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Abstract: The fetal origins of adult disease (FOAD) hypothesis holds that events during early
development have a profound impact on one’s risk for the development of future adult disease.
Studies from humans and animals have demonstrated that many diseases can begin in childhood
and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease
conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy,
and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have
been increasingly appreciated due to their wide variety of biological actions. PPARs are members of
the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ,
highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation,
implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial
role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in
early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which
can affect development and health throughout the life course, and even across generations. In this
review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role
of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.

Keywords: fetal origins of adult disease; PPARs; early development; metabolic; epigenetic

1. Introduction

In 1989, David Barker and his colleagues performed an epidemiological survey. They
found that both newborn deaths and the increased risk of death from stroke and coronary
heart disease in adults were related to low birth weight [1]. Later studies have confirmed
that low birth weight is linked to a variety of chronic disorders, such as hypertension [2],
type 2 diabetes (T2DM) [3], autoimmune thyroid disease [4], and chronic bronchitis [5].
This led to the fetal origin of adult diseases (FOAD) hypothesis that the roots of adult
metabolic and cardiovascular disorders lay in the effects of malnutrition in fetal life and
early infancy [6].

The FOAD hypothesis builds on the “developmental plasticity” that the organisms
exhibit plastic or sensitivity in response to environmental influence during critical devel-
opmental periods to improve the match between phenotype and environment [7]. For
example, a fetus will undergo the process of remodeling and altering the structure or
function of various organs, which is critical for survival as well as neurodevelopment when
confronted with the adversity of malnutrition [8]. However, it is important to recognize
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that a person’s response to environmental stimulation or pathological conditions can be
limited, and such an evolutionary advantage of “plasticity” is lost over time [9]. This
phenomenon called “programming” shows how early-life stimuli may lead to lifelong and
irreversible changes [10]. The FOAD hypothesis attracted a lot of attention in the field of
developmental plasticity.

With the expansion and deep-going of research, the recognition that “programming”
occurs not only during the fetal period but also during the whole process of life devel-
opment, including the early embryonic period, infancy, and early childhood [11]. FOAD
hypothesis has been expanded and recognized as the Developmental Origins of Health
and Diseases (DOHaD). The DOHaD theory states that the interplay between genes and
environments (nutrition, stress, or environmental chemicals) from fertilization to the neona-
tal stage affects the disease risks related to lifestyle in later periods of life [12]. Research
regarding the potential mechanisms of adverse stimuli in utero or early stage of life in-
creases the risk of diseases later in life has been a focus of the various current animal
and clinical studies [13]. One of the most exciting emerging themes in the DOHaD field
is epigenetics [14]. Epigenetic mechanisms typically include DNA methylation, histone
modifications, and non-coding RNAs (ncRNAs) [11]. These epigenetic modifications may
have long-term consequences for gene expression and may be involved in the occurrence
and/or progression of various diseases in postnatal life.

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor
superfamily and perform a broad range of physiological functions, including cellular
development, differentiation, energy homeostasis, and metabolism [15]. Numerous studies
have shed light on the involvement of the PPARs in multiple system impairments or
protective effects against impairment, such as the nervous system, cardiovascular system,
and metabolism system [16].

To date, three members of PPARs (PPARα, PPARβ/δ, and PPARγ) have been identi-
fied [17]. These nuclear receptors play important roles in cell differentiation, development,
and reproduction [18]. All of the PPAR isoforms are identified in the rat ovary [19]. PPARα
and PPARβ/δ are present primarily in the theca and stroma. PPARγ is localized mainly
in the granulosa cells surrounding and supporting the oocyte meiotic maturation [20].
PPARγ expression increases from the primary/secondary follicle stage to the large follicle
stage [21]. However, one study found that its expression level remains consistent during
follicle development [20]. The absence of PPARα has no discernible impact on the fertil-
ity of mice, whereas the deletion of PPARγ and PPARβ/δ does [22]. Chaffin et al. held
the opposite opinion; activation of PPARγ appears to play an inhibitory role in follicular
growth and differentiation, according to their research [23]. The three PPAR isoforms are
expressed in both somatic and germ cells in the testis [24]. Although the action of PPARs in
testis development is still unclear [25], several published studies suggest that male fertility
may be influenced by PPARs-regulated lipid metabolism, particularly the β-oxidation of
fatty acids [25].

The PPARs isotypes are expressed in the placenta and play an important role in
modulating embryo implantation and placental development [26]. Mutation of PPARβ/δ
drastically influences placenta development and even embryonic death [27]. PPARγ is
necessary for the formation of the labyrinthine layer of the placenta. Mice with deletion of
the PPARγ gene exhibit defective placental vascular discourse and embryonic lethality [28].
During fetal development, the interaction of PPARα and its ligands in the liver may be
important for the nutrient supply that the fetus may encounter after birth [29]. In addition,
there is strong evidence that PPARβ/δ and PPARγ regulate the expression of genes involved
in sarcoplasmic and adipose tissue production [30]. Remarkably, PPARs play a crucial role
in metabolism during early life, and alterations in PPAR metabolic pathways could be one
candidate mechanism contributing to the FOAD [31]. The recent work in developmental
epigenetics has significantly expanded our understanding of this interaction. Exposure
to adverse events in early life can affect the methylation pattern of PPARs in multiple
organs, such as the brain, lungs, heart, blood vessels, liver, and skeletal muscles. Various
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chronic adult diseases, especially diabetes, cardiovascular disease, and chronic lung disease,
show a clear association with PPARs (Figure 1). This review summarizes the contributions
of PPARs to the potential mechanisms involved in the FOAD in order to provide a new
theoretical direction for the early prevention and even treatment of fetal origin diseases.
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in adulthood.

2. Early Life Adverse Exposure and Future Disease Risk

Epidemiological studies in humans have demonstrated an association between the
quality of the early life environment and future disease risk [32]. Animal studies provided
insight into the potential mechanisms for these observations by highlighting the environ-
mentally induced changes to epigenetic marks during development [33]. The FOAD theory
goes beyond nutrition assumptions and links fetal development to many other exposure
factors, such as obesity [34], prenatal maternal stress [35], and environment [36]. Notably,
a growing body of research indicates that the paternal environment and dietary habits
influence disease onset in offspring [37].

