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Stem cell therapy as a promising strategy 
in necrotizing enterocolitis
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Abstract 

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm 
infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the inci‑
dence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in 
various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, 
and the anti‑inflammatory, anti‑apoptotic, and intestinal barrier enhancing effects of stem cells may be protective 
against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function 
in the treatment of NEC.
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Introduction
Despite constant efforts on improving the diagnosis and 
treatment technique of premature infants, the morbidity 
and mortality rates associated with necrotizing entero-
colitis (NEC), a devastating gastrointestinal inflammatory 
and necrotizing disease that affects newborns, particu-
larly preterm infants, are rising. As a main cause of death 
in the neonatal intensive care unit, NEC has an incidence 
of approximately 8.9% (890/9956) in premature infants 
born at the gestational age of 22–28 weeks, and the mor-
tality rate associated with NEC can be as high as 20–30%. 
Infants requiring surgery exhibit higher mortality rates 
(Bell et al. 2022; Meister et al. 2020). Survivors may suffer 
from lifelong gastrointestinal problems, including stric-
tures, adhesions, cholestasis, short bowel syndrome with 
or without intestinal failure, and neurological sequelae 
(Bazacliu and Neu 2019).

NEC develops in response to hypoxic-ischemic 
injury of the intestinal mucosa, caused by exagger-
ated pro-inflammatory signals and compromised 

anti-inflammatory signals (Cho et al. 2020). As the main 
mediator regulating the balance between mucosal injury 
and repair in the intestines of premature infants, Toll-like 
receptor 4 is upregulated in infants with NEC, and inac-
tivation of this protein has protective effects in stem cells 
(Hackam and Sodhi 2018; Liu et al. 2019; Niu et al. 2018). 
Because NEC is a multifactorial disorder, few radical 
treatments have been developed, so nonspecific support-
ive care based on diagnosis and surgery is the primary 
therapeutic approach. However, stem cell therapy has 
recently been evaluated in the treatment of NEC owing 
to the self-renewal potential, multidirectional differen-
tiation capacity, good availability of stem cells, as well as 
their effects on protecting the intestinal barrier, inhibit-
ing apoptosis, and reducing inflammation (Sajeesh et al. 
2020; Pisano and Besner 2019).

In this review, we discuss current progress of stem cell 
therapy in NEC, with the goal of further elucidating the 
therapeutic mechanisms of stem cells in NEC and pro-
moting breakthroughs in clinical trials. Accordingly, our 
review provides potential insight for the progress of new 
therapeutic method for NEC.
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Stem cells
Stem cells are a class of unspecialized or undifferentiated 
cells that can self-renew and produce highly differenti-
ated mature daughter cells. Stem cells can be divided into 
totipotent, pluripotent, and unipotent stem cells accord-
ing to their differentiation potential. Totipotent cells, 
such as zygotes, have the potential for multidirectional 
differentiation; pluripotent stem cells, including embry-
onic stem cells (ESCs), can differentiate into multiple tis-
sues, but cannot develop into complete individuals; and 
unipotent stem cells, including neural stem cells (NSCs), 
refer to cells that can only differentiate into one type of 
cell. Additionally, stem cells are classified into ESCs, 
adult stem cells (ASCs) and induced pluripotent stem 
cells (iPSCs), a novel type of stem cell identified in recent 
years according to developmental origins (Bozdağ et  al. 
2018).

ASCs are pluripotent stem cells that are commonly 
used in the clinical setting. These cells can proliferate and 
differentiate directionally into certain unipotent stem 
cells, such as hematopoietic stem cells (HSCs), mesen-
chymal stem cells (MSCs), and intestinal stem cells (ISCs) 
(Suman et al. 2019). Such stem cells have beneficial func-
tions in the intestine, including promoting intestinal 
epithelium growth, regulating inflammatory cytokines, 
reducing cell apoptosis, decreasing oxidant stress, 

repairing the intestinal barrier, and so on (Kandasamy 
et  al. 2014; Jung et  al. 2020; Hou et  al. 2017; Burns and 
Thapar 2014) (Fig. 1).

