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Abstract

Many human malignancies require extracellular arginine (Arg) for survival because the key enzyme for de novo Arg

biosynthesis, argininosuccinate synthetase 1 (ASS1), is silenced. Recombinant arginine deiminase (ADI-PEG20),

which digests extracellular Arg, has been in clinical trials for treating ASS1-negative tumors. Reactivation of ASS1

is responsible for the treatment failure. We previously demonstrated that ASS1 reactivation is transcriptionally

regulated by c-Myc via the upstream Gas6-Axl tyrosine kinase (RTK) signal. Here, we report that another RTK

EphA2 is coactivated via PI3K-ERK/RSK1 pathway in a ligand-independent mechanism. EphA2 is also regulated by

c-Myc. Moreover, we found that knockdown Axl upregulates EphA2 expression, demonstrating cross-talk

between these RTKs. ADIR cell lines exhibits enhanced sensitivities to nutrient deprivation such as charcoal-

stripped FBS and multiple RTK inhibitor foretinib but resistance to EGFR inhibitors. Knockdown EphA2, and to

lesser extent, Axl, overcomes EGFRi resistance. c-Myc inhibitor JQ1 can also sensitize ADIR cells to ADI-PEG20.

This study elucidates molecular interactions of multiple RTKs in Arg-stress response and offers approaches for

developing strategies of overcoming ADI-PEG20 resistance.

Translational Oncology (2020) 13, 355–364
Introduction
Arginine (Arg) is required for supporting the highly proliferative
activities in malignant cells. While Arg is a nonessential amino acid
and can be obtained from extracellular source through cationic amino
acid transporters including CAT-1 and CAT2B [1], Arg can also be de
novo synthesized via the rate-limiting enzyme argininosuccinate
synthetase 1 (ASS1) using citrulline and aspartate as substrates. It has
been reported that a vast amount of tumors from different origins are
ASS1-negative or expressed at very low levels. These include
melanoma and hepatocellular carcinoma (HCC) (100%) [2], acute
myeloid leukemia [3], prostate cancer, breast cancers, and lung
cancers (55e90%) [4]. These tumors depend on extracellular Arg
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supply for survival. When the extracellular Arg source is depleted,
these tumors die of Arg starvation by autophagy, leading to apoptosis
[4,5].

Targeted Arg starvation therapy of ASS1-auxotrophic tumors, using
Arg-degrading pegylated recombinant enzyme ADI-PEG20 (hereafter
ADI will be used) which digests Arg into citrulline and ammonia, has
been in several ongoing clinical investigations of differentmalignancies
including acute myeloid leukemia [6], pancreatic adenocarcinoma [7],
HCC [8], thoracic tumors [9], pleural mesothelioma [10], malignant
melanoma [11], and advanced malignant solid tumors [12]. Another
Arg-degrading recombinant protein, human arginase (rhArg or
BCT-100) which digests Arg into ornithine and urea, has been in
clinical investigations for treating acute lymphoblastic leukemia and
HCC [13,14]. Recent phase II clinical studies showed that while ADI
treatments rapidly deplete Arg levels in the circulation, however, Arg
levels soon return to the basal levels [6,15]. Re-expression of ASS1
compromises the effectiveness of ADI therapy [16]. Thus, under-
standing ASS1 reactivation mechanism is of great importance for
improving targeted Arg starvation therapy.

Early study demonstrated that ASS1 silencing in Arg-auxotrophic
tumors is associated with epigenetic DNA methylation [17]. We have
previously demonstrated that ASS1 silencing is due to transcriptional
suppression by the negative transcriptional factor HIF1a which binds
the E-Box located at the ASS1 promoter [16]. Arg starvation rapidly
induces chromatin remodeling complex P300-HDAC2-Sin3A which
epigenetically deacetylates H3K14ac and H3K27ac at the ASS1
promoter. Following the PHD2-drived HIF1a-degrading system, the
promoter-bound HIF-1a is degraded [18]. This allows c-Myc, which
is also an E-Box binder, to turn on the expression of ASS1. Arg
starvation rapidly triggers externalization of Gas6 to interact with its
receptor tyrosine kinase (RTK) Axl via a reactive oxygen species
(ROS)erelated mechanism. This activates the downstream Ras-PI3
kinase-AKT-GSK3b pathway, resulting in stabilization of c-Myc
[19]. Elevated c-Myc can transcriptionally upregulate itself and also
feed back to upregulate Axl, thereby amplifying the Arg-auxotrophic
signaling [18,20]. Thus, Arg starvation stress response involves
complexed epigenetic and genetic coupling feedback and feedforward
mechanisms that control cellular Arg homeostasis (Figure 7).

