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ABSTRACT
BACKGROUND: Depression, a condition commonly comorbid with multiple sclerosis (MS), is associated more
generally with elevated inflammatory markers and hippocampal pathology. We hypothesized that neuroinflammation
in the hippocampus is responsible for depression associated with MS. We characterized the relationship between
depressive symptoms and hippocampal microglial activation in patients with MS using the 18-kDa translocator
protein radioligand [18F]PBR111. To evaluate pathophysiologic mechanisms, we explored the relationships between
hippocampal neuroinflammation, depressive symptoms, and hippocampal functional connectivities defined by
resting-state functional magnetic resonance imaging.
METHODS: The Beck Depression Inventory (BDI) was administered to 11 patients with MS and 22 healthy control
subjects before scanning with positron emission tomography and functional magnetic resonance imaging. We tested
for higher [18F]PBR111 uptake in the hippocampus of patients with MS relative to healthy control subjects and
examined the correlations between [18F]PBR111 uptake, BDI scores, and hippocampal functional connectivities in
the patients with MS.
RESULTS: Patients with MS had an increased hippocampal [18F]PBR111 distribution volume ratio relative to healthy
control subjects (p 5 .024), and the hippocampal distribution volume ratio was strongly correlated with the BDI score
in patients with MS (r 5 .86, p 5 .006). Hippocampal functional connectivities to the subgenual cingulate and
prefrontal and parietal regions correlated with BDI scores and [18F]PBR111 distribution volume ratio.
CONCLUSIONS: Our results provide evidence that hippocampal microglial activation in MS impairs the brain
functional connectivities in regions contributing to maintenance of a normal affective state. Our results suggest a
rationale for the responsiveness of depression in some patients with MS to effective control of brain neuro-
inflammation. Our findings also lend support to further investigation of the role of inflammatory processes in the
pathogenesis of depression more generally.
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There is a higher prevalence of depression in patients with
multiple sclerosis (MS) than in the general population (1). The
association between MS and depression is stronger than
associations observed in patients with other long-term dis-
abling conditions, suggesting common pathophysiologic
mechanisms (2). Activation of the brain innate immune
response has been proposed as one such potential common
causal factor (3).

Magnetic resonance imaging (MRI) studies have reported
associations between depressive symptoms in patients with
MS and measures of disease burden, including lesion load and
accompanying tissue destruction, more diffuse abnormalities
of the normal-appearing white matter, and brain atrophy (4).
However, each of these associations accounted for only a
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small amount of total variance in depressive symptoms, and
specific associations have not been consistent across studies.
These findings suggest that the association arises from a
common underlying factor that contributes to pathophysio-
logic changes for both MS and depression.

Elevated inflammatory markers are associated with depres-
sive symptoms in medically healthy individuals (5), and
increased levels of depression and anxiety have been docu-
mented in clinical and experimental settings after challenges
that activate an innate immune response (6,7). We hypothe-
sized that the high prevalence of depressive symptoms in
patients with MS is a direct consequence of chronic innate
immune activation in functionally relevant regions of their
brains.
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Table 1. Clinical and Demographic Characteristics of Study
Participants