Stem cell therapy in NEC
Considering the indispensable roles of stem cells in intes-
tinal protection, stem cell therapy has attracted much 
interest in studies of NEC. A meta-analysis including 
nine animal experiments suggested that stem cells and 
stem cell-derived exosomes decreased the morbidity of 
NEC, particularly stage 2 NEC by enhancing intestinal 
motility and reducing intestinal permeability (Villamor-
Martinez et al. 2020; Walsh et al. 1988) (Table 1). Current 
research indicates that ISCs, MSCs, and NSCs, which 
are derived from various tissues, are most commonly 
used for NEC treatment (Li et al. 2022; Zhou et al. 2013; 
Zeng et al. 2021; Drucker et al. 2018a). In the subsequent 
sections, we discuss how stem cells treat NEC as well as 
their advantages and disadvantages in the clinical setting 
(Table 2).

ISCs
Disruption of the viability and integrity of the intestinal 
epithelium and injury to the intestinal mucosa are com-
monly observed in infants with NEC (Yu et  al. 2020). 
As a rapidly renewing tissue in mammals, the intestinal 

Fig. 1 Therapeutic effects of stem cells in NEC. Schematic illustrating the therapeutic effects of stem cells in the injured intestines of NEC model 
rats. With the injection of stem cells, the experimental NEC intestine has been shown to decrease inflammation, apoptosis, necrosis, and oxidant 
stress, balance bacteria, enhance barrier, inactivate TLR4, maintain ISC niche, improve motility, and promote IECs proliferation. ROS reactive oxygen 
species; LPS lipopolysaccharide; TLR4 toll‑like receptor 4
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epithelium is mainly differentiated from ISCs located 
at the base of crypts. Thus, ISCs may be involved in the 
development of NEC (Venkatraman et  al. 2021; Neal 
et al. 2012).

Two types of ISCs are present in intestinal crypts: 
active ISCs (actively proliferating) and reserve or quies-
cent ISCs (quiescent cycling). Active ISCs, which can be 
identified by the marker leucine-rich repeat-containing 
G protein-coupled receptor 5 (LGR5), are responsible for 
promoting homeostatic renewal and differentiation to 
intestinal epithelial cells (IECs) (Stewart et al. 2021). The 
regeneration of small intestinal crypts and villi is mainly 
attributed to the colonization of reserve ISCs. Reserve 
ISCs transform into active ISCs by silencing homeodo-
main-only protein X and active ISCs, then migrate to the 
damaged segment of the intestine and play important 
roles in injury-induced intestinal regeneration (Stewart 
et al. 2021; Gonzalez et al. 2019).

Goblet cells (Zhao et  al. 2021), Paneth cells (Barreto 
et al. 2022), and enteroendocrine cells (Landeghem et al. 
2012) derived from ISCs are crucial in modulating the 
proliferation and differentiation of IECs and promot-
ing intestinal development via the paracrine signaling 
pathways, including the hedgehog, BMP, Wnt/β-catenin, 
and Notch signaling pathways; other pathways, such as 
endocrine signaling pathways and transcription factor 
pathways, also play important roles (Venkatraman et  al. 
2021). Owing to their roles in regulating the intestinal 
microbiota, mucosal immune responses, inflammatory 
cytokines, and cell apoptosis, paracrine pathways may 
protect infants from NEC.

MSCs
MSCs are ASCs that originate from the mesoderm 
and can differentiate into various mesenchymal cells, 
depending on the tissue in which they are located, e.g., 
the bone marrow, amniotic fluid, umbilical cord, pla-
cental tissues, dental pulp, and adipose tissue (Zhan 
et al. 2019). MSCs are the first type of stem cell studied 
in detail and are characterized by proliferation in vitro, 

multipotency, homing/migration, trophic effects, and 
immunosuppression; thus, these cells have been shown 
to have therapeutic potential in multiple autoimmune, 
inflammatory, and degenerative diseases (Naji et  al. 
2019). Moreover, MSCs have been shown to reduce the 
incidence and severity of experimental NEC in rats, 
although the mechanisms are still unclear (McCulloh 
et al. 2017a, b).

