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ABSTRACT Thermotolerant Campylobacter spp. are
a major cause of foodborne gastrointestinal infections
worldwide. The linkage of human campylobacteriosis
and poultry has been widely described. In this study
we aimed to investigate the prevalence, antimicrobial
resistance and genetic diversity of C. coli and C. jejuni
in broilers from Ecuador. Caecal content from 379 ran-
domly selected broiler batches originating from 115
farms were collected from 6 slaughterhouses located in
the province of Pichincha during 1 year. Microbiological
isolation was performed by direct plating on mCCDA
agar. Identification of Campylobacter species was done
by PCR. Minimum inhibitory concentration (MIC) val-
ues for gentamicin, ciprofloxacin, nalidixic acid, tetra-
cycline, streptomycin, and erythromycin were obtained.
Genetic variation was assessed by RFLP-flaA typing
and Multilocus Sequence Typing (MLST) of selected
isolates. Prevalence at batch level was 64.1%. Of the

positive batches 68.7% were positive for C. coli, 18.9%
for C. jejuni, and 12.4% for C. coli and C. jejuni. Re-
sistance rates above 67% were shown for tetracycline,
ciprofloxacin, and nalidixic acid. The resistance pat-
tern tetracycline, ciprofloxin, and nalidixic acid was the
dominant one in both Campylobacter species. RFLP-
flaA typing analysis showed that C. coli and C. jejuni
strains belonged to 38 and 26 profiles respectively. On
the other hand MLST typing revealed that C. coli ex-
cept one strain belonged to CC-828, while C. jejuni
except 2 strains belonged to 12 assigned clonal com-
plexes (CCs). Furthermore 4 new sequence types (STs)
for both species were described, whereby 2 new STs
for C. coli were based on new allele sequences. Fur-
ther research is necessary to estimate the impact of the
slaughter of Campylobacter positive broiler batches on
the contamination level of carcasses in slaughterhouses
and at retail in Ecuador.
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INTRODUCTION

Thermotolerant Campylobacter spp. are a major
cause of foodborne gastrointestinal infections world-
wide. Human campylobacteriosis in its acute phase is
characterized by diarrhea, fever, abdominal cramps,
and vomiting and has been linked to the develop-
ment of Guillain-Barré syndrome, reactive arthritis,
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and irritable bowel syndrome as complications after
the acute phase of the disease (Loshaj-Shala et al.,
2015). The WHO (2015) estimated that Campylobac-
ter caused 37.600 deaths per year worldwide. For 2014,
237,642 campylobacteriosis cases were registered in the
European Union (EFSA and ECDC, 2015). However
it has been estimated that the real number of cases
occurring yearly may be 9 million (Havelaar et al.,
2009). Diarrheal illness caused by these pathogens are
especially important in developing countries where the
infection in children under the age of two years is fre-
quent and may lead to death (WHO, 2011). Campy-
lobacter has been associated to 11.3 to 21% of diarrhea
episodes in children from low-income countries (Platts-
Mills and Kosek, 2014). However, the lack of studies on
the epidemiology of Campylobacter in developing coun-
tries could lead to the underestimation of the burden of
Campylobacter infections in these regions (Platts-Mills
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and Kosek, 2014). In Ecuador data about Campylobac-
ter infections in humans is very limited. Campylobacter
has been reported in Ecuadorian low income communi-
ties as a possible cause of diarrhea in humans (Vasco et
al., 2014). Furthermore, it has been estimated that 50
to 80% of campylobacteriosis cases may be attributed
to the chicken reservoir as a whole being poultry the
main source of Campylobacter transmission within the
European Union (Skarp et al., 2015).

In general, Campylobacter infections do not require
antibiotic treatment, however the use of erythromycin,
tetracycline, and quinolones is recommended in severe
cases (WHO, 2011).

Worldwide the use of antibiotics in husbandry prac-
tices is a major concern since this may promote the
development of resistant and even multidrug-resistant
bacteria. Antibiotics in poultry production systems are
widely used to prevent, control, and treat bacterial in-
fections as well as growth promoters in a large number
of countries (Seiffert et al., 2013). These facts are of
special relevance in developing countries where misuse
of antibiotics and the lack of control over their usage is
a problem to be addressed (Reardon, 2014). In Latin-
American countries, increased rates of antimicrobial re-
sistant Campylobacter have been reported (Pollett et
al., 2012; Sierra–Arguello et al., 2016).

