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Abstract
Environmental change has reshuffled communities often causing taxonomic homog-
enization rather than differentiation. Some studies suggest that this increasing simi-
larity of species composition between communities is accompanied by an increase in 
similarity of trait composition—functional homogenization—although different meth-
odologies have failed to come to any consistent conclusions. Functional homogeniza-
tion could have a large effect on ecosystem functioning and stability. Here, we use 
the general definition of homogenization as “reduced spatial turnover over time” to 
compare changes in Simpson’s beta diversity (taxonomic turnover) with changes in 
Rao’s quadratic entropy beta diversity (functional turnover) in British breeding birds 
at three spatial scales. Using biotic and climatic variables, we identify which factors 
may predispose a site to homogenization. The change in turnover measures between 
two time periods, 20 years apart, was calculated. A null model approach was taken to 
identify occurrences of functional homogenization and differentiation independent 
of changes in taxonomic turnover. We used conditional autoregressive models fitted 
using integrated nested Laplace approximations to determine how environmental 
drivers and factors relating to species distributions affect changes in spatial turnover 
of species and functional diversity. The measurement of functional homogenization 
affects the chance of rejection of the null models, with many sites showing taxo-
nomic homogenization unaccompanied by functional homogenization, although oc-
currence varies with spatial scale. At the smallest scale, while temperature-related 
variables drive changes in taxonomic turnover, changes in functional turnover are 
associated with variation in growing degree days; however, changes in functional 
turnover become more difficult to predict at larger spatial scales. Our results high-
light the multifactorial processes underlying taxonomic and functional homogeniza-
tion and that redundancy in species traits may allow ecosystem functioning to be 
maintained in some areas despite changes in species composition.
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1  | INTRODUC TION

The effects of environmental change on ecological communities in-
clude an increase in compositional similarity between many areas, a 
process known as biotic homogenization (McKinney & Lockwood, 
1999; Olden & Rooney, 2006). Biotic homogenization is projected 
to have both ecological and evolutionary consequences, including 
an effect on ecosystem resilience to environmental perturbations 
(Olden, Poff, Douglas, Douglas & Fausch, 2004). The degree of ho-
mogenization varies across space (Olden, Poff & McKinney, 2006), 
and certain areas may be particularly susceptible due to a combina-
tion of biotic and abiotic factors (Olden & Poff, 2003; Ross, Woodin, 
Hester, Thompson & Birks, 2012).

Taxonomic homogenization, one form of biotic homogenization, 
can be identified by comparing spatial turnover of species between 
time periods; a decrease in spatial turnover indicates homoge-
nization, whereas an increase indicates differentiation (Baiser & 
Lockwood, 2011; McKinney & Lockwood, 1999; Olden et al., 2004; 
Tobias & Monika, 2011). However, homogenization can also com-
prise increasing similarity of community trait composition: a process 
known as “functional homogenization” (Tobias & Monika, 2011). 
Traits are an important component of biodiversity due to their role 
in driving ecosystem stability and functioning (Dıáz & Cabido, 2001; 
Olden et al., 2004), shaping species distributions (Pollock, Morris & 
Vesk, 2012), and determining responses to environmental change 
(Flynn et al., 2009; Newbold et al., 2012). Understanding the turn-
over of traits in space and time, therefore, has been recognized as an 
essential area of investigation to determine whether changes in tax-
onomic turnover are accompanied by changes in functional turnover, 
or whether functional redundancy may ensure ecosystem function-
ing is maintained despite losses in taxonomic diversity (Villéger, 
Grenouillet & Brosse, 2014). Previous studies failed to find a con-
sistent relationship between functional and taxonomic homogeniza-
tion with results varying between location, environmental pressures, 
and focal taxa (Abadie, Machon, Muratet & Porcher, 2011; Devictor, 
Julliard, Couvet, Lee & Jiguet, 2007; Monnet et al., 2014; Reif et al., 
2013; Sonnier, Johnson, Amatangelo, Rogers & Waller, 2014). Many 
of these only use a proxy for functional homogenization, that is, 
mean community specialization. This method assumes that general-
ist species colonize an area and outcompete specialist species, thus 
decreasing the mean specialization of the community (Clavel, Julliard 
& Devictor, 2011; Davey, Chamberlain, Newson, Noble & Johnston, 
2012). Using mean specialization, however, ignores similarity be-
tween communities (Gosselin, 2012), which is integral to the general 
definition of homogenization as an increase in spatial similarity of 
genetic, functional, or taxonomic diversity in time (Olden & Rooney, 
2006; Olden et al., 2004). More recently, a handful of studies have 
measured functional homogenization by calculating the difference 
in functional (dis)similarity between communities over time (Baiser 
& Lockwood, 2011; Monnet et al., 2014; Sonnier et al., 2014). Here, 
we use a similar “difference in turnover” method to incorporate a 
variety of ecological traits into a measure comparable with that of 
taxonomic homogenization.