Notably, MSCs can home to injured intestinal seg-
ments; however, the number of MSCs observed in the 
intestine is not sufficient to exert protective effects, 
indicating that this protective action may be mainly 
related to another mechanism (Bahr et al. 2012). Addi-
tionally, the efficacy of MSCs may be predominantly 
mediated by paracrine chemokines and/or growth fac-
tors, e.g., interleukin (IL)-6 (Gu et al. 2022), IL-10 (Tu 
et  al. 2022), vascular endothelial growth factor (Chou 
et al. 2016), and transforming growth factor-β (TGF-β) 
(Barati et al. 2022). IL-6 inhibits apoptosis, IL-10 exerts 
anti-inflammatory effects, vascular endothelial growth 
factor plays important roles in angiogenesis, and TGF-β 
blocks the expression of pro-inflammatory factors (Gu 
et al. 2022; Tu et al. 2022; Chou et al. 2016; Barati et al. 
2022). These growth factors migrate to the ischemic 
intestine tissue and contribute to the treatment of NEC. 
It is worth noting that the paracrine effect of MSCs 
seems to be mediated through a “hit and run” mecha-
nism. This short-acting and transient engraftment in 
the injured intestine may limit the adverse effects of 
MSCs therapy (Bahr et al. 2012).

The anti-inflammatory, antioxidant, anti-apoptotic, 
and local  LGR5+ ISCs proliferative effects of MSCs, 
coupled with their effects on enhancement of gut 
microbial diversity in a colitis rat model could syner-
gistically facilitate intestinal recovery (Jung et al. 2020; 
Weil et  al. 2009; Soontararak et  al. 2018). Moreover, 
regardless of the origin of tissue, transplantation of 
MSCs after intestinal ischemia/reperfusion promi-
nently increases survival rates, reverses mesenteric per-
fusion, and blocks intestinal injury and inflammation 
(Jensen et al. 2016).

Table 1 Modified Bell’s staging criteria for NEC

Stage Systemic signs Intestinal signs

I (Suspected) Temperature instability, apnea, bradycardia Elevated pregavage residuals, mild abdominal distention, occult 
blood in stool

II (Definite) Same as I, plus mild metabolic acidosis, mild thrombocytopenia Same as above, plus absent bowel sounds, definite abdominal 
tenderness, abdominal cellulitis, right lower quadrant mass

III (Advanced) Same as I, plus hypotension, bradycardia, respiratory acidosis, 
metabolic acidosis, disseminated intravascular coagulation, 
neutropenia

Same as above, plus signs of generalized peritonitis, marked ten‑
derness, and distention of abdomen
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Bone marrow‑derived MSCs (BM‑MSCs)
As the name suggests, BM-MSCs are MSCs that origi-
nated from the bone marrow. Experiments evaluating 
the therapeutic effects of exogenous human BM-MSCs 
in a neonatal rat NEC model demonstrated that after 
intraperitoneal (IP) injection of transplanted BM-MSCs, 
the concentration of exogenous human BM-MSCs was 
increased in the area of the injured intestinal segment, 
with amelioration of intestinal pathological damage (Tay-
man et al. 2011).

The functions of BM-MSCs are mainly mediated by 
paracrine factors. Importantly, inhibition of the upstream 
transcription factor prolyl hydroxylase 2 enhances the 
paracrine efficacy of BM-MSCs and protects against 
NEC. The reason for this phenomenon is that prolyl 
hydroxylase 2 silencing promotes nuclear factor-κB acti-
vation to increase the release of the protective factors—
insulin-like growth factor-1 and TGF-β2. Moreover, 
deficiency in prolyl hydroxylase 2 increases survival in 
NEC by modulating epithelial regeneration and inflam-
matory responses (Chen et al. 2020).