Axl is a member of the TAM (Tyro3-Axl-TK-Mer) subfamily in
the RTK family [21]. Axl plays important roles in tumor cell survival,
proliferation, and progression and is frequently overexpressed in a
variety of cancers [22,23]. Many recent studies have demonstrated
that Axl is involved in epithelial-mesenchymal transition (EMT) that
promotes cancer cell adhesion and metastasis and chemoresistance
[24e28]. The EMT signaling involves a diverse spectrum of
transcriptional regulatory networks [29] in that reprogram many
important cellular processes including cancer metabolism such as
glucose and glutamine dependence in ADI-resistant Axl-overprodu-
cing cells [30] and rewiring of the RTK signaling [25]. There are 58
known RTKs in humans sharing similar protein structures including
extracellular ligand-binding domains and intracellular tyrosine kinase
domains [31,32], but diverse mechanisms of activation and cell
signaling [33]. Many RTKs even cross-talk to each other for
performing concerted functions.

To better understand the roles of RTK family in Arg starvation
response, we report here the identification of several RTKs that are
sporadically upregulated in ADI-resistant (ADIR) cell lines. Impor-
tantly, we found that EphA2 is consistently upregulated in the ADIR

cell lines tested. We characterized the mechanisms underlying EphA2
upregulation and its interaction with Axl in response to Arg stress. We
further demonstrate that elevated EphA2 is involved in the
development of resistance to EGFR inhibitors in the ADIR cells.
Our results provide mechanistic basis for developing improved
treatment strategies in targeted Arg-deprivation cancer therapy.

Materials and Methods

Reagents, Antibodies, and siRNAs
Reagents were obtained from the following sources: ADI-PEG20

(specific activity, 5~10 IU/mg) from Polaris Pharmaceuticals Inc.
(San Diego, CA); sulforhodamine B (SRB), Ly294002 from
SigmaeAldrich (St. Louis, MO); perifosine, PLX4720 and foretinib
(XL880 or GSK1363089) from Selleck Lab (Houston, TX); PI-103
from Echelon Biosciences (Salt Lake City, UT); gefitinib and
lapatinib from LC laboratories (Woburn. MA); JQ1 from AdooQ
Bioscience (Irvine, CA).

Antibodies were obtained from the following sources: rabbit
antibodies for hEGFR, p-EGFR, p-Axl, EphA2(ser897), and
EphA2(Y588) from Cell Signaling (Danvers, MA); rabbit anti-Axl,
p-Axl, EGFR, P-EGFR, hErbB2, p-hErbB2, HGF-1R, hIGF,
EphA1, and a-tubulin antibodies were from R&D Laboratories
(Minneapolis, MN). Polyclonal antiphosphotyrosine (p-Tyr) anti-
body from Thermo Fisher (Grand Island, NY); rabbit anti-EphA2
antibody from Bethyl laboratory (Houston, TX); anti-ASS1 antibody
from Polaries.

Small interfering RNA (siRNA) for c-Myc and AXL has been
published [20]; EphA2 (Cat. No. SASI_Hs01-00222676 and
SASI-Hs01-000265), RSK (SASI_Hs01_00070213 and
SASI_Hs02_00305126) were all obtained from Sigma-Aldrich (St.
Louis, MD).