Climate modifies the local environment, leading to both taxo-
nomic and functional homogenization (Meynard et al., 2011; Sonnier 
et al., 2014). For example, areas which have undergone a long-term 
increase in minimum temperature are expected to exhibit homog-
enization as species adapted to warmer conditions dominate the 
landscape by shifting their range (Devictor, Julliard, Couvet & Jiguet, 
2008; Powney, Cham, Smallshire & Isaac, 2015). Additionally, tem-
perature, precipitation, and soil acidity have all been identified as 
drivers of taxonomic homogenization in plants (Ross et al., 2012), in-
dicating the importance of environmental factors to changes in com-
munity similarity. Much of the literature concerning environmental 
change and biodiversity focuses on mean measures (e.g., Moreno-
Rueda & Pizarro, 2008); however, with climate change, a higher in-
cidence of extreme events is expected with regards to temperature 
and precipitation (Jentsch & Beierkuhnlein, 2008). It is, therefore, 
important to consider more criteria than just mean values of climatic 
parameters to forecast effects of climate change on biodiversity 
(Buckley & Kingsolver, 2012).

Biotic factors may also affect homogenization. Conceptual mod-
els suggest that initial community similarity, species richness, and 
ratio of invading species to those that undergo local extinction may 
influence changes in spatial turnover of species over time (Olden & 
Poff, 2003). The effect of biotic factors on homogenization using 
empirical data, however, remains to be investigated.

Here, we use data on British bird distributions from two atlas data-
sets collected 20 years apart to map changes in neighborhood turn-
over of species and traits using a moving window (similar to Barnagaud 
et al., 2017; McKnight et al., 2007) and address two main objectives: 
(a) determine whether functional homogenization accompanies taxo-
nomic homogenization, improving on previous methods by measuring 
how spatial turnover of taxonomic and functional diversity changes 
between the two time periods, and (b) identify climatic and biotic fac-
tors that influence the vulnerability of communities to homogeniza-
tion. As the drivers of avian β diversity differ between functional and 
taxonomic diversity (Meynard et al., 2011), it is likely that the driv-
ers of change in β diversity, or turnover, over time also vary between 
functional and taxonomic diversity. To address this, we use a range of 
climatic variables covering multiple physical aspects of the environ-
ment along with three biotic factors: mean binomial variance (relating 
to local species occurrence), species richness in the earlier atlas, and 
functional diversity in the earlier atlas. The mean binomial variance of 
species’ local ranges is likely to affect the ability of a species to increase 
its local range, that is, if the majority of species are present in 50% of 
the neighboring squares, then it is more likely that sufficient numbers 
of species will be able to increase or decrease their local range size so 
that their occurrences are more homogeneous and, therefore, contrib-
ute to taxonomic homogenization. On the other hand, if the majority 
of species in the neighboring area are either locally common or locally 
rare, then it is less likely that there will be a negative change in β diver-
sity as the area is already taxonomically similar. We expect, therefore, 
that areas are more susceptible to taxonomic homogenization if the 
central tendency of species’ local ranges is intermediate, that is, the 
mean binomial variance of all the species in the area is high.
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Given the above, we test the hypotheses: (a) functional and tax-
onomic homogenization occur independently of each other; and (b) 
biotic factors have a larger effect on taxonomic homogenization due 
to the geographical limits on species dispersal potential, while cli-
matic variables have a larger effect on functional homogenization 
due to trait–environment associations (Cormont, Vos, Van Turnhout, 
Foppen & ter Braak, 2011). Identifying key promoters of homoge-
nization will help inform policymakers to prioritize areas which are 
vulnerable to future homogenization for conservation planning 
and, therefore, help mitigate the adverse consequences of climate 
change (Rooney, Olden, Leach & Rogers, 2007).