Amniotic fluid‑derived MSCs (AF‑MSCs)
AF-MSCs are a subset of MSCs extracted from amniotic 
fluid. These cells exhibit rapid proliferation and multidi-
rectional differentiation, similar to pluripotent stem cells 
(Kaviani et al. 2001). AF-MSCs are easier to harvest and 
expand in vitro than ASCs and differentiate into cell lin-
eages of all three embryonic germ layers (Dasgupta and 
Jain 2017; Rosner and Hengstschläger 2021). Addition-
ally, AF-MSCs transiently stimulate healthy IECs prolif-
eration and preserve  LGR5+ ISCs, regardless of intestinal 
injury; thus, these cells may represent novel therapeutic 
agents in NEC (Li et al. 2022). Moreover, AF-MSCs have 
recently been shown to reduce the incidence and severity 
of NEC (Stenson 2014; Zani et al. 2014a; Li et al. 2020).

Wnt signaling is crucial for maintaining ISCs and IECs 
homeostasis, whose impairment has been observed in 
experimental NEC model rats (Li et al. 2019). Moreover, 
AF-MSCs have been shown to activate Wnt signaling, 
leading to the rescue of injured ISCs, decreased apopto-
sis and mucosal inflammation, proliferation of IECs, and 
restoration of intestinal construction (Li et al. 2020).

In addition, AF-MSCs rely on endoplasmic reticu-
lum (ER) stress to mediate NEC. AF-MSCs activate the 
ER stress response to process the unfolded tight junc-
tion proteins, such as claudin-7, which can influence the 
function of the intestinal barrier by decreasing intesti-
nal permeability (Li et al. 2021a). Meanwhile, AF-MSCs 
antagonize the apoptotic effects of ER stress by activating 
the binding immunoglobulin protein (ER stress central 
regulatory protein) and upregulating C/EBP homologous 
protein (modulator of apoptosis gene expression). These 

substances can further inhibit the expression of the pro-
apoptotic marker, Bax, and stimulate the expression of 
the anti-apoptotic marker, Bcl-2, thereby inhibiting the 
necrosis and apoptosis of IECs (Li et al. 2021a; Lau et al. 
2021).

IP injection of AF-MSCs was shown to reduce morbid-
ity and mortality rates in NEC and prolong survival rates 
by increasing the expression of cyclooxygenase 2 (COX-
2) in the lamina propria (Zani et al. 2014a). COX-2 is an 
important enzyme, whose expression is inversely propor-
tional to the severity of NEC at 24 h (Lu and Zhu 2014). 
AF-MSCs secrete growth factors, which activate COX-2 
either directly or indirectly by promoting the activation 
of epidermal growth factor receptors, thereby suppress-
ing gut oxidation, facilitating villus cells proliferation, and 
reducing apoptosis (Zani et  al. 2014a). Moreover, AF-
MSC-mediated activation of COX-2 results in the secre-
tion of tumor necrosis factor-induced protein 6, which 
can migrate to injured ileum tissue and attenuate intes-
tinal ischemia/reperfusion injury, thereby blocking the 
onset of NEC (Koike et al. 2020; Klinke et al. 2020).

Other types of MSCs
The efficacy of stem cells may be negatively correlated 
with donor age; therefore, identification of original pro-
genitor cell sources, such as umbilical cord blood or pla-
cental tissue, is essential for the collection of alternatives 
to traditional BM-MSCs (Alves et  al. 2012). Umbilical 
cord-derived stem cells (UC-MSCs) have the same pluri-
potency as BM-MSCs and greater anti-inflammatory and 
immunomodulatory potential than BM-MSCs (Weg-
meyer et al. 2013). Additionally, these cells can be easily 
isolated using noninvasive methods. Placental-derived 
MSCs (P-MSCs), initially regarded as medical waste after 
delivery, have also been shown to be a good source of 
abundant stem cells with low immunogenicity and strong 
anti-inflammatory effects (Damianos et al. 2022).