2.1. Nutrition

The investigations have shown a strong correlation between maternal food and nu-
tritional status and fetal development and child health [38]. Maternal diet has often been
shown to affect subsequent phenotypic [39]. Many diseases such as type 2 diabetes [40],
cardiovascular disease [41], and certain cancers [42] are related to low birth weight. Early
epidemiological research used data from several well-documented famines and histori-
cal cohorts [43]. The most well-known is the Dutch famine cohort. Studies on the Dutch
Hunger Winter have provided convincing evidence. Prenatal exposure to famine, especially
in the third trimester, has been reported to be associated with decreased glucose tolerance
in adults [44]. Even if the effect on fetal growth is minimal, malnutrition in utero may
result in long-term alterations in insulin-glucose metabolism [44]. Additionally, individuals
whose mothers were exposed to the Dutch Famine before or during gestation were almost
three times more likely to develop hypertension in adulthood than unexposed adults [43].
A study of 290 men born in East Hertfordshire during 1920–1930 showed that the risk of
coronary heart disease is increased in children with low birth weight [45]. Apart from
the above, the studies of the 1959–1961 mass famine in China and the 1944–1945 Dutch
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Hunger Winter have found a link between poor nutrition early in life and mental health
and cognitive development [46].

Early research focused on evidence linking maternal protein restriction or malnutrition
to the long-term health of offspring. Nowadays, a fat-rich diet is prevalent around the
world, and 50% of women of childbearing age are overweight or obese in the US [47]. The
impact of high-energy-dense, high-glucose, and high-salt foods during pregnancy on the
phenotype of the offspring is being studied using animal models. Offspring whose mothers
received these various diets showed persistent metabolic changes that were comparable to
human cardio-metabolic disorders such as hypertension, insulin resistance, and obesity [48].

Obesity is also highly prevalent among adult men. The prevalence of overweight
or obesity (BMI ≥ 25) is 72.1% in men and 61.2% in women, according to recent national
statistics on the US population [49]. In 2000, Figueroa et al. published the first research
revealing the parental influence on child health in humans [50]. They found that fathers’
total and percentage body fat were predictors of changes in body fat of premenarcheal
girls during a 2.7-y period [50]. In 2010, Ng et al. reported that a high-fat diet in male rats
resulted in β-cell dysfunction in F1 female offspring [51].

2.2. Environment

In modern society, humans are exposed to a wide range of environmental chemicals,
such as endocrine disruptors and other toxins from lifestyle habits [52]. Numerous epidemi-
ological studies have shown that prenatal exposure to multiple environmental pollutants
has an impact on fetal development [53]. There have been many investigations that found
a connection between four major environmental pollutants (perfluorinated compounds,
polyhalogenated aromatic hydrocarbons, heavy metals, and air pollutants) and impaired fe-
tal development and lower birth weight in humans [54]. A study of 1277 children from the
European HELIX (Human Early Life Exposure Group) cohort reveals that BP in children
may be influenced by early exposure to some substances, as well as the built environ-
ment and climatic conditions [55]. Miguel et al. summarize the influence of the early
environment on the structural and functional development of children’s brains in their
review [56]. For instance, most drugs of abuse (e.g., ecstasy, opiates) can readily cross the
placenta and impact fetal brain development [57]. The genes associated with brain growth,
myelination, and neuronal migration were down-regulated in the brain of a fetus exposed
to tobacco in utero [58]. Several large population-based cohort studies have shown that
prenatal exposure to maternal smoking during pregnancy or smoking cessation in early
pregnancy was significantly associated with childhood ≈ [59]. Prenatal ethanol exposure
(PE) impairs dopaminergic (DA) neuron function in the midbrain [60]. Air pollution can
affect the anatomy and physiology of the umbilical cord and placenta [61]. Particles induce
antiangiogenesis, resulting in the thinner and less voluminous umbilical cord in mouse
models, which affects oxygen transport [62] and replicates in humans [63]. A meta-analysis
of epidemiological studies suggests that exposure to air pollution increases the risk of
pregnancy-induced hypertensive disorders [64].

A cross-sectional study of 67 men in North Carolina indicated that exposure to envi-
ronmental chemicals/factors (organophosphates) could alter DNA methylation in human
sperm cells, thereby affecting the health of offspring [65]. It has also been shown that
human exposure to bisphenol A affects the global methylation of sperm DNA [66]. Envi-
ronmental toxins also include lifestyle habits such as smoking and alcohol intake. Chronic
consumption of smoking and alcohol was associated with epigenetic abnormalities and
altered miRNA expression in spermatozoa [67].

2.3. Stress

In addition to physical status, the effects of altered maternal mental health and psy-
chological stress during pregnancy on the offspring have been extensively documented
in the literature. Maternal anxiety, depression, and stress disorders are common in preg-
nant women. A wide range of acute and chronic maternal stress exposures, such as daily
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hassles [68], life event stress [69], and unusual and extremely stressful events [70], have
a negative impact on child development [71]. Low birth weight in infants is linked to
chronic maternal stress, racism exposure, and depressive symptoms during pregnancy [72].
Accumulating research indicates that prenatal stress and depression during pregnancy are
associated with cognitive and academic performance difficulties [73]. Maternal anxiety
during pregnancy is associated with subsequent infant development, increased risk of
behavioral/emotional disorders, and depression later in children [74]. According to elec-
troencephalography and MRI research results, infants whose mothers had prenatal anxiety
may have less volume and/or thickness in their frontal, temporal, and limbic regions and
more frontal activity [75]. Natural changes in maternal care during the first day of life
are associated with long-term changes in stress reactivity and hippocampal morphology
and function in rodent studies [76]. These effects are mediated by epigenetic changes in
the promoter of the progeny hippocampal glucocorticoid receptor gene [77]. In humans,
childhood abuse was similarly associated with increased DNA methylation and decreased
hippocampal glucocorticoid receptor expression [78]. Prenatal stress exposure has been
linked to neurodevelopment and the risk of neuropsychiatric disorders in offspring [79].
Retrospective epidemiological studies have provided compelling evidence linking lifetime
stress exposure in men with disease risk in offspring [80]. The rodent studies have demon-
strated the susceptibility of germ cells to stressful environments throughout the paternal
lifetime [81].

