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Abstract
Studies of the vertebrate hindbrain have revealed parallel mechanisms that
establish sharp segments with a distinct and homogeneous regional identity.
Recent work has revealed roles of cell identity regulation and its relationships
with cell segregation. At early stages, there is overlapping expression at
segment borders of the Egr2 and Hoxb1 transcription factors that specify
distinct identities, which is resolved by reciprocal repression. Computer
simulations show that this dynamic regulation of cell identity synergises with
cell segregation to generate sharp borders. Some intermingling between
segments occurs at early stages, and ectopic egr2-expressing cells switch
identity to match their new neighbours. This switching is mediated by coupling
between egr2 expression and the level of retinoic acid signalling, which acts in
a community effect to maintain homogeneous segmental identity. These
findings reveal an interplay between cell segregation and the dynamic
regulation of cell identity in the formation of sharp patterns in the hindbrain and
raise the question of whether similar mechanisms occur in other tissues.
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Introduction
Many tissues are patterned by graded signals which regulate the 
spatial expression of transcription factors that specify regional  
identity. The initial expression domains of these transcrip-
tion factors have fuzzy borders, and the proliferation and move-
ments of cells during tissue morphogenesis can potentially 
cause intermingling between adjacent regions1,2. Nevertheless, a  
precise pattern subsequently forms in which all cells within  
each region have the same identity, and there is a straight  
interface at the border of adjacent domains. This raises the ques-
tion of how sharp patterns of regional domains are formed 
and maintained. One general mechanism, which has been 
extensively studied, is the segregation of cells and restric-
tion of intermingling between adjacent regions, regulated by  
effectors—such as cadherins or Eph receptors and ephrins—
whose expression is coupled to regional identity. This  
article will focus on recent studies of the vertebrate hindbrain 
that have revealed a crucial role of the dynamic regulation of 
cell identity in the establishment of sharp and homogeneous  
regional domains.

Segments and segregation
The hindbrain is subdivided into segments, termed rhombomeres 
(r1–r7), which express a distinct set of transcription factors 
and underlie the patterning of neurons and branchial neural  
crest cells3. These include Hox proteins, Egr2 (Krox20), MafB, 
and Vhnf1, which act in a network to specify the formation and  
anteroposterior (A-P) specification of segments4,5. The spatial 
expression of these transcription factors is regulated by fibrob-
last growth factor (Fgf) and retinoic acid (RA) signalling 
that act in feedback loops to establish a gradient of RA in the  
hindbrain6. The borders of segmental gene expression initially 

are ragged and then sharpen over a period of several hours. 
Clonal analyses revealed that there is extensive intermingling 
in the neural epithelium, driven by cell intercalation during cell  
proliferation and convergent-extension movements7,8. However, 
once segment borders can be seen morphologically, cell  
intermingling between rhombomeres is restricted7. Subsequent 
work revealed key roles of signalling by Eph receptors and  
ephrins which have complementary segmental expression in the 
hindbrain in the establishment of sharp borders9–13. The mecha-
nisms by which Eph-ephrin signalling drives border sharpening 
remain unclear but, based on studies in other tissues and in cell 
culture assays, it likely involves cell segregation driven by 
contact repulsion or increased cortical tension14–17. Following  
sharpening, there is Eph signalling-dependent formation of  
actin cables at rhombomere boundaries, which mediate increased 
actomyosin-dependent tension required to maintain straight  
borders18.

Mutually exclusive identity
Evidence that cell identity regulation contributes to the forma-
tion of sharp borders has come from studies of egr2 and hoxb1. 
egr2 is expressed in and required for the formation of r3 and 
r519, whereas hoxb1 is expressed in r4 and contributes to A-P  
specification of this segment20,21. At early stages, some cells at  
the borders of r4 co-express hoxb1 and egr2 (Figure 1A), and  
this is likely due to imprecision in the formation and inter-
pretation of graded RA signalling that underlies A-P pattern-
ing of the hindbrain22. The overlap in expression is resolved  
such that cells express one or the other transcription factor  
(Figure 1B). Insights into how this transition occurs have come 
from studies of the regulation of hoxb1 and egr2 gene expression  
(Figure 1D).

Figure 1. Model of border sharpening by reciprocal repression and cell segregation. (A) At early stages, some cells at the r3/r4 border  
co-express egr2 and hoxb1 because of imprecision in the regulation of segmental gene expression by graded retinoic acid (RA). (B) Reciprocal 
repression of egr2 and hoxb1 leads to mutually exclusive expression, but the border is still ragged. (C) Cell segregation leads to sharpening 
to form a straight border. The synergistic role of gene regulation and cell segregation is supported by computer simulations. (D) Simplified 
depiction of the network of gene regulation that upregulates egr2 in r3/r5 and hoxb1 in r4 and underlies mutual repression. r, rhombomere.
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hoxb1 is initially expressed in a broad domain up to the  
r3/r4 boundary, which then becomes restricted to r4. The 
early expression is initiated by RA signalling acting through a  
conserved 3′ RA response element23. Subsequently, expression in 
r4 is maintained by an enhancer that binds Hoxb1, Hoxa1, and  
Hoxb2 as well as Pbx and Meis cofactors and thus involves  
both auto-regulation and cross-regulation from other hox genes5. 
Expression of hoxb1 becomes restricted to r4 through repres-
sion in r3 and r5 mediated by a 5′ RA response element and by  
binding of Egr25,24.