As prenatal stem cells, the effects of UC-MSCs and 
P-MSCs on amelioration of intestinal damage are pri-
marily mediated by paracrine signaling. Indeed, the 
administration of UC-MSCs enhances mesenteric 
perfusion, maintains the intestinal barrier, increases 
the expression of anti-inflammatory cytokines, 
and decreases the expression of pro-inflammatory 
cytokines owing to activation of endothelial nitric 
oxide synthase (Jensen et al. 2018). The effects of UC-
MSCs on inhibition of intestinal damage by secreting 
hydrogen sulfide suggest potential applications in NEC 
therapy (Drucker et al. 2019, 2018b). Additionally, sig-
nificant restoration of the ISC niche with increased 
Wnt/β-catenin signaling is crucial for the efficacy of 
human P-MSCs therapy in NEC (Weis et  al. 2021). 
The paracrine effects of P-MSCs can also attenuate 
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inflammation, promote mucosal recovery, and inhibit 
oxidative stress (Duan et al. 2020). Collectively, human 
P-MSCs can halt the progression of NEC-related dam-
age to the intestine by improving epithelial morphol-
ogy and inhibiting intestinal destruction.

NSCs
The enteric neural system (ENS) refers to the multi-
potent cell population developing from enteric neu-
ral crest cells, which proliferate and differentiate into 
enteric neurons and glia cells in the developing intes-
tine (Nagy and Goldstein 2017). ENS directly regulates 
gastrointestinal motility and secretes neurotransmit-
ters to maintain intestinal mucosal epithelial barrier 
function independent from the central nervous sys-
tem. The loss of enteric neurons and glia cells exacer-
bates the inflammatory cascades leading to intestinal 
ischemia (Nezami and Srinivasan 2010).

Both the immature ENS in premature infants and 
pathologically absent neurons and glial cells in the 
ENS leave infants susceptible to inflammatory injury 
observed in NEC (Chandramowlishwaran et al. 2022). 
Meanwhile, NEC epithelial injury also can cause 
ENS damage, and thus a vicious loop forms (Bellodas 
Sanchez and Kadrofske 2019). NSCs are responsible 
for repairing and replenishing neurons in the ENS, and 
their engraftment leads to enhancement of intestinal 
motility and prolongation of survival in experimen-
tal NEC (Burns and Thapar 2014; Zhou et  al. 2013). 
Moreover, enteric NSCs (E-NSCs) significantly acti-
vate the neuronal nitric oxide synthase and increase 
nitric oxide, thereby preventing the ENS from damage 
and preserving intestinal integrity (Zhou et al. 2017).

However, it is difficult to extract NSCs from the 
gut, and researchers have instead focused on identi-
fying convenient sources, such as the amniotic fluid. 
NSCs isolated from the amniotic fluid (AF-NSCs) also 
reduce the incidence and severity of NEC, and their 
protective effects have been shown to be equivalent to 
those of E-NSCs (Pisano and Besner 2019). Moreover, 
AF-NSCs can be collected at delivery or through amni-
ocentesis and are more easily expanded in culture than 
E-NSCs (Coppi et al. 2007).

Accordingly, stem cells can exert intestinal protec-
tive functions through diverse mechanisms (Fig.  2); 
however, much more work is necessary to fully eluci-
date these mechanisms. In addition to the therapeutic 
mechanisms of stem cells described above, previously 
published studies have also shown that several inter-
ventions can affect NEC by enhancing or hampering 
the therapeutic effects of stem cells (Table 3).

Applications of stem cells in NEC
Many advances have been made in the use of stem cell 
therapy in regeneration medicine in recent decades. 
Although stem cell-related research in NEC is limited, 
the feasibility of this approach is high. Further accel-
eration of progression in NEC treatment will require 
the removal of obstacles to stem cell transplantation.