3. Peroxisome Proliferator-Activated Receptors

Peroxisome proliferator-activated receptors (PPARs) belong to nuclear hormone re-
ceptors (NRs) and ligand-activated transcription factors that regulate genes crucial for
cell differentiation and a variety of metabolic processes such as glucose and lipid home-
ostasis. The PPAR family consists of three different isoforms: PPARα, PPARβ/δ, and
PPARγ. These three isotypes have different tissue distribution, biological activity, and
affinity for ligands [82]. The essential roles of PPARs in regulating mitochondrial function
and energy metabolism have been clearly established. Notably, all three PPAR subtypes
have overlapping and also distinct functions in regulating metabolic processes. Six func-
tional domains (from A to F) make up the PPARs [83]. A C structural domain is present
at the N-terminus of PPAR, also known as the DNA binding domain (DBD). The DNA
sequence in the promoter region of genes, called the peroxisome proliferator response
element (PPRE), is recognized by DBD. On the other hand, a ligand-binding domain (LBD)
in the C-terminus is responsible for the specificity of the ligand and dimerization of the
receptor with the retinoid X receptors (RXR) [84]. PPARs translocate to the nucleus after
interacting with specific ligands (synthetic or non-synthetic) [85]. PPARs interact with RXR,
peroxisome proliferator-activated receptor gamma-coactivators (PGC), steroid receptor
coactivators, and CREB binding protein (CBP/p300) after translocating to the nucleus, then
bind to the sequences of PPRE, which subsequently initiate the transcription of target genes
involved in different physiological processes [86]. The target genes are involved primarily
in the metabolism of fat, as well as in cellular proliferation and differentiation, protein and
glucose, inflammation, and tumorigenesis [86]. Their aberrant expression is related to a
variety of disorders, such as neurodegenerative disorders, cardiovascular disease, obesity,
type 2 diabetes, pancreatic cancer, and so on [16].

Given their central roles in regulating metabolic flexibility, it is essential to understand
the manner in which PPARs regulate gene expression. The function of PPARs is principally
modulated by ligand binding, which induces structural changes, further recruiting co-
activator or co-repressor complexes, which stimulate or inhibit their functions [87]. In
addition to ligand binding, post-translational modifications of PPARs are emerging as one
such way PPARs are regulated, including phosphorylation, ubiquitination, SUMOylation,
acetylation, and O-GlcNAcylation, which contribute to fine-tuning of the transcriptional
activities [88]. Recent studies have suggested that post-translational modifications are
observed in all three PPAR isoforms [87,88]. A detailed view of the functional regulation
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of PPARs through post-translational modifications can be found in a recent review by
Xu et al. [87].

3.1. PPARα

PPARα is known to be important for regulating the transcriptional expression of key
enzymes that are involved in mitochondrial dynamics and metabolic functions, including
glucose metabolism, fatty acids β-oxidation, and fatty acid transport [89]. Moreover, PPARα
receptors are found largely in metabolically active tissues, such as brown adipose, skeletal
muscle, heart, liver, and intestinal mucosa tissues. Natural ligands for the PPAR receptor
include saturated, monounsaturated, and polyunsaturated fatty acids and their metabolites,
such as leukotrienes B4, oxidized phospholipids, lipolytic lipoprotein products, etc. Nature
ligands bind to PPARα and activate PPAR-responsive genes, increasing hepatic intracel-
lular fatty acid absorption [90]. PPARα also plays an important role in extracellular lipid
homeostasis by modulating the transcriptional regulation of major very-low-density and
high-density apolipoproteins [91]. Furthermore, PPARα seems to modulate the bioactivity
of leptin in the liver and adipose tissue [92].

The transcriptional activity of PPARα is enhanced by binding to the ligands, after
which transcriptional coactivators contribute to the activation of target genes [93]. In
addition, PPARα trans-activity is regulated by post-translational modifications such as
phosphorylation, SUMOylation, and ubiquitination. As a phosphoprotein, PPARα is phos-
phorylated exclusively on serine residues in vivo [94]. It was reported that treatment with
insulin or ciprofibrate (a PPARα agonist) increased the phosphorylation of PPARα [95,96].
SUMOylation is a reversible post-translational modification that has been established as
one of the key regulatory protein modifications in eukaryotic cells. Two lysine residues
of PPARα, K185, and K358, have been reported to be modified by SUMOylation [97,98].
Moreover, several studies have shown that the ubiquitin–proteasome system is involved in
the regulation of PPARα activity. These studies suggest the ubiquitination of PPARα in a
ligand-dependent manner, and that effect of ubiquitination on PPARα activity depends on
the systems studied [87,88].

3.2. PPARβ/δ

PPARβ/δ is generally expressed in nearly all tissues, such as the brain, skin, liver,
skeletal muscle, heart, and various types of cancer [99]. Polyunsaturated fatty acids (arachi-
donic and linoleic acids) and their metabolites, such as prostacyclin PGI2, are suggested
as natural ligands. Similar to the other PPAR family members, it mainly participates in
the oxidation of fatty acids and affects lipid metabolism, both reducing fat and hence
preventing the development of obesity and controlling blood sugar and cholesterol levels
in the heart and skeletal muscle [100]. Overall, PPARβ/δ has significant functional overlap
with PPARα in most tissues. For example, PPARβ/δ also stimulates fatty acid oxidation
in muscle and heart [101]. However, PPARβ/δ and PPARα carry out different roles in
regulating hepatic energy metabolism. Unlike PPARα, PPARβ/δ regulates gene expression
associated with lipogenesis and glucose utilization rather than inducing fatty acid oxida-
tion [102]. Additionally, several investigations have shown a large expression of PPARβ/δ
in the central nervous system (CNS) [103]. PPARβ/δ may affect the differentiation of neural
and glial cells and alter cholesterol metabolism in the brain. It is well known that PPARs
regulate inflammatory processes associated with lipid signaling pathways [104]. Inhibiting
inflammatory processes in the CNS may reduce brain damage and enhance motor and
cognitive outcomes [105]. Comparatively, PPARβ/δ is the least reported PPAR family
member in terms of a post-translational modification. To date, we are aware of only one
previous study showing that SUMOization of PPARβ/δ at K104 is removed by SENP2 and
promotes FAO gene expression in muscle [106].