Cell Culture, siRNA Transfection, and SRB Cytotoxicity Assay
A2058 melanoma cells were purchased from the American Type

Culture Collection Center (ATCC) cells and were maintained in
Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal
bovine serum (FBS) at 5% CO2 atmosphere. Independent ADIR cell
lines were developed by selecting surviving A2058 cells by
continuously treated with stepwise increasing concentrations of
ADI from 0.1 mg/ml to 0.9 mg/ml for 6 months as described
previously [30]. Charcoal-stripped FBS was purchased from Life
Technology (St Louis, MD). For Arg-depletion experiments, cells
were maintained in the regular medium containing 0.3 mg/mL of
ADI for the lengths of time as indicated. In some experiments, cells
were cultured in Arg-free DMEM containing 10% dialyzed FBS (Life
Science Technology). All transfections were performed using
Lipofectamine 2000 (Invitrogen, St Louis, MD) in accordance with
manufacturer's instructions. For the cytotoxicity assay, cells were
seeded in 96-well plates (4 � 103 cells per well) and cultured with
different concentrations of inhibitors with or without ADI for
72 hours. Cells were fixed with 50% trichloroacetic acid followed by
staining with 0.4% SRB in 1% acetic acid for 30 min at room
temperature. Plates were washed five times with 1% acetic acid to
remove unbound dye. Bound dye was dissolved by adding 10 mM
unbuffered Tris base. Cell proliferation was calculated by measuring
optical density (OD) at 564 nm using a spectrophotometer.

Phospho-RTK Array Analysis
The Human Phospho-RTK Array Kit from R&D Systems was

used to determine the relative levels of tyrosine phosphorylation of 42



Figure 1. ADIR cells are sensitive to nutrient stress and RTK inhibitor foretinib. (A) Phase-contrast morphology of five ADIR cells (58R1 to
58R5) and ADI-sensitive cells (A2058) cultured in medium containing charcoal-stripped FBS for 96 hours; (B) and (C) proliferation
measurements of cells cultured under charcoal-stripped FBS for 96 hours by DNA fragmentation and by SRB assays, respectively;
(D) and (E) cell proliferation measurements of A2058 and ADIR cells treated with foretinib (2 nM, 48 hours) and determined by SRB
assay and by DNA fragment assay, respectively. RTK, receptor tyrosine kinase; SRB, sulforhodamine B.
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distinct RTKs, in accordance with the manufacturer's protocol. The
arrays were incubated with 500 mg of protein lysates prepared from
cells with or without ADI treatment overnight at 4 �C. The arrays
were washed and incubated with a horseradish peroxidaseeconju-
gated phospho-tyrosine detection antibody (1:5000 dilution) and
visualized using an enhanced chemiluminescence kit (Thermo
Scientific).

Other Procedures
Procedures for preparation of cell extracts, Western blotting

[18,19], and apoptosis analysis using DNA fragmentation were
described previously [16,19]. All Western blotting procedures were
performed at least two times, and results were reproducible using
actin and/or a-tubulin as control. Only representative images were
presented. Statistical analysis was performed by Student t-test using
Microsoft Excel 2007 program. A P value < 0.05 was regarded as
significant. Error bars represent the standard error of the mean
(SEM).

Results

ADI-Resistant Cells Exhibit Elevated Sensitivities to Serum
Deprivation in Culture

We previously established nine independent ADIR cell clones from
two melanoma cell lines, five from A2058 cells (designated as 58R1 to
58R5) and four from SK-mel-2. All these cell lines have the same
mechanism of ADI resistance, i.e., elevated ASS1 express and
metabolic abnormalities, i.e., elevated glycolytic (Warburg effect) and
glutaminolytic activities as compared with their parental cells [30]. In
this study, we used the A2058 ADIR series for investigations. Because
glucose-derived carbon and glutamine-derived nitrogen metabolites
are essential for cultured cell survival, proliferation, and stress
resistance [34], we hypothesized that ADIR variants may be more
vulnerable to general nutritional deprivation than do their parental
counterpart. To test this hypothesis, we cultured the parental cell line
(A2058) and its five independently established ADIR lines in
serum-free medium for 96 hours. By phase-contrast microscopy
which is a simple and reliable method for detecting apoptotic cells
[35], we found that ADIR cells show shrinkage morphology and
detachment from the neighboring cells, membrane blebbing, and
formation of apoptotic bodies, characteristics of apoptotic cells,
whereas the parental cells mostly remain morphologically intact
(Figure 1A). Induction of apoptosis in ADIR cell lines by serum
starvation determined by DNA fragmentation assay is shown in
Figure 1B and by measuring cell proliferation activity using SRB [36]
in Figure 1C.