Origins of stem cells
MSCs that are derived from bone marrow, amniotic fluid, 
umbilical cord, and placenta have the great properties of 
low immunogenicity and immunosuppression, so these 
stem cells can be transplanted into NEC infants not only 
by autologous but by allogenic donor transplantation 
(Naji et  al. 2019). AF-MSCs, AF-NSCs, UC-MSCs, and 
P-MSCs with low expression of human leukocyte antigen 
(HLA) lower the risk of rejection in allogeneic transplan-
tation and can be easily collected at delivery (Gorodetsky 
and Aicher 2021). ISCs and E-NSCs are extracted from 
healthy regions of the patients for autologous transplan-
tation, which avoids the issue of HLA matching in HSCs 
engraftment (Fig. 3).

Approach of transplantation
Classical stem cell transplantation involves either IP or 
intravenous (IV) injection of cells (Ramalho et al. 2018). 
No major differences in morbidity, pathological dam-
age, or survival rate were observed when comparing IP 
and IV administration of MSCs, although IV administra-
tion is more convenient in preclinical and clinical trials 
and is regarded as a more efficient delivery route than IP 
injection (Yang et al. 2012a, b). Nevertheless, IP injection 
prevents retention of transplanted cells in the pulmonary 
capillary, which is observed after IV injection, and avoids 
embolism when administered intra-arterially. IP injec-
tion also results in diffuse implantation throughout the 
gastrointestinal tract, particularly when a broad area of 
the intestine is treated (Nikiforou et al. 2016; Furlani et al. 
2009). Researchers have also shown that systemic deliv-
ery of MSCs by umbilical vein infusion, which is safe, 
noninvasive, and effective, has a high success rate and is 
related to a low death rate (Yang et al. 2012b, 2014). Each 
type of injection has specific advantages, and the appro-
priate approach should be chosen according to a patient’s 
individual characteristics.

Time of transplantation
It is still ambiguous whether the effects of stem cells on 
NEC are preventive or protective, which may affect the 
delivery time of stem cells (Eaton et al. 2013). Although 
the early use of stem cells is effective, prophylactic 
administration of stem cells in infants may raise ethical 
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issues, and the treatment time window cannot be iden-
tified for therapeutic administration. Hence, it may be 
necessary to further optimize effective detection meth-
ods for NEC to facilitate early intervention with stem cell 
therapy.

Clinical therapy
Because of the roles of stem cells in experimental NEC 
models, stem cell therapy was successfully applied in 
a clinical case in 2019. A 26-day-old full-term infant 

suffering from NEC was provided with IV injection of 
UC-MSCs after surgery, and mesenteric blood sup-
ply was significantly improved, revealing the poten-
tial of stem cells in NEC therapy and preventing short 
bowel syndrome in this infant (Akduman et al. 2021). 
However, this is the only published case of the clini-
cal application of stem cells in NEC, and few clini-
cal trials are currently being performed; indeed, on 
ClinicalTrials.gov, there is only one registered clini-
cal trial for stem cell therapy in NEC to date (trial no. 
NCT05138276).