Case

Age
(Years)/
Sex

TSPO Gene
Group

Disease
Duration (Years) EDSS BDI MDE

Healthy Control Subjects

1 45/F MAB — — 6 None

2 36/F MAB — — 0 None

3 33/F HAB — — 9 None

4 52/F LAB — — 0 None

5 61/F MAB — — 0 None

6 42/F HAB — — 0 None

7 52/F HAB — — 1 None

8 43/M MAB — — 0 None

9 50/F HAB — — 4 None

10 28/M HAB — — 1 None

11 52/F HAB — — 0 None

12 51/M LAB — — 0 None

13 65/M LAB — — 8 None

14 28/M HAB — — 2 None

15 57/M MAB — — — None

16 59/F HAB — — — None

17 59/M HAB — — — None

18 62/M HAB — — — None

19 60/F MAB — — — None

20 60/F MAB — — — None

21 56/F MAB — — — None

22 44/F LAB — — — None

Patients With MS — — — — —

1 48/F HAB 8 6.5 23 Current

2 39/F LAB 20 4 9 Recent

3 40/F HAB 11 4 24 Current

4 55/F HAB 20 2 5 None

5 53/F LAB 20 7 30 Current

6 50/F HAB 2 4 10 Current

7 59/F MAB 16 3 8 Recent

8a 42/M MAB 11 5.5 20 Current

9 41/F HAB 14 1.5 3 None

10 28/M HAB 7 2 14 Recent

11 41/F MAB 4 5.5 7 None

12 42/F HAB 1.5 6 19 Current

13a 37/F — 9 7 23 Current
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Convergent lines of research implicate the hippocampus in
the pathophysiology of depression. Hippocampal atrophy is a
consistently reported finding in patients with depression and
has been suggested as a biomarker of risk for depression (8).
Hippocampal activity modulates the hypothalamus-pituitary-
adrenal stress hormone axis and regulates the function of
prefrontal, ventral tegmental, and striatal areas that appear to
contribute to the genesis or maintenance of depressive
symptoms (9). The hippocampus may be particularly suscep-
tible to neuroinflammatory triggers; for example, it has a high
density of interleukin-1 receptors (10). Hippocampal pathology
in MS, including extensive demyelination, neuronal loss atro-
phy, and microglia activation, has been confirmed by post-
mortem and imaging studies (11–13). Studies using MRI
demonstrated that hippocampal volume loss and altered
morphology are associated with depressive symptoms in MS
(14–16). Hippocampal neuroinflammation in the rodent exper-
imental allergic encephalomyelitis (EAE) model is associated
with dysfunctional neurogenesis (17), and hippocampal neuro-
genesis in humans may be critical to recovery from depression
(18). Therefore, we hypothesized that innate immune
responses specifically in the hippocampus are responsible
for the genesis of depressive symptoms associated with MS.

We previously demonstrated that positron emission tomog-
raphy (PET) with the second-generation 18-kDa translocator
protein (TSPO) radioligand [18F]PBR111 enables the character-
ization of microglial activation in the white matter of patients
with MS (19). Although TSPO is not seen exclusively in
activated microglia, we interpret increased TSPO signal as
arising largely from activated microglia/macrophages based
on previous immunohistochemical observations in postmor-
tem brains with MS and in EAE rodents (20–22). Studies in
patients with MS using first-generation and second-generation
TSPO radioligands reported focally increased TSPO radio-
ligand uptake associated with gadolinium-enhancing lesions
(23,24), some T2-hyperintense lesions (19,25), in the thalamus
(23,25), and in some cortical gray matter areas, particularly in
patients with secondary progressive MS (26).

In the present study, we used [18F]PBR111 PET to quantify
hippocampal microglia activation and characterize its relation-
ship to depressive symptoms in patients with MS in vivo. We
also investigated whether the strength of hippocampal func-
tional connectivity assessed with resting-state functional MRI
is related to the expression of depressive symptoms and to
hippocampal microglia activation in patients with MS.
BDI, Beck Depression Inventory; EDSS, Expanded Disability Status
Scale; HAB, high-affinity binder; LAB, low-affinity binder; MAB, mixed-
affinity binder; MDE, major depressive episode; TSPO, 18-kDa trans-
locator protein.

aThese patients were not included in the positron emission tomo-
graphy analysis.
METHODS AND MATERIALS

Study Design and Subjects

The study was conducted at Imperial College London and the
Imanova Centre for Imaging Sciences and was approved by
the Essex 1 Research Ethics Committee and the Administra-
tion of Radioactive Substances Advisory Committee. The
clinical, demographic, and radiologic characteristics of study
subjects are summarized in Supplemental Table S1 and
Table 1. The study subjects included 22 healthy control
subjects and 13 patients with relapsing-remitting MS who
underwent MRI and [18F]PBR111 PET scans on the same day.
The MRI scan was conducted approximately 2 hours before
Biolog
the PET scan. All healthy control subjects underwent a PET
scan, and 14 of 22 also underwent a resting-state functional
MRI scan. Of 13 patients with MS, 2 were subsequently
excluded from the PET cohort because of failure of metabolite
analysis, which precluded the kinetic modeling using arterial
input function with metabolite correction.