Cells 2022, 11, 3474 7 of 25

3.3. PPARγ

PPARγ is widely expressed in brown and white adipose tissue, spleen, and large
intestine. PPARγ has two isoforms in mice and four different isoforms in humans [107].
Unsaturated fatty acids and their metabolites are the primary natural modulators of PPARγ.
Activated PPARγ by these natural ligands regulates adipogenesis and fat distribution, the
levels of adipokines such as adiponectin, which involve insulin sensitivity and lipid and
glucose metabolism [108]. PPARγ are ligand-inducible transcription factors involved in
regulating the expression of genes, including glucose sensitivity (IRS-1, IRS-2, GLUT-4, and
PI3K), fatty acid uptake and mobilization (FAT/CD36, FABPs, and LPL) and triglyceride
synthesis (ACSL, GK, and PEPCK) [102]. In addition, PPARγ also induces the expression
of mitochondrial proteins, such as CPT-1 and UCPs, which play an important role in
the regulation of mitochondrial metabolism. PPARγ is associated with the pathology of
many diseases, such as obesity, atherosclerosis, diabetes, and cancer. PPARγ agonists,
including troglitazone, rosiglitazone, ciglitazone, and pioglitazone, have been used in
the treatment of hyperlipidemia and hyperglycemia [109]. The role of PPARγ in cancer
initiation/progression is contradictory. Numerous studies show that PPARγ has a tumor-
promoting effect. Conversely, some literature has reported that PPARγ plays a key role
in tumorigenesis as a tumor suppressor. PPARγ activation by many agonists has been
demonstrated to have antiproliferative and proapoptotic actions in prostate, thyroid, and
lung cancers [110].

Thiazolidinediones, such as rosiglitazone, pioglitazone, and lobeglitazone, are PPARγ
agonists that modulate the transcriptional activity of PPARγ. Like PPARα, PPARγ ac-
tivity is also regulated by post-translational modifications. PPARγ is now known to be
phosphorylated upon stimulation of the MAPK activation pathway [87]. A variety of
stimuli (growth factors, platelet-derived growth factors, transforming growth factor beta,
insulin, and prostaglandin F2 alpha, etc.) can activate PPARγ phosphorylation via spe-
cific activation of MAPKs [87]. Moreover, PPARγ is regulated by SUMO1 and SUMO2
sumoylation. The targeted lysine residue was identified as K107, K33, K64, K68, and K77,
respectively [111,112]. In addition to this, other post-translational modifications of PPARγ,
such as acetylation, ubiquitination, and O-GlcNAcylation, have also been reviewed by
Xu et al. [87].

4. Effects of PPARs in the Placenta and the Fetus

During pregnancy, the placental metabolism can adapt to the environment through-
out pregnancy to adapt to the maternal nutritional status and meet the demands of the
fetus [31]. All three PPAR isoforms are expressed in the placenta [26,113]. The PPARs
promote placental developmental plasticity by regulating lipid, hormone, and glucose
metabolic pathways, including lipidogenesis, steroidogenesis, glucose transporters, and
placental signaling pathways [114]. Although the role of each PPAR in placental function
has not been fully determined, unique and common functions between these isoforms
have been observed. Among the PPAR-isoforms, PPARγ appears to be a major regulator
of the mammalian placenta [115]. PPARγ was the first to be demonstrated in the pla-
centa [116]. In rodent placenta, PPARγ is largely expressed in the trophoblastic layer of
the labyrinth zone [117,118]. In human placenta, PPARγ is present in villous trophoblast
and extravillous trophoblast [119,120]. There is some evidence suggesting that PPARγ
modulates villous trophoblast differentiation, oxidative pathways, inflammatory response,
and barrier formation [121,122]. Furthermore, dysregulation of both PPARα and PPARγ
in the placenta has been implicated in common complications of pregnancy, such as ges-
tational diabetes mellitus, intrauterine growth restriction, and preeclampsia [123]. Their
expression pattern is regulated at least partially by DNA methylation in the placenta,
and the involvement of other PPAR-regulated processes, such as placenta-specific miR-
NAs, has just been discovered [124]. Placental epigenetic regulation appears to provide a
plausible connection between environmental exposures and fetal development. Studies
have shown that changes in placental DNA methylation patterns have been associated
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with fetal growth after exposure to maternal risk conditions such as GDM, obesity, and
preeclampsia [125,126].

During the development of the human embryo and fetus, three isoforms are ex-
pressed in cells of the endoderm and mesoderm at early time points in gestation [127].
PPARβ/δ was the first allotype to be expressed during embryonic development in ro-
dents [128]. PPARα and PPARγ are expressed first in the placenta and then in the fe-
tus [128,129]. The role of PPAR in development has been revealed by studies in PPAR
knockout mice [130]. The important role of PPARα in lipid catabolism in the fetal liver
and heart is consistent with the function of PPARα in adult tissues [131–133]. Knockout
of PPARα in mice causes a high miscarriage rate, hepatic lipid accumulation, obesity, and
prolonged inflammation [134,135]. In the early stages of organogenesis in the rat embryo,
only the PPARβ/δ isotype is expressed [128] and plays an important role in the closure of
the neural tube [136]. The signaling pathway involved in PPARβ/δ activation associated
with nervous system development is profoundly altered by maternal diabetes [136]. PPARγ
null mutations are lethal. The developmental defects in the placenta occur in parallel to
developmental defects in the embryo [137]. In fetuses from diabetic rats, the concentration
of PPARγ endogenous is reduced [138]. The capacity of PPARγ endogenous to prevent the
overproduction of both NO and MMPs in fetuses from diabetic rats demonstrates its anti-
inflammatory effects [138]. PPARγ activation increases lipid concentrations in midgestation
fetuses from diabetic rats [139]. Collectively, these data indicate that PPARs-mediated
mechanisms are involved in the fetal origins of health and disease.