Fig. 2 The different types of stem cells used to treat NEC and their signaling pathways. Stem cells exert NEC therapeutic effects via various signaling 
pathways. Mainly, MSCs exert therapeutic effects through paracrine signaling. In addition, BM‑MSCs inhibit prolyl hydroxylase 2 to promote nuclear 
factor‑κB activation and increase the release of the intestinal protective factors. UC‑MSCs activate endothelial nitric oxide synthase and secrete 
hydrogen sulfide in NEC therapy. NSCs can repair and replenish neurons in the ENS, activate the neuronal nitric oxide synthase to prevent the ENS 
from being damaged, and preserve intestinal integrity. AF‑MSCs activate ER stress response to process the unfolded tight junction proteins and 
promote the expression of Bcl‑2/Bax gene. Moreover, AF‑MSCs increase the expression of COX‑2 in the lamina propria. AF‑MSCs and P‑MSCs restore 
the ISC niche to promote IECs proliferation with increased Wnt/β‑catenin signaling. ISCs are deservedly responsible for the differentiation to IECs via 
various signaling pathways. BM-MSCs bone marrow‑derived mesenchymal stem cells; UC-MSCs umbilical cord‑derived stem cells; NSCs neural stem 
cells; ENS enteric neural system; COX-2 cyclooxygenase 2; Bcl-2 B‑cell lymphoma 2; Bax Bcl‑2‑associated X protein; AF-MSCs amniotic fluid‑derived 
mesenchymal stem cells; ISCs intestinal stem cells; P-MSCs placental‑derived mesenchymal stem cells
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Complications
Clinical transformation of stem cells is associated with 
multiple challenges, including ethical considerations, 
technical limitations, and adverse effects. Following 
transplantation, stem cells can exhibit abnormal differen-
tiation after ectopic engraftment (Fennema et  al. 2018), 
low survival rate (Reekmans et  al. 2012), and can be 
physically trapped in the pulmonary capillary bed owing 
to the large diameter of the cells (Watanabe et al. 2019). 
Research has shown that undifferentiated stem cells 
can lead to teratoma formation in vivo (Li et al. 2021b). 
Therefore, stem cells with rapid growth and high differ-
entiation capacity, such as UC-MSCs, may avoid tumori-
genesis, immune rejection, and ethical problems, and are 
more suitable for current cell therapy approaches (Wang 
et al. 2022).

Other stem cells derivatives
The conditioned medium is a mixture of all organic and 
inorganic products secreted by stem cells and can exert 
functions similar to those of stem cells. Extracellular vesi-
cles (EVs) are vesicles coated with lipids, proteins, and 
RNA secreted from parental stem cells. The paracrine 
substances secreted by MSCs can exert function in other 
organs and even other individuals through the fusion 
with EVs, which is promising and sustainable for future 
NEC therapy (Joo et  al. 2020). The transition from cell 
therapy to cell-free therapy may broaden the availability 
and safety of stem cell treatment.

Given that paracrine mediators are collected in condi-
tioned medium from MSC (MSC-CM), MSC-CM could 
contribute to mucosal recovery, reduce inflammation, 
and restore ISCs activity (Lykov et  al. 2018; O’Connell 
et  al. 2021). Thus, MSC-CM may have applications in 
NEC. Owing to problems with low grafting efficiency 
caused by deficiencies in trophic paracrine factors in 
MSC-CM, it is also necessary to evaluate how to enhance 
the secretion of trophic paracrine factors and elevate the 
therapeutic efficacy of MSC-CM. Stimulation with sev-
eral factors, including hypoxia, cytokines, growth factors, 
hormones, and drugs can yield an MSC-CM with protec-
tive effects against NEC in the intestinal tract of newborn 
rats, regulate the balance of pro-inflammatory factors 
and anti-inflammatory factors, and thereby reduce intes-
tinal injury (Ferreira et al. 2018).

As a subpopulation of EVs, exosomes do not induce 
immunoreactions between HLA and stem cells owing 
to intercellular fusion. Moreover, these vesicles exhibit 
lower immunogenicity than stem cells (Manchon et  al. 
2021). Additionally, exosomes can cross the blood–brain 
barrier, enabling applications in brain injury caused by 
neurological sequelae related to NEC. Exosomes can also 
be used as delivery vehicles, e.g., facilitating the transpor-
tation of intestinal protective growth factors to the dam-
aged intestine (Ghosh et al. 2020; McCulloh et al. 2018). 
Although exosomes can overcome many drawbacks 
of stem cell therapy, standardized production of large 
amounts of exosomes has not yet been achieved, and the 

Table 3 Factors influencing stem cell therapy in NEC

ISCs intestinal stem cells; HB-EGF heparin-binding epidermal growth factors; PI3K phosphatidylinositol 3-kinase; STAT3 signal transducer and activator of transcription 
3; IL interleukin; LGR5 leucine-rich repeat-containing G protein-coupled receptor 5; BM bone marrow; MSCs mesenchymal stem cells; AF amniotic fluid; NSCs neural 
stem cells