The mean age of patients with MS was younger than
healthy control subjects (MS group, 44.23 6 8.42 years [mean
ical Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journal 63
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6 SD]; healthy control group, 49.77 6 11.07 years; t 5 1.55,
p 5 .13), and there were more women in the MS group than in
the healthy control group (MS group, 11/13 female [84.6%];
healthy control group, 14/22 female [63.6%]; χ2 5 1.76, p 5

.18). Of 13 patients with MS, 6 were taking antidepressant
medications and 10 were receiving disease-modifying treat-
ments at the time of the examinations (Supplemental Table
S1). Subjects were stratified into one of three binding affinity
groups (high-affinity binders, mixed-affinity binders, low-
affinity binders) on the basis of their genotype for the rs6971
polymorphism, which is a major determinant of variations in
affinity for second-generation TSPO radioligands between
subjects (27).

Clinical Assessments

Clinical assessments were performed at screening. Disability
was assessed using the Expanded Disability Status Scale
(EDSS) (28). Diagnoses of major depressive episode (MDE)
were formulated by an experienced psychiatrist on the basis of
the Mini International Neuropsychiatric Interview (29). Current
and recent (within the past 6 months) MDEs were recorded.
The Beck Depression Inventory (BDI)-II (30) was used for
assessment of depressive symptoms, and fatigue was
assessed using the Fatigue Severity Scale (31).

PET Imaging

The PET radioligand synthesis, image acquisition protocol,
definition of regions of interest (ROIs), and quantification of
[18F]PBR111 are described in detail in Supplemental Methods
and Materials. The hippocampus was chosen a priori as the
primary ROI for [18F]PBR111 binding analyses. The thalamus
was used as a control ROI, based on its potential for accurate
segmentation and high TSPO signal (32), to test whether any
observed increase in TSPO was specific to hippocampus or
global. A post hoc exploratory analysis further tested for group
differences in all major ROIs (details in Supplemental Methods
and Materials).

The [18F]PBR111 total volume of distribution (VT) was
quantified using a two-tissue compartment model with
metabolite-corrected arterial input function (32). The relative
regional [18F]PBR111 binding (as an index of activated micro-
glia density) was estimated by calculating the distribution
volume ratio (DVR), which was defined as the ratio of
[18F]PBR111 VT in a ROI to the [18F]PBR111 VT across the
entire cortical gray matter used as a “pseudo-reference region.”
The use of the DVR reduces variability associated with
nonspecific binding of the radiotracer by minimizing errors
associated with the estimation of the blood input function.
Normalization is associated with an improved test-retest repro-
ducibility of [18F]PBR111 signal (19), leading to reduced within-
subject variability and to a better signal-to-noise ratio.
Resting-State Functional MRI

The MRI data were acquired on a 3-tesla Siemens Verio
(Siemens Healthcare, Erlangen Germany) clinical MRI scanner,
equipped with a 32-channel phased-array head coil. The MRI
protocols included T1-weighted (with and without gadolinium),
T2-weighted fluid attenuated inversion recovery, and resting-
64 Biological Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journa
state functional MRI. Details on the MRI protocol and func-
tional connectivity analysis are presented in Supplemental
Methods and Materials.

Statistical Analyses

Statistical analyses were done using IBM SPSS Statistics
version 20 (IBM Corp., Armonk, New York). The analyses were
divided into group analysis, exploratory association analysis,
and functional connectivity analysis. A detailed description of
statistical analyses is provided in the Supplemental Methods
and Materials.

Group analyses were performed using t tests for independ-
ent samples and analysis of covariance with DVR or VT as
dependent variables, group (or diagnosis of MDE) and rs6971
genotype as fixed factors, and age as covariate. Exploratory
association analyses were performed using Pearson partial
correlation, while controlling for age, EDSS scores, and
disease duration. The BDI items were classified into two
clusters, cognitive and somatic, based on the symptom
components most commonly identified in studies on the factor
structure of BDI-II (33).

For the functional connectivity analysis, a bilateral hippo-
campal ROI was used as the seed region. Hippocampal time-
series data were extracted from the functional data, and
contrasts modeled the positive and negative effects of the
hippocampal time-series regressor. For the analysis of corre-
lations of hippocampal functional connectivity in patients with
MS, hippocampal [18F]PBR111 DVR and BDI were the regres-
sors of interest in the group-level model, whereas nuisance
regressors included age, disease duration, and EDSS. All
statistical images from the group models were thresholded
at p , .05 (or z 5 2.3; cluster-corrected for multiple
comparisons).