5. PPARs and FOAD

It is now well recognized that adverse events exposure in early life contribute to
the development of the chronic diseases of adulthood, including hypertension, type 2
diabetes, stroke, cognitive impairment, and pulmonary hypertension. Additionally, the
role of PPARs in numerous chronic diseases such as diabetes, cardiovascular diseases,
autoimmune diseases, chronic fatigue, depression, and neurodegenerative diseases is
well established. PPARs are ubiquitously expressed in almost all mammalian tissues
and organs. Altering PPARs methylation patterns during early development may be
maintained throughout the life course and even across generations [31]. In the following
sections, we review the expression pattern of PPARs in various organs, including the brain,
lung, heart, vessel, liver, and skeletal muscle, and discuss the potential roles of PPARs in
FOAD (Table 1).

Table 1. Summary of studies on PPARs in the fetal origins of adult disease.

Organs Adverse Factors PPARs Adverse Outcomes/Phenotype Reference

Brain

Maternal dietary restriction
PPARα

Abnormal sleep homeostatic regulation [140]
Maternal immune activation Disruption of dopamine function [141]

Maternal vitamin D deficiency

PPARγ

Angiogenesis impairment [142]
Maternal immune activation Cognitive impairments and anxiety behaviors [143]
Maternal high fructose Hippocampal neuroinflammation [144]
Intrauterine growth restriction Neurodevelopment and neurocognitive impairment [145]

Lung

Perinatal nicotine exposure

PPARγ

Asthma [146]
Perinatal nicotine exposure Lung dysplasia [147]
Perinatal nicotine exposure Lung mitochondrial dysfunction [148]
Intrauterine growth restriction Impairment of lung development [149]

Heart

Maternal protein restriction
PPARα

Dysregulation of lipid metabolism [150]
Maternal diabetes Fetal hypertrophic cardiomyopathy [132]
Maternal diabetes Cardiac oxidative stress [151]

Maternal obesity
PPARγ

Fetal cardiac dysfunction [152]
Maternal protein restriction Cardiac fibrosis [153]
Maternal nutrient restriction Myocardial lipid deposition [154]
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Table 1. Cont.

Organs Adverse Factors PPARs Adverse Outcomes/Phenotype Reference

Vessel
Preeclampsia PPARβ/δ Endothelial dysfunction [155]

Maternal protein restriction PPARγ Aortic remodeling [156]

Liver

Maternal exposure to PFOA

PPARα

Liver damage [157]
Maternal high-fat diet Non-alcoholic fatty liver disease [158]
Maternal nicotine exposure Metabolic-associated fatty liver disease [159]
Unbalanced folates/vitamin B12 diet Lipid metabolism impairment [160]
Maternal high-fat diet Obesity [161]

Liver

Maternal ethanol exposure
PPARα

Non-alcoholic fatty liver disease [162]
Paternal hyperglycemia Hepatic steatosis [163]

Maternal high-fat feeding
PPARγ

Metabolic dysfunction [164]
Maternal bisphenol A exposure Non-alcoholic fatty liver disease [165]

Skeletal
muscle

Maternal protein restriction PPARα Metabolic inflexibility [166]

Intrauterine growth retardation
PPARβ/δ

Insulin resistance [167]
Maternal/Paternal type 2 diabetes Insulin resistance [168]

Intrauterine growth retardation
PPARγ

Insulin resistance [169]
Maternal cafeteria diet Skeletal muscle development and metabolic disorders [170]

PFOA: perfluorooctanoic acid.

5.1. Brain

PPARα is expressed in several regions of the central nervous system (CNS), and
its specific biological function remains unclear [171]. Various inflammatory parameters
were significantly enhanced in PPARα KO mice [172]. Neuroinflammation is considered a
cause and/or contributing factor to neuronal degeneration [173]. It suggests that PPARα
attenuates the inflammatory response after ischemia/brain injury [174]. Moreover, the
activation of PPARα has anti-inflammatory properties and a beneficial impact on certain
neurologic diseases, including Alzheimer’s disease (AD) [175], Multiple sclerosis (MS) [176],
Huntington’s disease (HD) [177], and Parkinson’s disease (PD) [178]. Malnutrition during
pregnancy affects sleep homeostasis and increases sleep pressure in offspring, which may
be related to the increased PPARα mRNA expression in the hypothalamus [140]. In a
study by Felice et al., it was found that prenatal administration of fenofibrate (PPARα
agonist) reduced the risk of schizophrenia-like behavior in male offspring of maternal
immune activation (MIA) and emphasizes PPARα as a possible target for schizophrenia
therapies [141].

Although PPARβ/δ is the most abundant PPAR subtype in the CNS, its role is rarely
studied [171]. It has been suggested that the most important roles of PPARβ/δ in brain
cells are antioxidant and anti-inflammatory effects [179]. There also a study identified that
the differentiation of neural and glial cells might be impacted by PPARβ/δ, which may
also affect the metabolism of cholesterol in the brain [103]. One study found that prenatal
exposure to a high-fat diet increased the density of cells immunoreactive for PPARβ/δ in
the hypothalamic paraventricular nucleus, perifornical lateral hypothalamus, and central
nucleus of the amygdala [180]. However, the clinical significance of this change and the
potential role of PPARβ/δ in fetal origins of CNS diseases remains unclear.

PPARγ is the most studied subgroup of the PPAR family and has an important role
in the CNS, including relieving endoplasmic reticulum stress and the inflammatory re-
sponse [181], the balance of cerebral metabolite [182] and the maintenance of glucose
homeostasis [183]. Animal studies have demonstrated that maternal vitamin D deficiency
leads to decreased PPARγ levels in the offspring’s brain and affects angiogenesis in the
brain [142]. Fetal hippocampal inflammation is significantly increased in immune-activated
mothers, followed by cognitive deficits, which are highly correlated with hippocampal
neurogenesis disorders in pre-pubertal male offspring. The PPARγ agonist pioglitazone
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improves neurogenesis, cognitive impairment, and anxious behavior in MIA offspring [143].
Maternal high-fructose-induced hippocampal neuroinflammation in the adult female off-
spring. Adult female offspring exposed to high maternal fructose have decreased levels
of PPARγ and endogenous antioxidant expression in the hippocampus, which leads to
hippocampal neuroinflammation. An oral dose of pioglitazone (PPARγ agonist) effectively
increases the expression of antioxidants and blocks neuroinflammation [144]. Based on the
findings described above, synthetic PPARγ agonists have been suggested as therapeutic
medicines for the treatment of CNS diseases such as PD [184], AD [185], HD, and Autism
spectrum disorder [186].