2  | MATERIAL S AND METHODS

2.1 | Data

British bird distribution data at the 10 × 10 km (hectad) scale for the 
periods 1968–1972 and 1988–1991 were obtained from two atlases 
of breeding birds (Gibbons, Reid & Chapman, 1993; Sharrock, 1976; 
respectively). We excluded marine species and rare vagrants from the 
analyses. Squares with less than 50% land or no immediately neighbor-
ing squares were also excluded leaving a total of 167 species recorded 
in 2,253 sites across Great Britain. Throughout the analyses, the focal 
square is defined as each hectad in turn and neighboring squares as 
each immediately surrounding square, that is, one focal square and the 
eight neighboring squares would form a 30 × 30 km grid. This mov-
ing window approach measures the neighborhood turnover of each 
individual hectad and matches the methods used by Barnagaud et al. 
(2017), but at a finer resolution. We also considered multiple focal 
square sizes by aggregating the hectad data, increasing the scale of the 
analyses to a focal square of 30 × 30 km and 90 × 90 km. Often, differ-
ences in recorder effort can confound analyses of citizen science data; 
however, recorder effort for the two atlases used here is considered in-
tensive and relatively consistent (Evans, Greenwood & Gaston, 2005).

Trait data was obtained from the European Bird Trait Database 
(Storchová, Hořák & Hurlbert, 2018). Body mass, clutch size, age at 
first breeding, young developmental type (altricial, semialtricial, or pre-
cocial), nesting behavior (solitary nester, semicolonial, and/or colonial), 
nest type (ground, hole, open arboreal, closed arboreal, ground closed, 
and/or nest parasite), migratory behavior, and diet were selected for 
our analyses as they “impact fitness indirectly via effects on growth, 
reproduction, and survival” (Violle et al., 2007), have complete cov-
erage of the species included in the study, are important response or 
effect traits (Petchey & Gaston, 2006), and minimize redundant infor-
mation between traits (Lefcheck, Bastazini & Griffin, 2014). Although 
they are technically behavioral characteristics, migratory status and 
diet were included as traits, as in other studies of vertebrate functional 
diversity (Luck, Carter & Smallbone, 2013).

2.2 | Variable calculation

Three biotic variables were included in each analysis; taxonomic 
and functional diversity in the focal square in the earlier of the two 

atlases, and mean binomial variance of local species distributions, 
details of which follow. Species richness was included as a meas-
ure of taxonomic diversity in the earlier atlas. Functional diversity 
was calculated using Rao’s quadratic entropy (Rao Q; Botta-Dukát, 
2005). Among the large number of functional diversity measures 
currently used within the literature (Mouchet et al., 2010), Rao Q 
was chosen as it can be used to calculate both α and β components of 
diversity. Rao Q measures the functional distance between two ran-
domly selected individuals within a community (Ricotta, 2005). We 
used Gower distances to measure functional distances which can in-
corporate both continuous and discrete traits. Rao Q was calculated 
using the dbFD function in the R package FD (Laliberté & Legendre, 
2010; Laliberté, Legendre & Shipley, 2014).

The mean binomial variance represents the local commonness or 
rarity of species locally. This measure was chosen as it reflects the 
distribution of species’ local occurrences which we might expect to 
influence species turnover. Mean binomial variance is calculated by 
taking the average of the binomial variance (npq—where n = number 
of hectads, p = number surrounding hectads in which the species is 
present, and q = number of surrounding hectads in which the spe-
cies is absent) of occurrence of all species found in the focal square 
and its neighboring squares (i.e., within a grid of 30 × 30 km). This 
measure was then recalculated with a focal square of 30 × 30 km 
and neighborhood of 90 × 90 km, and again with a focal square of 
90 × 90 km and neighborhood of 270 × 270 km. This measure has a 
maximum value if all species occurring locally are present in 50% of 
the neighboring squares and a minimum value if either all species in 
the focal square are locally ubiquitous or locally absent.