RESULTS

Group Analysis

Patients with MS had a higher mean BDI score than healthy
control subjects (MS group, 15 6 8.63 [mean 6 SD]; healthy
control group, 1.41 6 2.75; t 5 6.9, p , .0001). Of 11 patients
with MS, 6 (54%) met criteria for current diagnosis of MDE; in
3 cases (27%), patients met criteria for a recent MDE (within
last 6 months) but did not have active symptoms at the time of
examination. None of the healthy control subjects had a
current or past MDE. The BDI was correlated with the EDSS
(Pearson r 5 .72; p 5 .013) for patients with MS. There was no
correlation between BDI and age or between BDI and duration
of disease.

A whole-brain analysis of the distribution [18F]PBR111
signal was reported previously (32). The [18F]PBR111 DVR
was higher in the hippocampus of patients with MS relative to
healthy control subjects (MS group, 1.083 6 0.04 [mean 6

SD]; healthy control group, 1.025 6 0.09; t 5 2.49, p 5 .018)
(Figure 1). The difference remained significant (F 5 5.73, p 5

.024) after correction for age and rs6971 genotype. The rs6971
genotype did not affect differences between groups and was
not associated with hippocampal [18F]PBR111 DVR. Age
correlated with hippocampal [18F]PBR111 DVR (F 5 4.39,
p 5 .046). No significant difference between patients with MS
l
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Figure 1. Comparison of [18F]PBR111 distribution volume ratio (DVR)
between groups in the regions of interest. The [18F]PBR111 DVR was higher
in patients with MS (multiple sclerosis) than healthy control subjects in the
hippocampus, but not in the thalamus. Each circle represents individual
subjects’ DVR values. The horizontal lines represent the group’s mean
and SD.
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Figure 2. Relationship between hippocampal [18F]PBR111 distribution
volume ratio (DVR) and depression (major depressive episode [MDE]
diagnosis and Beck Depression Inventory [BDI] scores) in patients with
multiple sclerosis. (A) Relationship between diagnosis of MDE and
[18F]PBR111 DVR in the hippocampus. Recent MDE diagnosis refers to
the occurrence of a MDE in the last 6 months that has resolved at the time
of scanning. (B) Partial regression plot illustrating the correlation between
[18F]PBR111 DVR in the hippocampus and BDI scores in patients with
multiple sclerosis (n 5 11) after correcting for age, duration of disease, and
Expanded Disability Status Scale scores. Values represent standardized
residuals of the dependent variable (BDI scores) and [18F]PBR111 DVR
when both variables are regressed on the rest of the independent variables
(age, duration of disease, and Expanded Disability Status Scale scores). The
BDI scores are represented on the ordinate, and [18F]PBR111 DVR is
represented on the abscissa.
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and healthy control subjects was found in the thalamus (F 5

.66, p 5 .42) (Figure 1). The [18F]PBR111 VT in the cortical gray
matter (which was used as a pseudo-reference region for DVR
contrasts) also was similar between patients with MS and
healthy control subjects, even after correction for age and
rs6971 genotype (F 5 .01, p 5 .98).

Exploratory Association Analyses

A current diagnosis of MDE was associated with a higher
hippocampal [18F]PBR111 DVR among patients with MS,
relative to patients with no history or with recent but resolved
MDE (current MDE, 1.11 6 .018; no history and resolved MDE
[pooled together], 1.06 6 .047; t 5 2.48, p 5 .044) (Figure 2A).
The hippocampal [18F]PBR111 DVR values of the three
patients with MS and no history of MDE diagnosis (range,
1.03–1.06) were within the 95% confidence interval for the
mean of [18F]PBR111 DVR of healthy control subjects (95%
confidence interval 5 .98–1.07).