Using charcoal-striped FBS to remove substantial amounts of
growth factors and hormones [37], we previously showed that all
these ADIR variants exhibited enhanced PI3K-AKT axis [30], a
downstream of RTK signaling. These results suggest that activation of
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Figure 2. Analyses of RTK expression in ADIR cells. (A) Western blots of ADIR and A2058 cell lysates using anti-phosphorylated Tyr
antibody; (B) determination of activation of various RTKs by phosphor-RTK array; (C) Western blots showing elected expression of
ASS1 and various RTK in A2058 and in five ADIR cells; (D) time-dependent activation of Axl and EphA2 in A2058 cells treated with
ADI (0.5 μg/ml) for the time as indicated. RTK, receptor tyrosine kinase.
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RTK may be involved in these ADIR cells [38]. Consistent with this
context, we found that in comparison with the parental cells, all five
A2058 ADIR variants are more sensitive to the killing by foretinib, an
ATP-competitive multiple RTKs inhibitor [39], using SRB cell
proliferation (Figure 1D) and DNA fragmentation/apoptosis assays
(Figure 1E).
Table 1.Quantitative results of phospho-RTK array analysis in parental and ADIR A2058 cell lines

A2058 58R1 58R2 58R3 58R4 58R5

p-EGFR1 þþþþþ þþ þþþþþ þ
p-ERBB2 þþ þþ þþþ
P-MET þþþ þ þ
p-ERBB4
RYK þþ þ þ
p-PDGFRb
p-IGF-1R þþ þþþþþ
p-EphA2 þþ þþþ
Enhanced Expression of Multiple RTKs in the ADIR Cells
Activation of RTKs involves protein phosphorylation, most

frequently at the tyrosine residues (Tyr). We performed Western
blotting to probe p-Tyr levels in ADIR cells. Figure 2A shows the
results of a Western blot, indicating that p-Tyr levels in all the five
ADIR cells are higher than in the A2058 cells.

To identify which RTKs are activated in the ADIR cells, we
prepared lysates from five ADIR and the A2058 cells to probe an array
of 42 different anti-RTK antibodies in duplicate immobilized on a
membrane. We found that many different RTKs were elevated in
different ADIR cell lines and that levels of activation were varied
among these ADIR cells (Figure 2B and Table 1). This assay uses total
cell lysates as probes, and it is convenient for initial survey of RTK
expression, but results need to be substantiated using additional
methods. We therefore performed Western blotting using individual
anti-RTK antibodies to probe the cell lysates. We observed that all
these ADIR cell lines show elevated expression of p-Axl and Axl, and
p-AKT and ASS1, consistent with the characters of ADIR cells as
described [20] (Figure 2C). Moreover, we found that EphA2 and Met
levels are elevated in all five A2058 ADIR cell lines, whereas levels of
EGFR/pEGFR, Her2/pHer2, and IGFR1/pIGFR1 are elevated in
some but not all ADIR cell lines.

In this study, we focused on EphA2 investigation because it is
overexpressed in all 5 clones. Using site-specific anti-p-EphA2
antibodies in Western blotting, we demonstrated that elevated
EphA2 in ADIR cells are phosphorylated either at the tyrosine Y588
and/or at the serine S897 residues. Interestingly, levels of Ephrin A1,
which is the ligand of EphA2, were not elevated in these ADIR cells as
compared with that in the A2058 cell line. It has been reported that
EphA2(Y588) phosphorylation is mainly ligand-dependent, whereas
EphA2(S897) phosphorylation is ligand-independent [40,41].

image of Figure&nbsp;2
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These ADIR cells were established by long-term exposure of
A2058 cells to ADI [30]. To investigate the short-term effects on
EphA2 expression by ADI, we treated A2058 cells with 0.5 mg/ml of
ADI from 4 to 48 hours. We found that while induction of Axl/p-Axl
occurs within 4 hours after the treatment, significant induction of
EphA2 and p-EphA2(S897) occurs 16 hours after the treatment
(Figure 2D). In contrast, levels of p-EphA2(Y588) decreased as
treatment time increased, whereas Ephrin A1 level remained with no
change. These results indicate that the ligand-independent induction
of EphA2 phosphorylation occurs early during ADIR development.