Transcriptional regulation of the egr2 gene in r3 and r5 also 
involves elements that initiate and maintain expression25–28. Con-
sistent with studies of factors required for egr2 expression29–33, 
the initiator elements have combinatorial input from  
Fgf signalling and Hox transcription factors, including positive 
input from low levels of Hoxb1 expression25,28. This drives a 
pulse of Egr2 protein, which in turn acts on an autoregula-
tory element that maintains and increases the level of egr2  
expression27. This is counterbalanced by inhibitory loops that 
limit egr2 expression to the appropriate level34–36. Whereas 
low levels of Hoxb1 promote egr2 expression, the high-level  
expression of Hoxb1 in r4 represses egr2 and acts via the  
upregulation of Nlz128. Remarkably, recent work has found that 
an enhancer which initiates egr2 expression in r3 is required for  
the autoregulatory element to function37. Furthermore, there 
are long-range physical interactions within the egr2 regulatory  
region that likely enable this potentiation of the autoregu-
latory element by the initiator element37. The cooperation  
between regulatory elements may help ensure that inappropriate 
autoregulation does not occur.

egr2 and hoxb1 thus act in a bistable switch in which they  
autoregulate and reciprocally repress each other, such that any  
cells which initially co-express both transcription factors at 
segment borders come to express one or the other. Computer  
simulations suggest that noise in the RA gradient leads to 
the initial rough borders of gene expression and that fluc-
tuations in hoxb1 and egr2 levels enable the transition from  
co-expression to mutually exclusive expression22. In recent 
work, a multi-scale model has been developed to simulate both  
mechanical forces and plasticity of cell identity. These com-
puter simulations have been used to address whether border  
formation can be accounted for by the generation of mutually  
exclusive identity or by cell segregation or both38. It was found  
that cell segregation alone is not able to drive the formation of a 
sharp border if there is a wide ‘transition zone’ in which there is 
a mixture of cells with distinct identity (that is, when the border  
is very fuzzy)38. This is due to the mechanics of cell segrega-
tion driven by adhesion or repulsion, which require that cells  
with the same properties are in contact with each other: isolated 
cells will segregate to the relevant segment only if they happen to 
come into contact with it. The regulation of mutually exclusive 
cell identity facilitated by noise narrows the transition zone but  
alone is not able to fully sharpen the border38. In contrast, border 
sharpening does occur in a model in which plasticity in identity 
and cell segregation are combined38. The dynamic regulation of 
segmental identity narrows the transition zone and this enables  
cell segregation to efficiently drive border sharpening. These  

simulations thus suggest that identity regulation and cell seg-
regation have complementary strengths and act synergistically  
to sharpen borders (Figure 1A–C).

Identity switching
Cell lineage analysis in the chick hindbrain revealed that there 
is some intermingling between segments at early stages, prior 
to the formation of morphological boundaries7. Furthermore,  
single cells transplanted between hindbrain segments in mouse 
or zebrafish were found to change their identity to match the 
new location39,40. Such switching did not occur for groups of  
transplanted cells, suggesting that cell identity is regulated 
by community signalling, but the nature of the signals was  
unknown. Based on these findings, it was proposed that  
identity switching of cells that intermingle acts in parallel with 
cell segregation to maintain homogeneous segments41,42. This 
idea was challenged by a study which found no intermingling  
between segments in zebrafish18, but this work used reporters 
detected during and after border sharpening, when cell segre-
gation mechanisms are in place. A recent study has shown that  
intermingling between segments does occur in zebrafish and 
has elucidated the mechanism of cell identity switching43. 
Since Egr2 is a direct regulator of the ephA4 gene44, it is 
likely that intermingling of egr2-expressing cells into adjacent  
segments would occur only during an early time window, when 
the expression level of EphA4 is not high enough to drive cell 
segregation. By generating a transgenic reporter line in which 
expression of a stable fluorescent protein is driven directly 
from the egr2 locus, investigators found that some cells do  
intermingle between r3/r5 and adjacent segments43. These  
ectopic cells downregulate egr2 expression and, when present  
in r4, upregulate hoxb1 expression43.