There was a positive correlation between [18F]PBR111 DVR
in the hippocampus and BDI (Pearson r 5 .63, p 5 .037) in
patients with MS. The strength of the independent relationship
was stronger when controlled for age, disease duration, and
EDSS scores (Pearson partial correlation r 5 .863, p 5 .006)
(Figure 2B). We did not find a similar significant association
between [18F]PBR111 VT and BDI (Pearson partial correlation
r 5 2.119, p 5 .778). Correlations between individual BDI
items or symptoms clusters and hippocampal [18F]PBR111 are
displayed in Supplemental Table S4. No correlation was found
between [18F]PBR111 DVR in the hippocampus and EDSS
scores, even after controlling for age and disease duration.
Similarly, no correlation was observed between [18F]PBR111
DVR in the hippocampus and Fatigue Severity Scale scores,
and the correlation between hippocampal [18F]PBR111 DVR
and BDI remained significant with additional correction for the
Fatigue Severity Scale.

We did not find a significant correlation between BDI and
[18F]PBR111 DVR in the thalamus (Pearson r 5 .23, p 5 .58) or
Biolog
with the neocortical VT (Pearson r 5 2.23, p 5 .57) after
controlling for age, disease duration, and EDSS. For patients
with MS, a linear regression model with age, disease duration,
and EDSS explained 48% of the BDI variance, whereas
inclusion of hippocampal [18F]PBR111 DVR increased
the BDI variance explained by the model to 82%. The
[18F]PBR111 DVR alone explained 33% of the BDI variance.
Supplemental Table S5 illustrates the strength of association
of each individual regressor to BDI in patients with MS.
ical Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journal 65
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Hippocampal Resting-State Functional Connectivity

Whole-brain statistical contrasts of hippocampal functional
connectivity did not reveal significant group differences
between patients with MS and healthy control subjects.
Patterns of hippocampal functional connectivity in patients
with MS and healthy control subjects are illustrated in Figure 3.

Hippocampal [18F]PBR111 DVR in patients with MS was
positively correlated with the strength of functional connectiv-
ity between hippocampus and regions in the prefrontal
(cingulate cortex and inferior frontal, orbital, and precentral
gyri), parietal (posterior cingulate, precuneus, and angular and
postcentral gyri), and occipital cortices (p , .05 or z 5 2.3;
cluster-corrected for multiple comparisons) (Figure 4A). Neg-
ative correlations were found with functional connectivity to
the insula, temporal lobe, and basal ganglia. In healthy control
subjects, the pattern of correlations of hippocampal
[18F]PBR111 DVR to functional connectivity of the hippo-
campus was different. Small clusters of positive correlations
were observable in the operculum cortex, whereas negative
correlations could be seen in the anterior cingulate gyrus
(Supplemental Figure S1).

The BDI scores in patients with MS were positively corre-
lated with functional connectivity between hippocampus and
the medial prefrontal cortex; cingulate cortex; subgenual,
orbital, parahippocampal, and lingual gyri; posterior cingulate;
precuneus; and occipital cortex (p , .05 or z 5 2.3; cluster-
corrected for multiple comparisons) (Figure 4B). Negative
correlations were observed in the frontal pole, frontal
orbital cortex, putamen, insula, middle temporal gyrus, and
lingual gyrus.

Correlations of hippocampal functional connectivities with
[18F]PBR111 DVR and with BDI scores showed moderate
overlap (Jaccard index 5 .34) (Figure 4C). Brain volumes with
positive correlations for both were localized in the frontal lobe
(subgenual and anterior cingulate cortex and superior and
middle frontal gyri), parietal lobe (precuneus and posterior
cingulate), and occipital lobe. Brain volumes with negative
correlations included insula, frontal lobe areas, and putamen.
In a post hoc analysis, we characterized correlations of
hippocampal functional connectivity to a prefrontal volume
that included the subgenual cingulate and orbital gyrus
[selected on the basis of their reported functional association
with symptoms of depression in earlier work (34)] with both the
radioligand uptake and the BDI (Figure 5A). We found a strong
correlation for both measures (Pearson partial correlations r 5
.63 for [18F]PBR111 DVR and r 5 .62 for BDI) (Figure 5B, C).