5.2. Lung

PPARα has been implicated in the control of airway inflammation, but as yet, little
is known about its role in lung disease. There is a mouse model of pulmonary fibrosis
suggesting that PPARα regulates fibrosis [187]. A study by Genovese et al. revealed that
endogenous and exogenous PPARα ligands reduced bleomycin-induced lung injury in
mice [188]. Liu et al. found that the activity of PPARα was inhibited in lipopolysaccharide
(LPS) induced acute lung injury (ALI) [189]. By reducing oxidative stress and inflammation,
which are both directly related to the activation of PPARα, eupatilin has a protective
function in ALI [190]. Taken together, they proposed that PPARα could be a potential
therapeutic target for lung injury.

PPARβ/δ agonist inhibited the proliferation of lung fibroblasts and enhanced the antifi-
brotic properties of PPARγ agonist [187]. The role of PPARβ/δ in pulmonary hypertension
and lung cancer has received attention in recent years. According to epidemiological and
experimental animal studies, prenatal hypoxia, intrauterine growth restriction (IUGR),
and obesity raise the risk of pulmonary hypertension in offspring [191]. Prostacyclin and
prostacyclin mimetics are the cornerstone of treatment for patients with pulmonary arte-
rial hypertension (PAH) [192]. One study suggests that PPARβ/δ may be a potent target
for prostacyclin mimics in the treatment of pulmonary hypertension. PPARβ/δ agonist
(GW0742) mediates vascular relaxation and prevents the right heart from hypertrophy as-
sociated with pulmonary arterial hypertension [193]. The role of PPARβ/δ in the negative
growth regulation of lung cancer cells was first reported in an in vitro study [194]. Using a
variety of lung cancer models, one research group demonstrated that increased synthesis
of the PPARβ/δ agonist (prostacyclin) inhibited lung tumorigenesis [195]. These findings
imply that PPARβ/δ may play a protective function in PAH and lung cancer.

PPARγ is expressed in many lung cells, including bronchial epithelial cells, airway
smooth muscle (HASM) cells, fibroblasts, alveolar type II pneumocytes, and mononuclear
phagocytes [187,196]. The activation of PPARγ signaling is involved in the paracrine effect
of interstitial fibroblasts and alveolar type II (ATII) cells, which is necessary to maintain
alveolar homeostasis [197]. The PPARγ gene depends on developmentally specific tran-
scription of mRNA variants and epigenetics for normal tissue. Therefore, it is susceptible
to epigenetic changes [198]. There is evidence that perinatal damage, including exposure
to nicotine or maternal tobacco smoke (MTS), IUGR, and preterm delivery, altered both
epigenetic determinants and gene expression in the lung [198]. It has been demonstrated
that IUGR caused epigenetic modifications to the PPARγ gene in rat lungs [199]. The levels
of PPARγ mRNA variants, PPARγ protein, and downstream targets were decreased in the
lung of neonatal rats [149]. Numerous studies have shown an increase in asthma in off-
spring whose mothers smoked during pregnancy [200]. Perinatal smoke/nicotine exposure
is a recognized factor that affects lung growth and differentiation by down-regulating the
expression of PPARγ [201]. Downregulation of PPARγ causes lipid-rich alveolar mesenchy-
mal fibroblasts to transdifferentiate into myofibroblasts, which is the cellular hallmark
of chronic lung diseases such as asthma [202,203]. PPARγ agonist (rosiglitazone) can
effectively block asthma induced by perinatal smoke exposure [148].
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5.3. Heart

PPARs are the physiological master switches of the heart, which guide the energy
metabolism of cardiomyocytes, thereby influencing pathological heart failure and diabetic
cardiomyopathy [204]. However, the roles of PPARs in heart function and the results of
their respective agonists differ greatly in preclinical animal models and clinical studies [205].
PPARα is highly expressed in the heart and can affect the expression of numerous genes
implicated in the uptake and oxidation of cellular fatty acid (FA) [206]. Therefore, it plays
a major role in cardiac fatty acid homeostasis. Down-regulation of PPARα expression
altered the expression of fatty acid-metabolizing proteins that lead to myocardial damage
and fibrosis [207]. The expression of fetal cardiac lipid metabolism genes (PPARα, fatty
acid translocase, lipoprotein lipase, etc.) was reduced in offspring from mothers with
high blood glucose levels, not accompanied by cardiac triglyceride deposition or cardiac
hypertrophy [132]. However, it has subsequently been suggested that the heart of adult
offspring from diabetic rats showed increased lipid concentrations. The increased expres-
sion of PPARα in offspring from diabetic rats can prevent toxic lipid accumulation in the
heart [208]. There is also solid evidence that PPARα exerts a protective effect on cellular
oxidative damage [209]. Thus, chronic deactivation of the PPARα signaling pathway may
disrupt the balance between oxidant production and antioxidant defenses and ultimately
contribute to heart damage [210]. In the 2-day-old and pre-pubertal stage progeny from dia-
betic rats, there was an increase in the expression of prooxidative/proinflammatory markers
and PPARα protein expression in the hearts. Maternal treatment with mitochondrial antiox-
idants led to reductions in PPARα protein expression and pro-oxidant/ro-inflammatory
markers and prevented the adverse programming of heart alterations in prepubertal off-
spring from diabetic rats [151]. Both neonatal and adult hearts from the offspring of
maternal protein restriction (PR) during pregnancy showed a reduction in the level of
PPARα promoter methylation and an increase in PPARα mRNA expression [150]. The
possible implication of these findings is that the enhanced capacity of fatty acid β-oxidation
leads to an increased risk of oxidative damage to offspring hearts.