In Ecuador chicken meat is frequently consumed and
its demand increased over the years (CONAVE, 2014).
Although Ecuadorian poultry industry only provides
chicken meat for local consumption up to now, it is
expected that in the future it can have access to in-
ternational markets once sanitary conditions are better
understood and controlled. Despite of the importance of
Campylobacter as a foodborne pathogen, little is known
about its epidemiology in poultry farms, slaughter-
houses, and retail stores in the main centers of produc-
tion and consumption of poultry products in Ecuador.
This information may help to establish surveillance pro-
grams and intervention measures regarding to the pres-
ence and antimicrobial resistance of Campylobacter in
Ecuadorian poultry.

The aim of this study was to investigate the preva-
lence, antimicrobial resistance and genetic profiles of
Campylobacter in broilers slaughtered in industrial fa-
cilities in the province of Pichincha in Ecuador.

MATERIALS AND METHODS

Study Design and Sampling

Pichincha, the province where Quito, the capital city
of Ecuador, is located, was selected as the area for the
collection of samples since in this province and the sur-
rounding ones 36% of the total Ecuadorian broiler pro-
duction is located (CGSIN and MAGAP, 2015).

Eight large slaughterhouses are located in Pichincha
(CGSIN and MAGAP, 2015). All of them were con-
tacted and asked for their willingness to cooperate in
the study. Based on these results sampling was per-

formed in 6 slaughterhouses. From June 2013 to July
2014, a total of 379 batches (birds coming from one
house and slaughtered on the same day) were sampled.
All sampled batches from a same farm originated from
different houses or birds reared on different periods in
the same house. In Ecuador commercial broiler manage-
ment at the farm includes total depopulation of houses,
removal of the litter after every reared batch, clean-
ing and disinfection of the house followed by a down
period of 8 to 15 days. All sampled batches were com-
mercially reared and slaughtered at the age of 6 to 7
weeks. From each batch, one caecum from 25 randomly
selected chickens was collected, and transported in an
ice box within 1 hour to the laboratory for bacteriolog-
ical analysis.

Isolation and Identification of
Campylobacter spp.

The content from the 25 collected caeca was asep-
tically pooled. Therefore, all caeca were immersed in
ethanol, and after evaporation of the ethanol approxi-
mately 1 g content/cecum was collected in a sterile plas-
tic bag. The pooled sample was homogenized by hand
during 1 min. after the addition of 225 mL buffered pep-
tone water (218103, Difco, BD, Sparks, MD) and a loop-
ful (10 μL) from each homogenate was directly streaked
onto a modified Charcoal Cefoperazone Deoxycholate
Agar (mCCDA) (Campylobacter blood free selective
medium CM0739 plus selective supplement SR0155H
[Oxoid, Cheshire, UK]). Plates were incubated under
microaerobic conditions at 41.5◦C for 48 h. Three pre-
sumptive Campylobacter colonies were confirmed by
Gram staining and microscopic observation. Colonies
containing bacteria with a typical shape were subcul-
tured on mCCDA. After incubation under microaerobic
conditions at 41.5◦C for 48 h the DNA of one colony per
plate was extracted by boiling for 10 minutes in 100 μL
of DNA free water. The rest of the culture was trans-
ferred into sheep blood and stored at −80◦C. Multiplex
PCR described by Vandamme et al. (1997) was per-
formed for identification of Campylobacter species. PCR
results indicating the presence of both C. jejuni and
C. coli were retested after sub-culturing of one colony
on mCCDA until only one species was detected.

From each positive batch one isolate was randomly
selected for further characterization.

Antimicrobial Resistance

Antimicrobial resistance was evaluated in one iso-
late per sample. The minimum inhibitory concentration
(MIC) was determined using the EUCAMP2 plates
(Thermo Scientific, West Palm Beach, FL). The tests
were performed according to the manufacturer instruc-
tions. The following antibiotics were evaluated: gentam-
icin, ciprofloxacin, nalidixic acid, tetracycline, strepto-
mycin, and erythromycin. Campylobacter jejuni ATCC
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Table 1. Campylobacter positive batches in relation to the number of tested batches per farm.