DISCUSSION

We observed a higher [18F]PBR111 binding in the hippo-
campus of patients with MS relative to healthy control sub-
jects, consistent with previous data identifying a substantial
inflammatory disease burden in the hippocampus of patients
with MS (11,12). In our exploratory association analyses, we
found that hippocampal [18F]PBR111 binding in patients with
MS was highly correlated to BDI scores and was highest in
patients meeting the criteria for current MDE. A significant
association between depressive symptoms and [18F]PBR111
binding was specific for the hippocampus and not found for
other brain regions examined (e.g., the thalamus or in the
66 Biological Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journa
neocortex generally). Previous observations implicated the
hippocampus specifically as a candidate region for the action
of microglia-produced proinflammatory cytokines in mediating
depressive symptoms. The hippocampus has the highest
interleukin-1 receptor density (10), and lipopolysaccharide-
induced depressive-like behavior is associated with abnormal
cellular activity in the hippocampus (35). Depressive symp-
toms have been previously associated with structural
and functional hippocampal changes in patients with MS
(14–16,36,37).

A role for neuroinflammation in the pathogenesis of depres-
sion has been postulated more generally (38,39). Recent TSPO
PET imaging studies provided accumulating in vivo evidence
to support the association between brain neuroinflammation
and depression. Findings include an increased hippocampal
[18F]PBR111 binding in patients with MS and MDE (present
study), globally increased [18F]FEPPA VT in patients with
depression during a MDE (40), and an increased hippocampal
[11C](R)-PK11195 binding in patients with euthymic bipolar
disorder (41). In contrast, Hannestad et al. (42) did not find
differences in [11C]PBR28 uptake between patients with MDE
and healthy control subjects. However, differences in the
study populations could account for discrepant findings, as
the study by Hannestad et al. included only subjects with low
markers of peripheral inflammation, and some of their patients
with MDE presented with lower depression indices.

Findings have described different anatomic distribution for
observed increases in TSPO binding. Although our study and
that of Haarman et al. (41) found the increases to be restricted
to the hippocampus, the study by Setiawan et al. (40) in
patients with MDE (without other comorbid disease) described
an association with global increases in TSPO binding. This
finding could suggest differences in neuroinflammatory proc-
esses underlying MDE in individuals with and without MS;
however, the study by Setiawan et al. does not rule out a
particular impact of hippocampal inflammation, although it
may not have been able to be identified specifically given the
strong global correlations that seemed to be present in brains
of subjects in the study. However, both study populations
were small. This question needs further study.