Previous studies have shown that the degradation of RA by 
Cyp26 family members has a crucial role in establishing differ-
ential levels of RA that underlie A-P patterning in the hindbrain. 
The cyp26a1 gene is regulated by the level of RA and Fgf signal-
ling, which leads to expression in an anterior-to-posterior gradi-
ent in the early zebrafish hindbrain6. In contrast, cyp26b1 and 
cyp26c1 are not directly regulated by RA signalling and have 
dynamic segmental expression that progresses from anterior to  
posterior45,46. As strong disruption of A-P patterning occurs 
only after blocking the function of all three family members45,  
they are thought to have parallel roles in regulating the level 
of RA. cyp26b1 and cyp26c1 are expressed at lower levels 
in r3 and r5 than in r2, r4, and r6, and it was found that this  
odd-versus-even difference is regulated downstream of egr243.  
Since Cyp26 enzymes have a strong cell-autonomous and weak 
non-autonomous effect on RA levels6,47,48, this suggests that 
r3 or r5 cells that intermingle into adjacent segments move 
from a high- to a low-RA environment. Furthermore, ectopic  
expression of egr2 in even-numbered segments was found to be 
downregulated following blocking of RA signalling, whereas 
knockdown of cyp26b1 and cyp26c1 leads to a failure to  
downregulate egr2 in cells that have intermingled from r3 and  
r543. These findings suggest that cyp26b1 and cyp26c1 switch 
the identity of egr2-expressing cells that have intermingled into  
even-numbered segments by non-autonomously decreasing RA  
levels (Figure 2A–D). In r4, the switching involves upregulation  
of hoxb1, which in turn represses egr2 expression43.
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Relationships between cell segregation and identity
Taken together, these studies have found that cell identity regu-
lation not only acts to refine borders in combination with cell  
segregation but also maintains the homogeneity of segments 
despite intermingling that occurs before segregation mecha-
nisms have been upregulated. The latter mechanism involves the  
coupling of the level of cyp26b1 and cyp26c1 expression and 
RA signalling to segmental identity. Single egr2-expressing 
cells that intermingle switch identity, as they are surrounded 
by neighbours with a higher level of cyp26 expression. In  
contrast, positive feedback between segmental identity and  
cyp26 expression potentially maintains RA levels in groups of 
cells. The coupling thus underlies a community effect that may  
explain the results of transplantation experiments with single  
cells or groups of cells39,40.

Consistent with this model, non-autonomous effects of egr2  
overexpression were found to depend upon cell organisation. 
In early work, it was shown that forced mosaic expression of  
egr2 in the chick hindbrain induced the upregulation of egr2 in 
adjacent cells in even-numbered segments49. The recent study 
in zebrafish found that this non-autonomous induction occurs  
when cells overexpressing egr2 are intermingled with r2/r4/r6 
cells but not following Eph-mediated segregation of the egr2- 
expressing cells43. This suggests that cell identity regulation 
depends upon how many neighbours are of the same or  

different type. The regulation of both ephA4 and the level of  
cyp26b1 and cyp26c1 expression by egr2 creates segregated  
communities with different levels of RA signalling. Cells at a  
sharp border have a sufficient number of neighbours with the  
same cyp26 expression and thus maintain their identity. In  
contrast, cells with distinct identity that enter the adjacent  
community are surrounded and switch to match their new  
neighbours (Figure 2B–D). It will be interesting to explore 
whether the sharpening of fuzzy borders (Figure 1) involves RA  
signalling dependent upon how many neighbours have the same  
or different cyp26 expression level.

These findings raise a number of new questions. It will be  
important to understand cell identity switching by quantitative 
modelling of the gene regulatory networks in r3/r5 and r4. How  
does a change in the level of RA switch the network from 
one state to the other? Since cells do not switch identity if  
transplanted between segments at late stages40, autoregulation or 
other mechanisms (or both) may increasingly lock the network 
in each segment into one state. A key issue is to measure the  
segmental level of RA signalling, but, owing to limitations 
in the sensitivity and noise of the available techniques, this is  
currently not possible at the spatial resolution of hindbrain  
segments50–52. A further important question is how the segmental 
levels of cyp26b1 and cyp26c1 expression are regulated. Since 
Egr2 usually acts as an activator, the repression of cyp26b1 

Figure 2. Model of how homogeneous segments are maintained by identity switching. (A) Relationship between egr2, hoxb1, and 
retinoic acid (RA) levels regulated by cyp26b1 and cyp26c1. In r3 and r5, high-level egr2 expression downregulates cyp26b1 and cyp26c1 
expression. This creates a high-RA environment that suppresses hoxb1 expression. In r4, there is high cyp26b1 and cyp26c1 expression. 
This creates a low-RA environment that promotes hoxb1 expression. (B) Owing to coupling between egr2 expression and cyp26b1/c1 
expression levels, an egr2-expressing cell that intermingles into r4 initially has a high-RA level. (C) There is non-autonomous depletion of 
RA by high cyp26b1/c1 expression in adjacent cells. (D) This leads to upregulation of hoxb1 and thus downregulation of egr2 expression. r, 
rhombomere.
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and cyp26c1 expression in r3 and r5 may involve intermediary  
factors, but Egr2 can in some contexts act as a repressor53,54.  
hox genes have been found to regulate the expression of com-
ponents of the RA signalling pathway4,55–57, and it will be inter-
esting to test whether this underlies feedback that maintains  
segmental identity. Finally, a broader issue raised by studies of 
the hindbrain is whether a similar interplay between dynamic cell  
identity regulation and cell segregation refines patterning  
elsewhere, such as other boundaries in the developing brain58,  
in particular at early stages when there are extensive morphoge-
netic movements and cell fate is plastic.

Abbreviations
A-P, anteroposterior; fgf, fibroblast growth factor; r, rhombomere; 
RA, retinoic acid.
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