Number of farms with 0 to 6 positive batches
Number of
sampled
batches/farm Number of farms 0 1 2 3 4 5 6

1 31 15 16
2 19 2 7 10
3 12 1 2 8 1
4 18 1 3 9 5
5 15 2 3 1 5 4
6 16 4 4 4 3 1
7 2 1 1
8 1 1
9 1 1
Total 115 18 29 28 15 15 7 3

33560 was used as the quality control strain. Epidemi-
ological breakpoint values from the European Com-
mittee on Antimicrobial Susceptibility Testing were
considered to determine bacterial antibiotic resistance
(EUCAST, 2015).

Restriction Fragment Length Polymorphism
of the flaA gene (flaA-RFLP)

One Campylobacter isolate per positive batch was
tested. For the PCR the consensus pair of primers
for the flaA gene described by Wassenaar and Newell
(Wassenaar and Newell, 2000) and the reagents and
conditions described by Nachamkin et al. (Nachamkin
et al., 1993) were applied. For restriction fragment
length polymorphism (RFLP) analysis flaA PCR am-
plicons were treated with restriction enzyme DdeI
(Thermo Scientific, West Palm Beach, FL). PCR am-
plicons (7 μL) were digested according to the man-
ufacturer’s instructions and then separated by elec-
trophoresis for 1:40 hours at 120 V. The gels were
stained and photographed. The relatedness among the
flaA-RFLP profiles was analyzed with GelCompar II
software v. 6.6 (Applied Maths, Sint-Martems-Latem,
Belgium). Bands representing fragments between
200 bp and 1,100 bp in size were included in the anal-
ysis. A similarity dendrogram was constructed by the
unweighted pair group method using arithmetic aver-
ages algorithm (UPGMA). DICE similarity coefficient
with a tolerance position of 1% was calculated. A flaA-
RFLP genotype was assigned on the basis of the differ-
ence in the presence of at least one band in the Ddel
fingerprint.

Multilocus Sequence Typing

Multilocus Sequence Typing (MLST) was carried
out on all C. jejuni isolates that still could be subcul-
tured (40 isolates). For C. coli, 40 randomly selected
isolates representing 40 farms were typed by MLST.

MLST was performed by the protocol previously de-
scribed (PubMLST.org, 2016). Sequence types (STs)
and clonal complexes (CCs) were assigned by sub-
mitting DNA sequences to the Campylobacter MLST
database website (http://pubmlst.org/campylobacter).

Novel alleles and STs were submitted to the MLST
database for the assignation of new numbers.

Statistical Analysis

Statistical analysis was carried out with STATA/IC
11.0 (StataCorp LP, College Station, TX). The survey
design corrected prevalence estimates of Campylobacter
at batch level were obtained using the linearized Tay-
lor series method. Farms was identified as first-stage
cluster. To determine the prevalence of Campylobacter
at farm level, a farm was considered positive when at
least one of the sampled batches was positive. Farms
were assumed to be independent.

Differences of antibiotic resistances between C. coli
and C. jejuni were calculated by the chi-square test.
Proportions were considered statistical different when
the P value was below 0.05.

RESULTS

Prevalence of Campylobacter spp

The 379 sampled batches originated from 115
farms (1 to 9 batches per farm). From all tested
batches 243 (64.1%; CI95%: 58.7% to 69.6%) were
Campylobacter positive and originated from 97 farms
(84.4%; Confidence Interval (CI)95%: 77.6% to 91.1%).
From 84 farms, more than one batch was sam-
pled. The number of times that those farms had
Campylobacter positive batches ranged from 1 to 6
(Table 1). Initial PCR speciation demonstrated that
167 batches (68.7%; CI95%: 62.9% to 74.6%) were posi-
tive for C. coli, 46 (18.9%; CI95%: 14.0% to 23.9%) for C.
jejuni and 30 (12.4%; CI95%: 8.2% to 16.5%) for C. coli/
C. jejuni. Subculturing of the mixed cultures yielded 22
C. coli and 8 C. jejuni isolates.

Antimicrobial Resistance

Twenty-five isolates (19 C. coli and 6 C. jejuni) could
not be sub-cultured from −80◦C for MIC test; hence
218 isolates were tested (170 C. coli and 48 C. jejuni).
The MIC distributions for the different antibiotics of
C. coli and C. jejuni are shown in Tables 2 and 3

http://pubmlst.org/campylobacter
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Table 2. Distribution of the minimal inhibitory concentration values for 170 C. coli isolates collected
from broiler batches.