PPARγ is expressed at very low levels in the adult heart [211]. PPARγ activation in
cardiomyocytes is associated with impaired cardiac function due to its lipogenic effect [211].
Maternal obesity leads to cardiac hypertrophy, and left ventricular diastolic dysfunction
in offspring might be related to persistent upregulation of PPARγ expression [152]. In rat
offspring programmed by the reduced protein diet during gestation, the PPARγ agonist
(rosiglitazone) was shown to have beneficial effects by reducing cardiac fibrosis and en-
hancing myocardial vascularization [153]. PPARγ activator therapy has a beneficial impact
on risk factors for cardiovascular disease, but it also appears to have adverse effects on the
cardiovascular system. It has been reported that treatment with rosiglitazone is associated
with an increase in myocardial infarction (MI) or heart failure in humans [212].

5.4. Vessel

Studies have shown that PPARs are present in all essential vascular cells, includ-
ing monocyte-macrophages, endothelial cells, and vascular smooth muscle cells [213].
PPARs influence lipid metabolism and vascular diseases such as atherosclerosis and hy-
pertension [214]. PPARα has been implicated in blood pressure regulation and vascular
inflammation [215]. PPARα was expressed in both vascular endothelial cells and vascular
smooth muscle cells [216]. Activation of PPARα blocks multiple pathways such as NF-
κB and MAPK, which in turn inhibit the expression of many genes involved in vascular
inflammation, oxidative stress, and cell growth and migration [217]. In experimental hy-
pertension models, PPARα ligands can reportedly lower blood pressure [218]. PPARα was
also associated with atherosclerotic processes [219]. The administration of the fibrate class
of PPARα agonists to patients with type 2 diabetes or dyslipidemia significantly slowed
the development of atherosclerosis and reduced their risk of cardiovascular events [220],
but surprisingly, high-fat diet PPARα-null mice are more responsive to insulin, have lower
blood pressures, and develop less atherosclerosis [219].
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Activation of PPARβ/δ has a significant effect on anti-hypertension [221]. However,
it is argued that PPARβ/δ agonist acts via interference with the ET-1 signaling and lower
blood pressure through a PPARβ/δ-independent mechanism [222]. Moreover, the reduction
of vascular oxidative stress markers and improvement of endothelial dysfunction were
observed after a high dose of the PPARβ/δ antagonist GSK0660 [223]. It has been shown
that the offspring of rats with maternal diabetes have abnormal fetal programming of
vascular endothelial function, which is linked to increased ER stress and may be attributed
to the down-regulation of the AMPK/PPAR signaling cascade [224].

Whether PPARγ is hypotensive or hypertensive is still under debate so far [225].
Genetic studies showed impaired vascular smooth muscle contraction in response to alpha-
adrenergic drugs and hypotension in a generalized PPARγ knockout mouse model [226],
which is very well in agreement with the findings by Tontonoz [227]. These findings suggest
that PPARγ has a hypertensive function in controlling blood pressure. However, activa-
tion of PPARγ has beneficial effects on hypertension in a number of animal and human
studies [228]. PPARγ activation may regulate blood pressure via modulating endothe-
lial vasoactive factors such as prostacyclin, nitric oxide, and endothelin-1. Additionally,
PPARγ may also be involved in vessel tone regulation by down-regulating ANG II recep-
tor 1 (AT1-R) in vascular smooth muscle cells [229]. Angiotensin II-induced endothelial
dysfunction in adult offspring of pregnancy complicated with hypertension is associated
with impaired endothelial PPARγ [155]. Rosiglitazone (a PPARγ agonist) reduced blood
pressure and attenuated vascular remodeling in perinatal low-protein offspring rats [156].
Chronic treatment with rosiglitazone has also been shown to prevent impaired nitric oxide
synthase-dependent responses induced by prenatal alcohol exposure [230]. Collectively, it
is widely believed that activation of PPARγ can moderately lower blood pressure and plays
a protective role in endothelial dysfunction, vascular inflammation, and other pathological
processes that lead to atherosclerosis [231].

5.5. Liver

The liver is a major organ that regulates whole-body nutrient and energy homeostasis.
PPARs are involved in the regulation of adipogenesis, lipid metabolism, inflammation, and
metabolic homeostasis [232]. PPARα is a major regulator of lipid metabolism in the liver,
especially at fasting. In addition to fatty acid oxidation and ketogenesis, PPARα controls
the expression of almost all genes involved in lipid metabolism in the liver [233]. Free
fatty acids and other lipids are known to activate PPARα to increase lipid clearance in the
liver [234]. In the liver of the PPARα-null mice (lacking the PPARα gene), constitutive
mitochondrial β-oxidative activity was significantly reduced [235]. Polyunsaturated fatty
Acids (PUFAs) are endogenous PPARα activators. Mice on a high-fat diet supplemented
with PUFAs showed enhanced hepatic FA β-oxidation and ameliorated fatty liver [236].
Maternal exposure to perfluorooctanoic acid (PFOA) significantly decreased the expression
of the PPARα gene in female offspring mice, leading to reduced fatty acid oxidation and
histone acetylation and increased liver oxidative stress [157]. Other authors have found a
lower expression of PPARα in the liver of rat offspring exposed to vitamin B12 deficient
diets before and during pregnancy due to increased global methylation levels. [237]. The
offspring born to an obese mother has a greater likelihood of progression to the fatty liver,
which may be associated with PPARα dysfunction [238]. Similar works showed that a high-
fat diet during pregnancy impairs the demethylation of PPARα, therefore inducing lipid
metabolism disorders and obesity in offspring [161]. Maternal high-fat diet decreased the
expression of PPARα and genes for fatty acid oxidation, which contributes to nonalcoholic
fatty liver disease (NAFLD) in offspring [158]. Prenatal 1,2-Cyclohexane dicarboxylic acid
diisononyl ester (DINCH) plasticizer exposure downregulates PPARα expression, which,
in turn, affects the liver function of offspring [239]. Maternal nicotine exposure leads
to lipid metabolism disorders and insulin resistance by activating PI3K/Akt signaling,
inhibiting PPARα protein expression, and promoting the progression of MAFLD in adult
offspring [159].



