC6A4, and cavidine tar-
gets PTGS2, SCN5A, OPRM1, and SLC6A4. Several studies have reported a relationship
between the major components of PTB and GMDs. Emulsions containing oleic acid ac-
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tivate nutrient-induced inhibitory feedback mechanisms in the small intestine, slowing
down gastrointestinal passage and reducing diarrhea [24]. beta-sitosterol has significant
antibacterial activity and improved DSS-induced colitis in mice [25]. Cavidine improved
ulcerative colitis by regulating the oxidation and antioxidant balance and inhibiting NF-κB
signaling pathways and pro-inflammatory cytokines, such as TNF-α and IL-6, in colonic
tissue [26]. As shown in Figure 2, compounds interacted with an average of 14 target genes
upon identifying the multi-compound multi-target properties of herbal medicines, and
PTB was predicted to be a therapeutic medicine for GMDs based on the synergies among
several compounds contained in PTB.

We investigated the restorative effects of PTB in a mouse model of GMDs. First, we
checked the effects of PTB extract on the pacemaker potentials of ICCs. PTB extract was
found to regulate the pacemaker potential of ICCs, and this response was controlled by
Ca2+ (Figures 6 and 7). In addition, PTB reactions occurred through M3, 5-HT3, and 5-HT7
receptors (Figure 8). Further, PTB extract increased the normal ITR and restored the ITR
in GMD mice (Figure 9). In summary, our results showed that PTB has potential for the
treatment of GMDs, and that its medicinal effect may be due to the regulation of ICCs.
They also suggested that these mechanisms are related to the interactions among 12 key
components of PTB, such as oleic acid, and 13 GMD-related genes, including PTGS2.

4. Materials and Methods
4.1. Network-Based Pharmacological Analysis by PTB
4.1.1. Identification of PTB Compounds

Analysis platforms were used to identify the potential active compounds of PTB. We
entered ‘Pinellia ternata Breitenbach’ as a query to search for the herb name.

4.1.2. Analysis of Targets

The target information of the compound was determined by searching TCMSP [13].
The target proteins were linked to the official gene names using the UniProtKB database
(https://www.uniprot.org/uniprot. accessed date: 10 January 2022 to 15 March 2022) [27].

4.1.3. Network Analysis

The compound–target network was constructed using Cytoscape 3.8.2 (https://cytoscape.
org. accessed date: 10 January 2022 to 15 March 2022) [28]. GMD-related genes were
collected using the Cytoscaping app [29].

4.1.4. Active Compound Screening

Using ADME parameters such as molecular weight, oral bioavailability (OB), Caco-2
permeability (Caco-2), and drug likeness (DL), physiologically active compounds in PTB
were screened using the following criteria: OB ≥ 30%, DL ≥ 0.10, and Caco −2 ≥ −0.4.
Compounds with values that met the criteria applied were considered active compounds.

4.2. Animal Experiments
4.2.1. Preparation of the PTB Extract

Dried PTB was purchased from Herb Farm Co. (Wonju, Korea). A voucher specimen
(PJW-058) was deposited at the Department of Herbology, College of Korean Medicine,
Kyung Hee University, Korea. Dried PTB (400 g) was extracted using distilled water
(4000 mL) for 2 h at 100 ◦C. The water extract of PTB was passed through a membrane
filter (0.45 µm; EMD Millipore). After evaporation, the remaining aqueous extract was
freeze-dried to yield 8.5% of the dried weight (w/w).

4.2.2. Preparation of ICCs

A total of 74 ICR mice (37 males and 37 females; 3–8 days-old) were used for the
experiments. Small intestinal cells were cultured with smooth muscle growth medium
(Clonetics, San Diego, CA, USA).

https://www.uniprot.org/uniprot
https://cytoscape.org
https://cytoscape.org
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4.2.3. Electrophysiological Experiments

KCl 5 mM, NaCl 135 mM, CaCl2 2 mM, glucose 10 mM, MgCl2 1.2 mM, and HEPES
10 mM were used as bath solutions. KCl 140 mM, MgCl2 5 mM, K2ATP 2.7 mM, NaGTP
0.1 mM, creatine phosphate disodium 2.5 mM, HEPES 5 mM, and EGTA 0.1 mM were used
as pipette solutions. Whole-cell configuration was used.

4.2.4. Intestinal Transit Rate (ITR)

A total of 45 ICR mice (males, 5–6 weeks-old) were used for ITR experiments. Evans
blue (5%, w/v) was administered after the administration of PTB extract into the stomach.
After 30 min of Evans blue administration, the ITR was measured.

4.2.5. GMD Model Mice

Acetic acid (AA, 0.6%, w/v, in saline)-induced peritoneal stimulation was used to
generate a GMD mouse model. AA was injected intraperitoneally, and other processes
were the same as previous studies [30,31].

4.2.6. Statistical Analyses

Data are expressed as the mean ± standard error of the mean. Significant differ-
ences were evaluated using one-way analysis of variance or a student’s t-test. Statistical
significance was considered as p < 0.05.

5. Conclusions

PTB analysis using a network-based pharmacological approach showed that 12 com-
pounds and 13 genes were associated with GMDs. Our animal studies showed that PTB
regulates the pacemaker potential of ICCs and inhibits GMD-like signs in a mouse model
of GMDs. These results indicate that PTB has therapeutic potential for GMD treatment.
In addition, we proposed a mechanism responsible for the interactions among 12 PTB
compounds and 13 GMD-related genes.
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