Number of C. coli isolates with minimal inhibitory concentrations (μg/μL)1

Antibiotic 0,12 0,25 0,5 1 2 4 8 16 32 64 128

Gentamicin 106 49 8 5 1 1
Streptomicyn 1 120 30 19
Erythromycin 38 33 33 22 6 31 7
Tetracycline 34 15 6 1 1 89 24
Ciprofloxacin 1 2 134 5 28
Nalidixic acid 1 1 11 157

1Full vertical lines indicate epidemiological break points for resistance described by European Committee on
Antimicrobial Susceptibility Testing (EUCAST, 2015).

Table 3. Distribution of the minimal inhibitory concentration values for 48 C. jejuni isolates collected
from broiler batches.

Number of C. jejuni isolates with minimal inhibitory concentrations (μg/μL)1

Antibiotic 0,12 0,25 0,5 1 2 4 8 16 32 64 128

Gentamicin 42 3 2 1
Streptomicyn 2 5 35 2 2 2
Erythromycin 23 21 2 1 1
Tetracycline 6 2 1 1 28 10
Ciprofloxacin 1 2 33 3 9
Nalidixic acid 1 1 46

1Full vertical lines indicate epidemiological break points for resistance described by European Committee on
Antimicrobial Susceptibility Testing (EUCAST, 2015).

respectively. C. coli and C. jejuni showed very low re-
sistance rates for gentamicin and the resistance rate
was not statistically different between both species (P
= 0.752). For streptomycin the resistance rates were
11.2% and 8.3% for C. coli and C. jejuni respectively
(P = 0.199). Resistance rate for erythromycin was sta-
tistically higher for C. coli (25.9%) compared to C. je-
juni (4.2%) (P = 0.024). In contrast the resistance rates
for tetracycline was statistically higher for C. jejuni
(83.3%) than for C. coli (67.6%) (P = 0.016). Resis-
tance rates of C. coli for ciprofloxacin and nalidixic acid
were 100% and 99.4% respectively (P = 0.086). Simi-
larly, C. jejuni presented resistance rates of 97.9% and
100% for ciprofloxacin and nalidixic acid respectively
(P = 0.558).

C. coli and C. jejuni isolates showed 8 and 6 differ-
ent resistance patterns respectively. C. coli presented
resistance against 1 up to 6 antibiotics, whereas for
C. jejuni resistance against 2 up to 6 antibiotics were
involved. The resistance pattern 5 (C. coli: 42.9%; C.
jejuni: 72.9%) was the most frequent one for both
species (Table 4). Pattern 3 and, patterns 1, 4, and
6 were presented exclusively for C. jejuni and C. coli
respectively.

RFLP-flaA Typing

For RFLP-flaA typing 38 isolates (26 C. coli and
12 C. jejuni) could not be sub-cultured from −80◦C;
hence 163 C. coli and 47 C. jejuni isolates were tested.
From all tested isolates 1 C. coli and 7 C. jejuni did not
present bands in RFLP-flaA typing. For C. coli 38 pro-
files were obtained, from which 19 profiles contained
more than one strain. Each of the later profiles con-

Table 4. Antibiotic resistance patterns of C. coli and C. je-
juni isolates.

Pattern Resistance pattern1 C. coli (%) C. jejuni (%)

1 C 1(0.6) 0
2 CN 49(28.8) 8(16.7)
3 TN 0 1(2.1)
4 CEN 5(2.9) 0
5 CTN 73(42.9) 35(72.9)
6 CTEN 23(13.5) 0
7 SCTN 3(1.8) 2(4.2)
8 SCTEN 14(8.2) 1(2.1)
9 GSCTEN 2(1.2) 1(2.1)
Total 170(100) 48(100)

1C, Ciprofloxacin; E, erythromycin; G, Gentamicin; N, Nalidixic;
S, Streptomycin; T, Tetracycline.

tained 2 up to 25 strains. For C. jejuni 26 profiles were
obtained, from which 7 profiles contained 2 to 7 strains.
Most of the strains within a RFLP-flaA profiles origi-
nated from different farms. However, for profile 5, 9, 18,
19, 21, 22 (C. coli), and 20 (C. jejuni) two strains were
found in a single farm, and for profile 16 (C. coli) two
farms yielded 2 and 3 strains respectively (Table 5).