We explored the mechanistic basis for an association
between hippocampal neuroinflammation and depressive
symptoms in patients with MS. It has been suggested that
intact functional brain connectivity is important to maintain an
optimal affective function and that abnormal connectivities
underlie aspects of emotional dysregulation observed in
depression (43). Therefore, we evaluated the relationship of
BDI and [18F]PBR111 DVR variation with resting-state func-
tional connectivity of the hippocampus. The hippocampus is
anatomically connected to the parahippocampal gyrus, amyg-
dala, prefrontal cortex, thalamus, and basal ganglia (44,45).
The pattern of functional connectivity that we defined is
consistent with the anatomic connectivity as well as with
previous studies of functional connectivity of the hippocampus
(46–49). We did not observe significant differences in func-
tional connectivity between healthy subjects and patients with
MS as previously reported (50), but our study was not
optimally powered to detect this, particularly given the poten-
tial interactions of functional connectivity with treatment
(51,52).
l
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Figure 3. Patterns of significant
positive functional connectivity with
the hippocampal seed in healthy con-
trol subjects and patients with multi-
ple sclerosis (MS). The threshold was
set at z 5 4, p , .05 (cluster-cor-
rected for multiple comparisons). The
right side of the brain is to the left in
the figure (images in radiologic orien-
tation). The regions showing signifi-
cant positive functional connectivity
with the hippocampal seed were
located in the limbic system (parahip-
pocampal gyrus, amygdala, and
insula), basal ganglia (putamen and
caudate), thalamus, temporal lobe
(superior, middle, and inferior tem-
poral gyri), medial and inferior pre-
frontal cortex (anterior cingulate
cortex, subgenual cingulate, inferior
frontal gyrus, and orbital gyrus), par-
ietal lobe (posterior cingulate, precu-
neus, angular gyrus, and postcentral
gyrus), occipital lobe, and cerebellum.
A similar pattern of functional connec-
tivity was found in the patients with
multiple sclerosis.
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The neuroanatomic conjunction of correlations of hippo-
campal functional connectivity with BDI or [18F]PBR111 DVR
was striking. We interpret this as evidence in support of the
hypothesis that microglial activation in patients with MS is a
Biolog
contributing cause of depression, the symptoms of which are
associated with altered hippocampal functional connectivity.
Pathologic and preclinical evidence supports the hypothesis
that neuroinflammation alters hippocampal function and may
ical Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journal 67
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Figure 4. Whole-brain map of correlations of hippocampal functional connectivity to hippocampal [18F]PBR111 binding and depressive symptoms in
patients with multiple sclerosis. (A) Loci with significant correlation between [18F]PBR111 distribution volume ratio and strength of functional connectivity to
the hippocampus. (B) Loci with significant correlation between Beck Depression Inventory scores and strength of functional connectivity to the hippocampus.
The threshold was set at z 5 2.3, p 5 .05 (cluster-corrected for multiple comparisons). Loci with positive correlations are displayed in red-to-yellow, and loci
with negative correlations are displayed in blue-to-cyan. (C) Conjunction map illustrating loci with significant correlations between strength of hippocampal
functional connectivity and both [18F]PBR111 distribution volume ratio and Beck Depression Inventory scores. Loci with positive correlations are displayed in
orange, and loci with negative correlations are displayed in green.
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be a proximate cause of depression. Human postmortem
studies in the brain of patients with MS demonstrated that
demyelination in the hippocampus is associated with synaptic
alterations (53) and that microglia mediate the synaptic
degradation via activation of the complement system (54). In
EAE rodents, hippocampal neuroinflammation alters adult neu-
rogenesis (17) and causes alterations of gamma-aminobutyric
acidergic transmission (55). This effect is likely to be mediated
by activated microglia, as incubation of hippocampal slices
from healthy mice with activated microglia causes similar
alterations of gamma-aminobutyric acidergic transmission
(55). This observation may be relevant for depression, consid-
ering the similarities of the EAE-associated behavioral syn-
drome to depressive conditions (56). However, the role of
68 Biological Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journa
hippocampal neurogenesis in the pathophysiology of depres-
sion has not been well characterized yet; extrapolation of
findings from animal studies must be done with caution (18,57).

Theoretical models of depression support the anatomic
distribution of differences in hippocampal functional connec-
tivity that we found associated with BDI. Neuroimaging,
neuropathologic, and lesion analysis data all implicate the
hippocampus in an extended anatomic network formed by the
neural projections of the subgenual cingulate and other areas
of the medial orbitofrontal cortex, together with other regions
such as amygdala, posterior cingulate cortex, ventral striatum,
and thalamus. Impaired functions of key nodes within this
network could dysregulate emotional expression and give rise
to the clinical signs and symptoms of depression (58,59).
l
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Figure 5. Relationship between
hippocampal functional connectivity
(FC), hippocampal [18F]PBR111 distri-
bution volume ratio (DVR), and Beck
Depression Inventory (BDI) scores. (A)
An area of the prefrontal cortex that
included the subgenual cingulate and
orbital gyrus (Brodmann areas 11, 12,
25) was chosen from the conjunction
map in Figure 4C for illustration pur-
poses. (B, C) Scatterplots illustrate
the high correlation of the three vari-
ables, hippocampal FC, BDI scores,
and hippocampal [18F]PBR111 DVR,
to each other. Values represent stan-
dardized residuals of the dependent
variables (BDI scores and [18F]PBR111
DVR, respectively) and standardized
residuals of FC of the hippocampus
when all these variables are regressed
on the rest of the independent vari-
ables (age, duration of disease, and
Expanded Disability Status Scale
scores).
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Our study provides important new data but has some
limitations. The cross-sectional nature of the study prevents
us from making confident inferences of causality. For example,
it is impossible to establish whether hippocampal microglia
activation causes depressive symptoms or vice versa. We
cannot exclude the latter possibility; for example, exposure of
rodents to chronic stress and social isolation has been shown
to cause proliferation, activation, and priming of hippocampal
microglia (60). It is possible that patients with MS, who are in
an immunologically “primed” state (61), may be more likely to
manifest such a response. However, the apparent anatomic
specificity of the microglial response associated with BDI is
striking. This important question requires further longitudinal
study controlling for effects of disease-modifying treatment
and antidepressants.