Monthly temperature and precipitation data were downloaded 
from UKCP09 (metoffice.gov.uk/climatechange/science/monitor-
ing/ukcp09) for the years 1961–1990 and used to calculate climatic 
variables relating to:

1.	 Minimum temperature—the mean daily minimum temperature 
for the coldest annual month;

2.	 Drought—potential evapotranspiration minus the total annual 
precipitation using the method of Burt and Shahgedanova (1998); 
and

3.	 Growing degree days—the mean total accumulated temperature 
above a threshold of 5.5°C.

For each of these attributes the following measures were 
calculated:

1.	Mean—average of the 30 (each year) values;
2.	Variance—residual variance of an observed least squares regres-
sion through the data;

3.	Lag autocorrelation—correlation between each variable at time t 
and time t − 1;

4.	Long-term trend—slope of observed least squares regression line 
fitted through the time series;

5.	Fat tail—relative frequency of more extreme climatic events, that 
is, time spent in the tail of the distribution of values relative to 
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the time spent in the central distribution mass calculated as (Q 
0.975 − Q 0.025)/(Q 0.875 − Q 0.125), where Q is the quantile 
function (Brys, Hubert & Struyf, 2006);

In total, this produces 15 climatic variables included within the 
analyses.

2.3 | Turnover calculations

We measured taxonomic turnover using the modified Simpson’s 
index, βsim (Lennon, Koleff, Greenwood & Gaston, 2001): 

 where a is the number of species found in both the focal community 
and the neighboring community, b is the number of species found 
only in the neighboring community and not the focal community, and 
c is the number of species found in the focal community but absent 
from the neighboring community. βsim was found to perform best in a 
review of 24 β diversity measures (Koleff, Gaston & Lennon, 2003). It 
is a “narrow” sense measure of β diversity which focuses on compo-
sitional differences in communities independent of any species rich-
ness gradients (Lennon et al., 2001) and satisfies the requirements 
of symmetry, homogeneity, and nestedness of robust β diversity 
measures (Koleff et al., 2003).

Functional turnover was calculated using the decomposition of 
Rao Q, which we call βrao. This measures the gain in functional diver-
sity when communities are pooled, that is, the difference between 
the dissimilarity of two random individuals in the whole region (the 
pooled communities) and the dissimilarity of two individuals within 
communities (De Bello et al., 2009). We used the R function be-
taQmult provided in Villéger, Ramos Miranda, Flores Hernandez 
and Mouillot (2012) to calculate βrao. βrao was calculated for the 
focal square and each of its neighbors (maximum 8) in turn, and the 
mean of each taken. This accounted for fewer neighbors for coastal 
squares. We applied a moving window algorithm so that each square 
within the dataset was included as the focal square in the calculations 
of turnover for both atlases. Two additional measures of functional 
turnover, nearest functional neighbor and mean functional dissimi-
larity (Sonnier et al., 2014; Swenson et al., 2012) between neighbor-
ing hectads were also calculated to test whether the occurrence of 
functional homogenization differs with the measure of functional 
turnover used. These measures use functional distances between 
species, similar to βrao, to calculate functional dissimilarity between 
communities; however, their construction and interpretation are less 
similar to βsim. The details and results of nearest functional neighbor 
and mean functional dissimilarity measures of functional turnover 
are provided in the supplementary information.

2.4 | Analyses

Two sets of analyses were carried out; investigating the occurrence 
of homogenization and investigating the drivers of homogenization. 

For both sets of analyses, the degree of homogenization for all turn-
over measures was calculated as the spatial turnover in the second 
atlas minus the spatial turnover in the first atlas. As βsim and βrao are 
dissimilarity measures, negative differences represent homogeniza-
tion, while positive values indicate differentiation between the two 
time periods. All analyses were carried out at the three spatial scales: 
10 × 10; 30 × 30; and 90 × 90 km.

We took a null model approach to test the presence of func-
tional homogenization irrespective of taxonomic homogenization. 
We used the random assembly model, which is a trait-level null 
model (Morlon et al., 2011) where species row names are shuffled 
in the species-by-trait matrix using the independent swap algorithm 
(Gotelli & Entsminger, 2003) to create 999 new random species-by-
trait matrices. This constrained randomization approach maintains 
species richness, species turnover, spatial structure of species dis-
tributions, trait ranges, and trait covariances (Swenson et al., 2012). 
The random trait matrices were used to calculate βrao for both at-
lases from which change between the two atlases was calculated. 
This gave us a null distribution of changes in functional turnover to 
address the question of whether functional homogenization accom-
panies taxonomic homogenization. We calculated p values for the 
location of the observed change in turnover in the null probability 
distribution to determine whether to reject the null hypothesis using 
a two-tailed test.