MLST Typing

From the 40 C. coli isolates selected for MLST 39
belonged to CC-828 and 1 did not have an assigned
CC (ST-1581). The most frequent STs were ST-5777
(9 isolates), followed by ST-829 (8 isolates) and ST-828
(6 isolates) (Figure 1). From the 40 C. jejuni isolates
selected for MLST the most common CCs were CC-574
(9 isolates), CC-257 (7 isolates), CC-353 (5 isolates),
and CC-354 (5 isolates) (Figure 2). Two C. jejuni iso-
lates did not correspond to an assigned CC. The most
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Table 5. Campylobacter spp. RFLP-flaA profiles with more than
one isolate.

Campylobacter
spp.

ID of
RFLP-flaA

profiles

Number of
isolates within
each profile

Number of
origin farms

C. coli 22 2 1
7, 17, 25, 31 2 2
1, 11, 32 3 3
21 5 4
5 6 5
3, 30 7 7
6 9 9
8 10 10
18 10 9
9 12 11
29 12 12
16 22 19
19 25 24

C. jejuni 7, 8, 9, 16, 19 2 2
14 4 4
20 7 6

ST-diverse CC was CC-353 (4 STs) followed by CC-
257 (3 STs), CC-52 (2 STs), CC-354 (2 STs), CC-464
(2 STs), and CC-21 (2 STs).

In total, 9 C. coli and 7 C. jejuni strains belonged
to STs which were not reported previously. Sequence
data from those strains were submitted to the Campy-
lobacter MSLT database (PubMLST.org, 2016) leading
to the assignation of 8 novel ST numbers (4 STs for
each species) (Table 6). Two novel STs within C. coli
(ID PubMLST 48107 and 48108) resulted from novel
allele sequences: 5 strains had a novel allele sequence
for aspA, of which one strain had also a novel allele
sequence for tkt.

Comparison of RFLP-flaA profiles
and MLST Data

When comparing MLST data with RFLP-flaA pro-
files, C. coli STs 8315, 8317, 828, 5777, and 829 included
2, 2, 3, 4, and 5 RFLP-flaA profiles respectively, while
RFLP-flaA profiles 18, 21, 16, and 19 included 2, 2, 4,
and 4 different ST types. For C. jejuni 4 STs (6244,
8308, 8309, and 8310) had two RFLP-flaA profiles and
only the RFLP-flaA profile 14 included 2 ST types. No
association of RFLP-flaA profiles within STs was found
regarding the origin of the isolates.

DISCUSSION

Our findings demonstrated that the prevalence of
Campylobacter in broiler batches at slaughter age was
64.1%. Studies from other Latin American countries
showed different prevalences. From Brazil and Costa
Rica, 100.0% respectively 80.0% of the flocks were re-
ported to be positive for Campylobacter when ceca
samples were studied (Giombelli and Gloria, 2014;
Zumbaco-Gutiérrez et al., 2014). On the other hand, in
Argentina and Chile Campylobacter was found in 33.3%
of samples (Rivera et al., 2011; Zbrun et al., 2013a)
while in Peru Tresierra-Ayala et al. (1995) reported
a prevalence of 35%. Other tropical countries such as
Vietnam and South Africa have reported a prevalence of
31.9 and 14.2% respectively (Jonker and Picard, 2010;
Carrique-Mas et al., 2014). Although different preva-
lences are shown in developing countries, it should be
keep in mind that differences in methodologies can
make direct comparison of results difficult. Moreover,

Figure 1. Distribution of STs among the 39 C. coli strains belonging to clonal complex 828.
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Figure 2. Distribution of STs and clonal complexes among the 40 C. jejuni strains.

Table 6. MLST profiles of novel STs identified in Campylobacter strains.