The PI3K-RSK Signal is Involved in the Upregulation of
EphA2 By ADI
Previous studies have demonstrated that phosphorylation of

EphA2(S897) is regulated by the p90 ribosomal S6 kinase (RSK)
via the MET/EKT/AKT pathway [42e44]. To investigate whether
this pathway is involved in ADI-induced EphA2 induction, we
treated A2058 cells with ADI for different lengths of time. We found
that while the steady-state RSK-1 remained with no change,
phosphorylation of RSK1 was seen 4 hours after the treatment.
Levels of p-RSK1 continued to increase thereafter but declined at
24 hours (Figure 3A). Knockdown of RSK1 using two independent
siRNAs drastically suppresses the induction of p-RSK1 by ADI
(Figure 3B). Furthermore, we found that BI-D1870, which is a
dihydropteridinone cell-permeable highly selective inhibitor of RSK
family [45], exhibits a concentration-dependent inhibition of ADI
induction of p-RSK1, p-EphA2(S897), and EphA2 expression. These
findings suggest that RSK1 is responsible for ligand-independent
EphA2(S879) activation by ADI. Phosphorylation of EphA2(S897) is
induced via the PI3-kinase (PI3K)/MET/EKT-dependent mechan-
ism (Figure 3C) [46]. Figure 3D shows that PI 103 (2 mM), a potent
PI3K inhibitor, drastically inhibits ADI-induced p-RSK1, EphA2,
and EphA2(S897) expression and that another PI3K inhibitor
Figure 3. Activation of EphA2 by ADI is mediated by RSK1. (A) Time-d
using two siRNAs shows suppression of EphA2 induction by ADI;
and (E) inhibitions of ADI-induced activation of RSK1 and EphA2 by
AKT inhibitor (perifosine) on RSKs and EphA2 treated with ADI.
24 hours. ADI, arginine deiminase.
Ly294002 (20 mM) moderately inhibits their expression (Figure 3E).
Interestingly, we also found that perifosine, a potent AKT inhibitor
[19], only marginally suppresses ADI-induced pRSK and EphA2
levels at high concentrations (10 mM) but enhances p-EphA2(S897)
expression levels (Figure 3F). These results suggest that AKT, which is
a downstream signal of PI3K, plays a negative role in ADI-induced
p-EphA2(S897) activation. In other words, AKT plays an opposite
role in regulating between Axl and EphA2 signaling.
Suppression of Axl Enhances ADI Induction of RSK1-EphA2
Signal

The observations that both Axl and Eph2 are activated by Arg
starvation strongly suggest that these two RTK signals may be
interactive. To investigate this possibility, we first used a
c-Mycetagged dominant-negative Axl recombinant (DN-Axl-c-Myc,
i.e. K558R in the kinase domain) to downregulate the Axl signal [20].
We found that expression of DN-Axl-c-Myc enhances p-RSK1,
EphA2, and p-EphA2(S897) expression (Figure 4A). To substantiate
this finding, we used a truncated form of human Axl known as soluble
Axl (sAxl) which contains only the extracellular ligandebinding
domains. sAxl functions as a “sponge” to neutralize Gas6 ligand [47].
We previously demonstrated that sAxl suppresses Axl signaling
induced by ADI [20]. Here, we show that sAxl induces p-RSK1,
EphA2, and p-EphA2 expression (Figure 4A). These combined
results demonstrate that downregulation of Axl upregulates the
RSK1-EphA2 axis.