The use of a normalized measure of [18F]PBR111 binding,
the DVR, reduces the variability in modeling the brain signal
that arises from imprecision in measurement of blood con-
centrations and hence improves the signal-to-noise ratio. By
doing so, the DVR expresses only a relative signal and is
appropriate only when testing for differences in the regional
distribution of activated microglia. The elimination of global
differences in the [18F]PBR111 specific signal also reduces the
between-subject variability associated with the rs6971 poly-
morphism of the TSPO gene (32). However, the use of a region
that is recognized to bind TSPO radiotracers and in which MS-
associated increases in binding are observed must be taken
into account when assessing the magnitude and sign of the
Biolog
DVR for a ROI. We cannot exclude that the observed between-
groups difference could have been driven by a lower
[18F]PBR111 binding in the cortical gray matter (the pseudo-
reference region) in patients with MS, although this direction of
effects (decreased microglial activation is associated with
depression) would be counter to expectations based on other
observations (3,39,40). Moreover, cortical gray matter
[18F]PBR111 VT as well as [18F]PBR111 VT and DVR in all
ROIs other than the hippocampus were similar across groups.

A fixed-effects model was used for correlation analysis with
functional connectivity measures because of the small sample
size. This method is appropriate for examination of effects in
samples of particular patient groups, as used here, but it limits
the generalization of findings to the whole population, and
therefore the extrapolation of our findings to the wider MS
population must be made cautiously (62). Our small sample
size precluded exploration of the impacts of potential con-
founding factors such as sex, use of concomitant medications,
global and regional brain atrophy, localization of lesions, and
alteration in structural connectivity in patients. We observed
that overall greater T2 fluid attenuated inversion recovery
activity was related to decreased severity of depression.
Despite this observation, BDI correlated positively with hippo-
campal DVR, suggesting a specific association of depression
with PET measures of neuroinflammation. Our interest was
focused on hippocampal functional connectivity because of
the prominence of the microglial activation signal in this
region, but it cannot be excluded that hippocampal
ical Psychiatry July 1, 2016; 80:62–72 www.sobp.org/journal 69
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neuroinflammation is associated with alterations in functional
connectivity in regions other than the hippocampus.

The potential role of confounding factors must be taken into
account. Clinical factors such as fatigue and cognitive deficits
need to be considered; however, depression in patients with
MS is a distinct symptom and is not explained by either fatigue
or cognitive impairment. Although depressive symptoms were
correlated to the level of disability measured with the EDSS,
the relationship between hippocampal neuroinflammation and
the BDI appeared to be independent of the EDSS; we did not
observe a relationship between hippocampal [18F]PBR111
DVR and EDSS. We found that hippocampal neuroinflamma-
tion was correlated preferably to the cognitive, rather than the
somatic, components of the BDI.

Most of the patients with MS studied were receiving
disease-modifying treatment, which might have an effect,
even if indirect, to reduce microglial activation and the range
of variation in [18F]PBR111 DVR seen in our sample (63). The
interaction between disease-modifying therapy, neuroinflam-
mation, and depression is complex, as some disease-
modifying therapies, such as interferon-β, might be associated
with depression (64). Additionally, most of the patients with
prominent depressive symptoms were on antidepressant
treatments (five of six patients with current MDE) that could
have further confounded the relationship between depressive
symptoms and hippocampal neuroinflammation, by influenc-
ing the expression of depressive symptoms, the activation of
microglia, or both (65). A longitudinal design will be needed in
future work to define independent contributions of these
factors.

In conclusion, our findings suggest that mediators of innate
immunity in the hippocampus play a significant role in the
pathophysiology of the affective dysregulation associated with
MS. Our results provide novel insight into the relationship
between hippocampal pathology and depressive symptoms in
MS and, in conjunction with other observations cited in this
article, support a pathogenic role of chronic neuroinflamma-
tion in the genesis of depression in MS. Control of neuro-
inflammatory disease processes may be a rational treatment
for depression in patients with MS. This paradigm also
suggests a possible role for immune-modulating treatment
for major depressive disorder in other contexts.
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