Cells 2022, 11, 3474 13 of 25

PPARγ is expressed at much lower levels in the liver and muscle than in adipose tissue
and macrophages [240]. Many studies have demonstrated a link between elevated PPARγ
expression and hepatic steatosis [241]. Specific disruption of liver PPARγ in mice can
effectively improve fatty liver [242]. Overexpression of PPARγ in mouse liver can lead to
the development of adipogenic hepatic steatosis [243]. Activation of PPARγ is steatogenic.
Paradoxically, treatment of PPARγ-null mice with PPARγ ligands protects other tissues
from TAG accumulation and insulin resistance [244]. In A-ZIP/F-1 mice, disrupting
hepatocyte PPARγ reduced hepatic steatosis but worsened hyperlipidemia and muscle
insulin resistance [244]. PPARγ has anti-inflammatory effects; PPARγ activation decreases
inflammatory response by negatively interfering with NF-κB and signal transducers and
transcriptional activators [245]. PPARγ agonists may have potential in the prevention of
liver fibrosis/cirrhosis [246]. The NAFLD induced by gestational BPA exposure in male
offspring may be related to the dysregulation of the HNF1b/PPARγ pathway [165]. Co-
agonists of PPARα and PPARγ attenuated liver and white adipose tissue inflammation
in male offspring of obese mothers [247]. The reduction of PPARγ level plays a crucial
role in arsenic-induced hepatic autophagy in progeny [248]. Metabolic and reproductive
disturbances in the female offspring of polycystic ovary syndrome may be associated
with the upregulation of PPARγ in the liver [249]. Prenatal exposure to a low-protein diet
exhibited a lower expression of PPARγ and hepatic steatosis [250].

5.6. Skeletal Muscle

Skeletal muscle is a metabolic organ that accounts for 40% of the total body weight
in a healthy person. It produces adenosine triphosphate (ATP) through insulin-mediated
glucose uptake, stores excess glucose as glycogen, and is involved in fatty acid oxidation.
All three PPAR isotypes have significant effects on muscle homeostasis, either directly or
indirectly. PPARα participates in glucose metabolism and fatty acid catabolism, which is
crucial in regulating inflammation and energy expenditure [251]. PPARβ/δ is the major
PPAR isotype in skeletal muscle. It is involved in lipid and glucose metabolism, energy
expenditure, inflammation, tissue repair and regeneration, and muscle fiber type switching
associated with physical exercise [252]. One of the main functions of PPARγ in skeletal
muscle is fat deposition [253]. Several observations suggest that PPAR isotypes are at least
partially related and overlapping in muscle.

Maternal protein restriction impaired the expression of genes that increased the ability
to oxidize fat in response to fasting and exhibited an enhanced expression of PPARα in
adult offspring [250]. The study by Zhou et al. showed that miR-29a was upregulated
in the skeletal muscles of IUGR offspring. The direct interaction between miR-29a and
PPARβ/δ inhibited the expression of PPARβ/δ, which was associated with the progression
of insulin resistance (IR) [167]. The reduced mitochondrial content in the muscle of IR
offspring may be in part due to decreased PPARβ/δ activation [168]. Maternal cafeteria
diet during gestation and lactation Maternal cafeteria diets during pregnancy and lactation
were associated with the increased PPARγ mRNA level in pups [170]. The adult mice
suffered from maternal caloric restriction during late pregnancy, and a post-weaning
high-fat diet, the expressions of PPARγ in their skeletal muscle tissue were significantly
increased [169]. PPARγ agonist can improve skeletal muscle insulin sensitivity in the
pregestational intrauterine growth-restricted rat offspring [254]. In conclusion, skeletal
muscle insulin resistance and impaired fat or glucose metabolism may be closely related to
PPARs changes in offspring exposed to adverse factors during pregnancy.

6. Conclusions and Outlook

The concept of FOAD (or DOHaD) has provided new insights into the origin of
lifestyle diseases, and the field of FOAD has grown rapidly to high prominence in biomedi-
cal science and public health. This review is concerned with understanding how stressful
environmental conditions during sensitive periods of early development influence the
risk of chronic disease later in life, particularly the role of PPARs in this process. Notably,
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agonists of PPARs have been intensively evaluated as a potential strategy for the early
prevention of FOAD. A growing body of exciting evidence demonstrates that PPAR ac-
tivators reverse some of the adverse effects of adverse exposure during pregnancy on
offspring. These data provide important proof that the epigenetic state of a particular gene
can be modified. It provides a novel therapeutic strategy to prevent or delay the fetal
origin of adult diseases through epigenetic regulation of metabolic genes. Here, we briefly
summarize the relevant studies in Table 2. Nevertheless, studies on PPARs in the area of
FOAD are currently in the nascent stage, especially the application of PPARs agonists in
the primary prevention and treatment of FOAD remains controversial. Therefore, further
research is necessary to enhance our understanding of the PPAR-mediated mechanisms
involved in the fetal origins of health and disease. Connecting early-life adverse events
exposures and PPARs epigenomic measures with later-life health outcomes is a proven
strategy for investigating such underlying mechanisms. Recent research has begun to iden-
tify features of the PPARs-related regulation of non-coding RNAs, histone modification,
and DNA methylation in FOAD. These advances drive the development of the complex
transcriptional and epigenetic regulation of PPARs in FOAD. We believe that the studies of
such new perspectives will open up new avenues in FOAD research, as well as potential
strategies for early prevention of FOAD.

Table 2. Summary of studies on PPAR agonists in the fetal origins of adult disease.

Types Drugs Rescued Phenotype Reference

PPARα agonist
Clofibrate Fatty liver disease [238]
Fenofibrate Disruption of dopamine function [141]
WY-14643 Obesity [255]

PPARβ/δ agonist GW1516 Endothelial dysfunction [224]

PPARγ agonist

Rosiglitazone Asthma [256]
Pioglitazone Neuroinflammation and oxidative stress [257]
Pioglitazone Learning and memory abilities impairment [258]
Rosiglitazone Cardiac adverse remodeling [153]
Rosiglitazone Skeletal muscle insulin sensitivity [254]
Rosiglitazone Blood pressure and aortic structure [156]
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