We also performed similar experiments using two arbitrary ADIR

cell lines (58R3 and 58R4). Downregulation of Axl in 58R3 and
59R4 cell lines by Axl siRNA resulted in upregulation of p-RSK1,
EphA2, and p-EphA2(S897) but not RSK1, p-EphA2(Y588), and
Ephrin A1 (Figure 4C). These results may support the compensatory
role of RSK1-EphA2 in ADI-induced Gas6-Axl signal.
ependent activation of p-RSK1 by ADI; (B) knockdown of RSK1
(C) inhibition of EphA2 activation by RSK1 inhibitor BI-D1870; (D)
PI3K inhibitors PI-103 and Ly294002, respectively; (F) effects of
(BeF) A2058 cells were treated with the indicated drugs for
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Figure 4. Interactions between Axl and EphA2 in response to ADI. (A) Inhibition of Axl activates RSK1 and EphA2 using
dominant-negative (DN) Axl and soluble-Axl (s-Axl) recombinants in A2058 cells treated with ADI; (B) time-course suppression of
TK-Mer and Tyro3 expression by ADI; (C) knockdown of Axl in two ADIR (58R3 and 58R4) cells induces p-RSK1 and p-EphA2(S897)
but downregulates TK-Mer and Tyro3, si-scr refers to scramble siRNA; (D) marginal regulation of Axl and RSK1 by EphA2 siRNA in
A2058 cells; (E) Western blot assays showing that knockdown of EphA2 in two ADIR cells moderately increase Axl expression.
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Induction of ligand-dependent activation of Axl by ADI is initiated
by externalization of Gas6, which is also the ligand of other TAM
members, Tyro3 and Mer-TK. To investigate the behaviors of Tyro3
and Mer-TK in response to ADI, and specifically, whether enhanced
RSK1-EphA2 under Axl-knockdown conditions may be mediated by
Tyro3 or Mer-TK, we first determined the time-course expression of
Tyro3 and Mer-TK in response to ADI treatment. We found that
levels of Mer-TK were unchanged, whereas levels of Tyro3 were
reduced after a 16-hours ADI treatment (Figure 4B). In addition, we
found that knockdown of Axl reduced Tyro3 and TK-Mer expression
in two ADIR cell lines (Figure 4B). The opposite responses between
Axl and Tyro3/TK-Mer to ADI challenge suggest that RSK1-EphA2
activation is likely independent of Tyro3/TK-Mer.

To investigate whether reduced EphA2 would have a reciprocal
effect on Axl upregulation, we used two siRNAs to knockdown
EphA2. We found that even greater than 90% reduction of EphA2
levels failed to affect ADI-induced Axl levels (Figure 4D). Moreover,
knockdown of EphA2 by siRNA induces 2.5-fold and 55% increases
of Axl expression in 58R3 and 58R4 ADIR cells, respectively
(Figure 4E). These results suggest that the RSK1-EphA2 signal does
not reciprocally affect the expression of Axl in short-term ADI
treatment, although long-term treatment results in increased Axl
expression.
Elevated EphA2 Confers Acquired Resistance to EGFRi in
ADIR Cells

It would be of importance to investigate whether activation of
EphA2/Axl in the ADIR cells confers acquired resistance to RTK
inhibitors. Figure 5A and Figure 5B show that all the 5 ADIR cell
lines exhibit resistance to lapatinib (Tykerb) and gefitinib, respec-
tively, and levels of resistance ranging from 1.5-fold to > 2.5-fold. All
the five ADI cell lines also show resistance to cetuximab (Erbitux) at
reduced levels (about 0.5-fold, P < 0.5) (data not shown). Both
gefitinib and lapatinib inhibit EGFR signal by binding to the
ATP-binding sites in their kinase domains [48,49], thereby
preventing self-phosphorylation of the receptors and subsequent
activation of their downstream signaling, whereas cetuximab is a
mouse/human chimeric monoclonal antibody that binds the
extracellular ligandebinding domain of EGFR [50]. These observa-
tions suggest that the differential resistance to these EGFRi may be
associated with different mechanisms of action of these inhibitors.

Knockdown of Axl failed to significantly increase cell killing
activity of ADIR cells to lapatinib (Figure 5C) but significantly
increases sensitivity to the killing by gefitinib (Figure 5D).
Importantly, knockdown of EphA2 increases sensitivity of both
ADIR cell lines to the killing to both lapatinib (Figure 5E) and
gefitinib (Figure 5F). These results suggest that elevated EphA2 and,
to a less extend, Axl are associated with acquired resistance of ADIR

cells to EGFR inhibitors.