We used intrinsic conditional autoregressive models, which ac-
count for spatial autocorrelation within the error term, under Bayesian 
inference using the Integrated Nested Laplace Approximation (INLA) 
to model changes in functional turnover (βrao) as a function of change 
in taxonomic turnover (βsim) using a normally distributed, uninforma-
tive prior with a precision of 0.001. Spatial errors were given log-
gamma priors with a precision of 0.005. Plotting these relationships 
at each scale allowed the identification of homogenization and dif-
ferentiation processes within each square.

To identify specific drivers of homogenization we regressed cli-
matic and biotic variables against the changes in turnover calculated 
above. These were combined into a multimodel information theo-
retic approach (Burnham & Anderson, 2002) using a restricted set 
of three models, shown in Table 1, and compared using Deviance 
Information Criterion (DIC) which provides a measure of model fit. 
Although this measure can underpenalize models with a complex 
random error structure, we chose this criterion over Watanabe-
Akaike information criterion (WAIC) which assumes independent 
observations and, therefore, is not appropriate for our spatially 
structured data (Hooten & Hobbs, 2014). This combination of 
models was selected to test the hypothesis that biotic variables 
drive changes in taxonomic turnover, while climatic variables drive 
changes in functional turnover. Out of the vast number of variable 
combinations possible, the restricted set of models included in this 
analysis do not favor the selection of one set of variables over the 
other. Due to the spatial nature of the data, we again used intrin-
sic conditional autoregressive models which account for the spatial 
structure within the residuals to model the change in spatial turn-
over between the two time periods as a function of the climatic and 

�sim=
min (b,c)

min (b,c)+a
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biotic variables outlined above. We took a Bayesian inference ap-
proach to these models using INLA. Latitude and longitude were also 
included as fixed effects in all models; this relaxes the assumption 
of intrinsic conditional autoregressive models that spatial errors are 
stationary (Beale, Brewer & Lennon, 2014; Beale, Lennon, Yearsley, 
Brewer & Elston, 2010). This improves the accuracy of credible in-
terval estimation (Beale et al., 2014). All variables were scaled and 
centered to aid with convergence and to enable comparisons of ef-
fect sizes post hoc. All models were scaled to have a generalized 
variance equal to 1, which reduced the number of effective param-
eters, and were fitted with a Gaussian likelihood. Covariates were 
given normally distributed, uninformative priors with a precision of 
0.001, while spatial errors were fitted with log-gamma priors and a 
precision of 0.005. Analyses were carried out in R v3.2.2 using the 
package R-INLA (Rue, Martino & Chopin, 2009).

3  | RESULTS

3.1 | Occurrence of functional homogenization

Changes in βsim and βrao varied in space (Figure 1). Change in βrao 
varied with change in βsim at the hectad scale [median = 0.0083, 
credible intervals (CI) = (0.0038, 0.013); Figure 2a] but not at either 
of the larger scales investigated [30 km scale: median = 0.0055, 
CI = (−0.0046, 0.0155); 90 km scale: median = 0.00190, CI = (−0.014, 
0.0178); Figure 2b,c]. The null model of random change in βrao was 
rejected in 25.6% of squares at the hectad scale, 54.8% of squares 
at the 30 km scale, and 81.5% sites at the 90 km scale, meaning that 
as spatial scale increases, functional turnover changes are more than 
expected by chance given changes in taxonomic turnover. The ob-
served occurrences of homogenization and differentiation of spe-
cies and traits varied with spatial scale (Tables 2–4). At the hectad 
scale, where the change in βrao differed from that expected from 
the null model, the majority of squares (438 of 599) showed an in-
crease in functional turnover between the two time periods, indi-
cating functional differentiation. Most of these sites (349 of 599) 
also exhibited taxonomic differentiation through an increase in βsim; 
however, 189 sites showed functional differentiation but taxonomic 
homogenization, that is, an increase in βrao but a decrease in βsim. 
The largest spatial scale (90 × 90 km) was the only scale at which 
taxonomic homogenization was more frequently associated with 
functional homogenization rather functional differentiation. The use 
of additional measures of functional turnover, that is, nearest func-
tional neighbor and mean functional dissimilarity, showed that the 
occurrence of functional homogenization depends on the measure 
of functional turnover used (Supporting Information Appendix S2).