MLST allelic profilea

Campylobacter species No. of isolates Clonal complex Sequence type aspA glnA gltA glyA pgm tkt uncA
ID on the
PubMLST

C. jejuni 2 257 8308 9 2 4 62 606 5 6 48096
C. jejuni 2 354 8309 8 10 95 2 10 12 6 48097
C. jejuni 2 21 8310 2 1 5 672 11 1 5 48113
C. jejuni 1 NAb 8312 2 84 5 10 11 3 6 48099
C. coli 1 828 8311 33 39 30 82 373 56 17 48106
C. coli 4 828 8315 441 39 30 82 373 47 17 48107
C. coli 1 828 8316 441 39 30 82 113 641 17 48108
C. coli 3 828 8317 33 39 30 82 373 47 17 48110

aNew allele sequences are given in bold.
bNA, not assigned.

obtained data indicated that at least 84.3% of farms de-
livered Campylobacter positive batches. For farms deliv-
ering only Campylobacter negative batches only a maxi-
mum of 3 batches were tested. For those farms it can be
hypothesized that when more batches would be sampled
also these farms would deliver Campylobacter positive
batches for slaughter. On the other hand, the number of
positive batches per farm variated considerably which is
in concordance with the observations described by Mc-
Dowell et al. (2008). This variation may be attributed
to different risk factors for the introduction of Campy-
lobacter in broilers (Adkin et al., 2006; Torralbo et al.,
2014; Sandberg et al., 2015).

Considering Campylobacter species, C. coli was the
dominant species in positive batches. This contrasts
with other studies from Latin America where C.
jejuni has been demonstrated to be the most preva-
lent species in broilers (Tresierra-Ayala et al., 1995;
Rivera et al., 2011; Zbrun et al., 2013b; Giombelli and
Gloria, 2014; Zumbaco-Gutiérrez et al., 2014). C. je-
juni has also been demonstrated as the most common

Campylobacter species from broilers at slaughter age in
China and South Africa (Jonker and Picard, 2010; Ma
et al., 2014). Meanwhile, the European baseline study
on Campylobacter in broilers indicated that the propor-
tion of C. coli/C. jejuni varied considerable between
countries and this proportion was generally higher in
southern countries than in northern countries (EFSA,
2010).

In this study, C. coli and C. jejuni presented high
resistance rates to ciprofloxacin, nalidixic acid and
tetracycline while erythromycin, gentamicin, and strep-
tomycin showed lower resistance rates. This is in ac-
cordance with a study in Brazil where high resistance
rates to ciprofloxacin, nalidixic acid, and tetracycline,
and low resistance rates to erythromycin and gentam-
icin were reported (Ferro et al., 2015). Besides, a similar
low resistance rate for erythromycin, a low resistance
rate for ciprofloxacin (11,8%) was reported from Chile
(Rivera et al., 2011).

In contrast with the data reported in European
Union, this study showed that C. jejuni presented
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higher resistance rates for tetracycline than C. coli
(EFSA, 2015). On the other hand, a higher resis-
tance rate to erythromycin was shown for C. coli,
which is consistent with data from China and South
Africa that showed higher erythromycin resistance rates
for C. coli (92.0% and 72.7% respectively) than for
C. jejuni (18.8% and 20% respectively) (Jonker and
Picard, 2010; Ma et al., 2014).

High resistance rates for (fluoro)quinolones and
tetracycline found in the present study may be ex-
plained by the common use of these antibiotics as ther-
apeutics in Ecuadorian poultry farms. However it is
not clear why the resistance rate to tetracycline was
higher for C. jejuni than for C. coli in Ecuador. The low
antimicrobial resistance rates to aminoglycosides and
macrolides for C. jejuni found in this study indicates
that gentamicin and erythromycin can still be used for
the treatment of human campylobacteriosis when neces-
sary (WHO, 2011). However, changes in resistance rates
presented in this research have to be monitored by the
implementation of antimicrobial resistance surveillance
on Campylobacter in Ecuador.

Campylobacter typing by RFLP-flaA has been used
based on the highly conserved character of this gene.
It has also been shown to be a cost-effective alterna-
tive to more costly methodologies (Djordjevic et al.,
2007). The use of RFLP-flaA as the only typing method
is questioned due to intra- and intergenomic recom-
bination within the flagellin genes (Eberle and Kiess,
2012) which can make the comparison of isolates over
time difficult. In contrast MLST typing is a more re-
liable method since it is based on changes in allele se-
quences of determined housekeeping genes and a library
of MLST types is available to compare results from
all over the world (PubMLST.org, 2016). Our results
showed that the combination of RFLP-flaA and MLST
typing led to a further differentiation of a number of iso-
lates. This is in concordance with the results of Duarte
et al. (2016) who demonstrated that the combination
of both RFLP-flaA and MLST had a higher discrimi-
natory power than both methods separately.