Axl and EphA2 in ADIR Cells are Regulated By c-Myc, and
ADIR Cells are Sensitive to c-Myc Inhibitor

We previously demonstrated that knockdown of c-Myc down-
regulates Axl [20]. Here, we found that knockdown of c-Myc also
downregulates EphA2 expression in 58R3 and 58R4 cells
(Figure 6A), indicating that EphA2 is also regulated by c-Myc.
Moreover, we found that knockdown of c-Myc in 58R3 and 58R4
cells increased their sensitivities to lapatinib (Figure 6B) and gefitinib
killing (Figure 6C). We also observed that coadministration of ADI
and JQ1, a BET bromodomain-targeting c-Myc inhibitor [51],
significantly increased cell killing of 58R3 (Figure 6C) and 58R4 cells
by ADI (Figure 6D). These results demonstrate that antiec-Myc
drug can enhance ADI's cell killing activities.

Discussion
Long-term exposure of Arg-auxotrophic cells to Arg-free conditions
results in the development of resistance to Arg-depleting agents such
as ADI. While these ADIR cells no longer require environmental Arg
for survival, they however develop exquisite nutritional dependence
for survival, as tested in charcoal-stripped FBS culture conditions. We
observed that in many independently established ADIR cell lines,
several major RTKs (Axl, EphA2, and Met) are consistently
overexpressed, and others (EGFR, Her2, and IGFR) are sporadically
overexpressed. We reason that upregulation of these RTKs is the
consequence of protracted nutritional stress under ADI treatment.

image of Figure&nbsp;4


Figure 5. Effects of Axl and EphA2 knockdown by siRNAs on sensitivities of ADIR cells to EGFRi. (A) and (B) Cell killing assays of five ADIR

cell lines treated with lapatinib or gefitinib as indicated; (C) and (D) effects of cell sensitivities to lapatinib or gefitinib, respectively,
by Axl-knockdown, respectively; (E) and (F) effects of cell sensitivities to lapatinib or gefitinib, respectively, by EphA2-knockdown
cells in ADIR 58R3 and 58R4 cells. * denotes significant (P < 0.05).
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These results document that surviving under long-term single amino
acid deprivation such as Arg can enlist multiple RTKs requirements in
cultured cells.
We have shown previously that ADIR cells overexpress Axl [20]. In

this report, we found that EphA2 expression is also induced in ADIR

cells. Importantly, we have elucidated the mechanisms underlying
EphA2 activation by ADI and how it interacts with Axl as
schematically depicted in Figure 7. Several important findings are
described: First, we found that while PI3K-MEK-AKT is the
ADI-induced Axl downstream pathway, this signal is also involved
in ADI-induced EphA2 activation because PI3K inhibitors can
suppress EphA2 activation. However, AKT apparently is not involved
in EphA2 activation because AKT inhibitor (perifosine) fails to
suppress EphA2 signal. Rather, we found that EphA2 activation is
mediated by RSK1. ADI activates RSK1 by phosphorylation, which in
turn activates pEphA2 (S897) by phosphorylation in a ligand-inde-
pendent mechanism (Figure 7). Consistent with this notion, we found
that the ligand-dependent pEphA2(Y588) is reduced. Nonetheless,
despite many previous reports showing that elevated EphA2 is
frequently associated with loss of Ephrin A1 ligand [52e54], no
significant alteration of Ephrin A1 levels was found in ADI-treated
cells and in ADIR cells. Thus, ADI-induced activation of RTKs can be
either ligand-dependent or ligand-independent (Figure 7).
Second, we found that knockdown of Axl upregulates EphA2 via
RSK1 activation in both ADI-treated and in ADIR cells, suggesting
that EphA2 is functionally compensatory of Axl. In contrast,
knockdown of EphA2 only marginally increases Axl levels, suggesting
that Axl plays less compensatory role than EphA2 does in
Arg-starvation challenge. Many recent studies have demonstrated
that activated Axl cross-activated other RTKs including EGFR, Met,
and PDGF; and Axl can form heterodimer with EGFR [55e58].
However, we found no corresponding increases of EGFR among 5
ADIR lines investigated. Moreover, the unsymmetrical cross-talk
between Axl and EphA2 signalings described here has not been
reported.