3.2 | Drivers of changes in turnover

The climate only model had the lowest DIC for both change in βsim 
and change in βrao at the hectad scale (Table 5), meaning that biotic 
variables were excluded from both best-fitting models. For the two 
larger spatial scales, the full model performed best for changes in TA
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βsim, while the biotic only model performed best for changes in βrao. 
The covariates with the largest effect sizes varied between turnover 
measures and spatial scale (Figures 3–5).

At the hectad scale, mean minimum temperature had the larg-
est effect size on change in βsim [median = −0.0155, CI = (−0.0226, 
−0.0084)]. Variance in minimum temperature also had a strong, neg-
ative effect [median = −0.0106, CI = (−0.0154, 0.0058)]. Although 
variance in minimum temperature also affected changes in βrao 
[median = −0.1391, CI = (−0.2688, −0.0095)], the covariates with 
the strongest effect sizes were both related to variation in grow-
ing degree days, that is, variance in growing degree days [me-
dian = −0.2292, CI = (−0.4032, −0.0553)] and lag autocorrelation in 
growing degree days [median = 0.2006, CI = (0.1086, 0.2925)]. The 
frequency of extreme events in minimum temperature and growing 
degree days influenced the degree of change in βsim, but extreme 

events had no effect on changes in βrao as the credible intervals al-
ways spanned zero.

Changes in βrao were not explained by any of our covariates at 
either of the larger two scales as the credible intervals of the dis-
tributions always spanned zero. Species richness explained some 
of the variation in changes in βsim in models at all three spatial 
scales, but the mean binomial variance only appeared important 
in models at the two larger scales [30 km: median = −0.0033, 
CI = (−0.0042, −0.0024); 90 km: median = −0.0014, CI = (−0.0019, 
−0.0009)]. The covariate with the largest effect size for changes 
in βsim at the 30 × 30 km scale was the relative number of extreme 
events in minimum temperature [median = −0.0074, CI = (−0.009, 
−0.0058)], while at the 90 × 90 km scale it was the long-term 
trend in growing degree days [median = −0.0068, CI = (−0.0097, 
−0.0039)].

F IGURE  1 Maps showing change 
in βsim (a,c,e) and βrao (b,d,f) of British 
avifauna in squares of 10 × 10 km (top 
row), 30 × 30 km (middle row), and 
90 × 90 km (bottom row) between two 
time periods 20 years apart
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4  | DISCUSSION

Taxonomic and functional homogenization of birds appears to be hap-
pening globally at a large scale, driven by human influences (Barnagaud 
et al., 2017); however, using a null model approach, we show that the 
occurrence of functional homogenization among British birds is not 
consistent given changes in taxonomic turnover at multiple spatial 
scales. The occurrence of functional homogenization varies with both 
spatial scale and measure of functional turnover (results for nearest 
functional neighbor and mean functional dissimilarity are presented 
in Supporting Information Appendix S2). At the largest spatial scale, in 
squares where changes in βrao differ from the null expectation, the ma-
jority of squares show both taxonomic and functional homogenization, 
whereas at the smallest spatial scale, most squares show taxonomic 
and functional differentiation, although the overall number of squares 
where the null was rejected was considerably less at this scale.

Changes in taxonomic and functional turnover only appear to be 
correlated at the smallest spatial scale. Although this correlation is 

positive, nearly a quarter of hectads show taxonomic homogenization 
with either no associated change in βrao or functional differentiation. 
Taxonomic homogenization was also more frequently accompanied 
by functional differentiation than functional homogenization at the 
30 × 30 km scale. This suggests that despite areas becoming more 
compositionally similar, trait diversity is maintained. The impact of 
losing or gaining species on ecosystem functioning depends on the 
degree of trait overlap between species within a community (Baiser 
& Lockwood, 2011). Our results suggest a high level of trait overlap 
within a hectad, known as functional redundancy, as although spe-
cies composition is becoming more similar, trait heterogeneity be-
tween squares is maintained, or, in some cases, even differentiates. 
This is consistent with Monnet et al. (2014) who found that temporal 
changes in taxonomic β diversity were not necessarily accompanied 
by corresponding changes in either functional or phylogenetic β di-
versity of avian communities in France. The same dataset, however, 
has revealed functional homogenization in response to urbanization 
(Devictor et al.,2007), although this study used a homogenization 