Stem cell type Intervention Protection or risk Key mechanisms References

ISCs HB‑EGF Protection Protect ISCs from injury by PI3K and 
EGFR/MEK1/2/ERK1/2 pathways

Chen et al. (2012)

ISCs Retinoic acid Protection Prevent apoptosis; protect ISCs by 
balancing pro‑inflammatory Th17 and 
anti‑inflammatory Tregs

Nino et al. (2017)

ISCs Exosomes from human milk Protection Protect ISCs from oxidative stress injury 
through Wnt/β‑catenin signaling

Dong et al. (2020)

ISCs Corticotropin‑releasing hormone recep‑
tor 2

Protection Enhance ISCs expression via phospho‑
rylation of STAT3 and IL‑22

Li et al. (2017)

ISCs Combination of multiple stress factors Risk Diminish expression of  LGR5+ ISCs Lee et al. (2018)

BM‑MSCs HB‑EGF Protection Reduce apoptosis; promote migration 
and proliferation; facilitate MSCs engraft‑
ment and protect engrafted MSCs

Yang et al. (2012a)

AF‑MSCs HB‑EGF Protection Increase chemotaxis; protect AF‑MSCs 
against hypoxia‑induced apoptosis 
effectively

Watkins et al. (2012)

NSCs HB‑EGF Protection Elevate enteric neuronal nitric oxide 
synthase levels; promote differentiation, 
migration, and proliferation of NSCs by 
epidermal growth factor receptor

Zhou et al. (2017), Shelby 
et al. (2019), Wei et al. 
(2015)
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legal and ethical considerations have not yet been dis-
cussed (Watanabe et al. 2021).

iPSCs have the potential for multi-dermal differentia-
tion, the excellent ability of living and infinite progeny 
MSCs generation (Hynes et  al. 2018). Importantly, they 
are derived from human’s cells and the differentiation 
ability can be induced in vitro from those adult cells after 
birth (Suman et al. 2019; Zakrzewski et al. 2019). There 
is no immune rejection, and the tumorigenicity evalua-
tion of implanting differentiated MSCs in non-human 
primates didn’t show any evidence of tumor formation 
(Hong et  al. 2014). Mouse iPSCs-derived MSCs have 
been found to reduce inflammatory infiltration in local or 
systemic tissues, but the inflammation can’t be reduced 
as much as the BM-MSCs do when IP injection (Kagia 
et al. 2019).

Conclusion and perspectives
Stem cell therapy is a novel approach for treating NEC. 
Whereas most research is still limited to animal experi-
ments, studies on its long-term outcomes are lacking. 

Various challenges have hindered the translation of pre-
clinical studies to clinical applications, including the 
safety of stem cell transplantation in infants. Hence, the 
exact mechanisms through which stem cells exert benefi-
cial effects in NEC and the pathogenesis of NEC need to 
be studied in greater detail to facilitate successful clini-
cal trials. Stem cell derivatives or conjunctive treatments 
with other activators may also have applications in the 
treatment of NEC in the future.
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Fig. 3 Stem cells from various sources are transplanted into NEC models. First, stem cells are isolated and extracted from various tissues including 
the intestine, bone marrow, amniotic fluid, umbilical cord, and placenta. Among, ISC and E‑NSC are autologous, BM‑MSC, AF‑MSC, UC‑MSC, P‑MSC, 
and AF‑NSC can be administered into NEC animal models by the donor or autologous transplantation. Then, extracted stem cells are propagated 
in an incubator. Finally, these cultured stem cells will be transported into NEC animal models via IP or IV injection. BM-MSC bone marrow‑derived 
mesenchymal stem cell; UC-MSC umbilical cord‑derived stem cell; AF-MSC amniotic fluid‑derived mesenchymal stem cell; AF-NSC neural stem 
cell isolated from the amniotic fluid; E-NSC enteric neural stem cell; ISC Intestinal stem cell; P-MSC placental‑derived mesenchymal stem cell; IP 
intraperitoneal; IV intravenous
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