Based on one isolate per batch, our results indicated
that a large variation of genetic types were present in
Ecuadorian broiler batches. Some genetic types seemed
to be more widespread than other ones. Additionally,
RFLP-flaA data suggested that over time the persis-
tence of specific genetic types on farms is limited. Anal-
yses of the variable region in the flaA locus (flaA-SVR)
have demonstrated that more than one Campylobacter
genotype may be present in the same farm (Jorgensen
et al., 2011; O’Mahony et al., 2011; Prachantasena et
al., 2016). Moreover, some batches were simultaneously
colonized with C. coli and C. jejuni in the present study.

To the best of our knowledge, this study is the
first report that showed Campylobacter MSLT types
from commercial broiler batches in Andes region of
Latin America. In this study 39 out of 40 C. coli iso-
lates belonged to CC-828. Predominant distribution of
C. coli within CC-828 has also been reported in Eu-

rope (Levesque et al., 2013; Piccirillo et al., 2014). It is
suggested that the low diversity of CCs in C. coli can
be attributed to the presence of a 3-clade C. coli pop-
ulation structure. In this genetic structure, horizontal
gene transfer within each clade would be more common
than among members of different clades (Sheppard and
Maiden, 2015), resulting in a limited number of CCs.

Interestingly, the new reported ST-8315 was present
in 4 (10%) C. coli isolates. The implication of this
ST in the epidemiology of Campylobacter needs fur-
ther research. From the 40 C. jejuni isolates tested, the
majority belonged to CC-574 (9 isolates), CC-257 (7
isolates), CC-353 (4 isolates), CC-354 (5 isolates), and
CC-21 (3 isolates). In Great Britain, an important num-
ber of C. jejuni strains were grouped in CC-257, CC-
353, and CC-574 (Jorgensen et al., 2011). Meanwhile,
CC-354 has been found in commercial poultry in Thai-
land (Prachantasena et al., 2016). This is in accordance
with our results where these CCs were found in 72.5%
of the tested samples. Additionally, a Canadian study
reported CC-353 in C. jejuni isolates from chickens orig-
inated in Peru, Bolivia and Argentina (Lévesque et al.,
2008). Other less common CCs found in this study (CC-
45, CC-48, CC-52, CC-460, CC-658,CC-464, and CC-
607) have also been reported in poultry from Europe,
Africa, Asia, and North America (Lévesque et al., 2008;
Griekspoor et al., 2010; O’Mahony et al., 2011; Kittl et
al., 2013; Ngulukun et al., 2016; Zeng et al., 2016).

Moreover, a study in Ecuador demonstrated that
CC-353, CC-354 and CC-607 were present in C. jejuni
isolates from backyard poultry and other domestic ani-
mals kept in households (Graham et al., 2016). A query
in the Campylobacter jejuni/coli PubMSLT database
(PubMLST.org, 2016) (Last accessed: 21/07/2016)
showed that in Latin America, Brazil, and Uruguay re-
ported Campylobacter MLST profiles from chicken sam-
ples. These isolates belonged to CC-257, CC-52 (C. je-
juni), and CC-828 (C. coli) in Uruguay, while in Brazil
a no determined CC (ST-7370) was reported.

Although there are new STs in some of our strains
C. coli isolates, the most of CCs found in this study
have been reported in chicken samples (PubMLST.org,
2016).

This study gives insights on the epidemiology
of Campylobacter in commercial reared poultry in
Ecuador. Since high levels of Campylobacter on car-
casses has been linked to an increasing risk of Campy-
lobacter infections in humans (EFSA, 2011), it would
be interesting to collect data about the contamination
including contamination levels, of broiler meat and re-
lated risk factors for contamination at the following
stages of the broiler meat chain. Campylobacter types
and its antimicrobial resistance have not been stud-
ied from humans in Ecuador. Therefore, it is not pos-
sible to link human campylobacteriosis to the geno-
types found in this study. Therefore further research on
Campylobacter isolates from the broiler meat chain and
humans may give more insights on the epidemiology of
Campylobacter in Ecuador.
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