Third, in addition to RSK1, we found that EphA2 is regulated by
c-Myc. Whether c-Myc transcriptionally regulates EphA2 remains to
be firmly established although we found that several c-Mycebinding
sites are located at the promoter of EphA2. These findings, together
with our previous demonstrations that c-Myc transcriptionally
regulates ASS1 [19] and Axl [20], underscore the importance of
c-Myc in overall Arg homeostasis regulation (Figure 7). In a broad
context, recent studies have established that deregulation of c-Myc is
associated with many human malignancies. Many c-Mycedriven
cancers are characterized by altered metabolism including heightened
nutrient requirement, enhanced glycolysis, and glutaminolysis [59].

image of Figure&nbsp;5


Figure 6. Effects of c-Myc knockdown on the growth of ADIR (58R3 and 58R4) cells to EGFRi. (A) Western blots showing reduced
expression of Axl, EphA2, and ASS1 in two ADIR cells; (B) and (C) effects of c-Myc knockdown on cell proliferation of A2058 and
ADIR treated with lapatinib and gefitinib, respectively; (D) and (E) increases of cell killing effects by JQ1 in combination therapy with
ADI on 58R3 and 58R4, respectively.

Figure 7. Schematic diagram depicting Axl and EphA2 signaling to
Arg starvation response in Arg auxotrophic cells. Arg depletion
using ADI induces ligand (Gas)-dependent activation of Axl and
its downstream signal leading to induced c-Myc expression
described previously [20] and ligand-independent activation of
EphA2 via the PI3K-MEK-RSK axis. c-Myc transcriptionally
induces ASS1 expression resulting in arginine synthesis and
hence ADI resistance. c-Myc also transcriptionally regulates Axl
to amply the Axl-PI3K-AKT loop. c-Myc upregulates EphA2
expression (perhaps by transcriptional mechanism as denoted
by “?”), leading to acquired resistance to EGFRi. Horizontal bar
denotes interaction between Axl and EphA2. ADI, arginine
deiminase.
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Our observations that ADIR variants are preferentially sensitive to
charcoal-striped FBS cultured conditions described here, and are
addict to glucose and glutamine for growth previously published [30],
may at least in part be attributed to the altered c-Myc expression in
these cells. These findings suggest that c-Myc may be an important
target for augmenting the therapeutic effect of Arg starvation therapy.
As a proof of principle, we found that c-Myc inhibitor JQ1 can
enhance ADI's cell killing capacities of ADIR cells. We note that, in
contrast, c-Myc apparently does not regulate Met which is also
frequently upregulated in ADIR cells (data not shown).

Fourth, we discover that ADIR cells exhibit resistance to EGFRi.
We reason that this acquired resistance is attributed to the
upregulated EphA2 and, to a less extent, Axl knockdown of these
RTKs sensitizes these cells to EGFRi. Overexpression of Axl has been
reported to associate with reduced sensitivity to EGFRi in
cetuximab-resistant nonesmall cell lung cancer [60] and head and
neck cancer [61] Furthermore, Rho et al. [62] have also reported
antitumor activity of AXL inhibitor in EGFRi-resistant lung cancer
cells. Similarly, elevated EphA2 levels have been reported to associate
with resistance to EGFRi trastuzumab. Many small molecular
inhibitors for Axl have been in various stages of clinical evaluations
[63,64]; these inhibitors have also shown cross-inhibition of other
RTKs with reduced efficacies. EphA2 is frequently upregulated in
EGFR-overexpressing cancer cell lines, and targeting these resistant
variants with EphA2 inhibition can reduce tumor cell proliferation
and increase apoptosis [65]. Our results show that while some RTK
inhibitors such as foretinib may be beneficial for combination therapy
with ADI, others such as EGFRi [66,67] may not be effective in
targeted therapy against Arg-auxotrophic tumors.
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In conclusion, we have demonstrated the multifacets of RTK in
Arg starvation response and that selective RTK inhibitors may be of
value for developing strategies of overcoming ADI resistance. Our
current findings provide a mechanistic base for clinical investigations
that may ultimately improve the treatment outcomes of targeting
Arg-auxotrophic therapy in cancers.
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