F IGURE  2 Scatter plot of change 
in functional turnover (βrao) plotted 
against change in taxonomic turnover 
(βsim) at three spatial scales (a) 10 km, 
(b) 30 km, and (c) 90 km squares. Dark 
points indicate sites where the change 
in functional turnover is different from 
that expected from the null distribution 
generated, and therefore, we reject the 
null model. The null distribution was 
generated using a random name swap 
algorithm to randomize the species-by-
trait matrix for calculation of βrao
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index of generalist and specialist species to measure functional ho-
mogenization, which may account for the contrasting results. This 
highlights the need to widen the focus from specialization when in-
vestigating functional homogenization and consider it in the context 
of temporal changes in the spatial dissimilarity of communities, as 
outlined by Olden et al. (2004).

Despite observations that changes in occurrences of British 
butterfly species between 1970–1982 and 1995–1999 can be 
deduced from spatial distribution patterns (Wilson, Thomas, Fox, 
Roy & Kunin, 2004), as well as theoretical and empirical evidence 

for the influence of biodiversity on biotic homogenization (Doxa, 
Paracchini, Pointereau, Devictor & Jiguet, 2012; Olden & Poff, 
2003; Villéger et al., 2014), species richness and mean binomial 
variance were only included in the best performing model for 
changes in taxonomic turnover at the two larger spatial scales, 
showing negative relationships. Our hypothesis that biotic vari-
ables drive taxonomic homogenization, while climatic variables 
drive functional homogenization is therefore opposed at the 
smallest spatial scale. At larger spatial scales, however, our results 
support our predictions that squares where all occurring species 
are either locally rare or locally common showed more negative 
changes in βsim, that is, taxonomic homogenization. The varia-
tion in results with spatial scale may represent the scale at which 
dispersal becomes a limiting factor to a species’ distribution. 
Additionally, using a more recent bird atlas (i.e., Gillings, Balmer & 
Fuller, 2015) to study changes over a longer and more recent time 
period, such as that studied by Wilson et al. (2004), may yet re-
veal greater changes in turnover driven by measures of the spatial 
structure of distributions. The impact of these variables may also 
work at the species level, determining changes in species distribu-
tions, as shown in British and French butterflies where the signal 
was lost when combined into a community-level study (Wilson 
et al., 2004).

Although no covariate had an opposing effect on changes in taxo-
nomic and functional turnover, unlike Barnagaud et al. (2017), many co-
variates only appear important for changes in one type of turnover. For 
example, at the hectad scale, although both mean minimum tempera-
ture and mean drought show an association with changes in βsim, no 
mean measures showed any relationship with changes in βrao. Crucially, 
none of our covariates explained variation in change in βrao at either of 
the larger spatial scales. At the smallest scale, however, the strongest 
climatic drivers differ between changes in βsim and changes in βRao; tem-
perature is important for changes in taxonomic turnover, while growing 
degree days are important for changes in functional turnover, despite 
concurrent changes in community specialization of British birds with 
changes in both mean temperature and mean rainfall over a 13-year 

Functional homogenization Functional differentiation

Taxonomic homogenization 61 189

Taxonomic differentiation 100 249

TABLE  2 Table of counts of squares 
where changes in βrao differed from 
expected given a null distribution of 
changes at the 10 × 10 km scale

Functional homogenization Functional differentiation

Taxonomic homogenization 152 305

Taxonomic differentiation 216 567

TABLE  3 Table of counts of squares 
where changes in βrao differed from 
expected given a null distribution of 
changes at the 30 × 30 km scale

Functional homogenization Functional differentiation

Taxonomic homogenization 618 321

Taxonomic differentiation 433 463

TABLE  4 Table of counts of squares 
where changes in βrao differed from 
expected given a null distribution of 
changes at the 90 × 90 km scale

TABLE  5 Table showing the models ranked by DIC for changes 
in each of the measures of turnover and the differences in DIC from 
the best performing model

Scale
Turnover 
measure Model DIC ΔDIC

10 × 10 km Change in βsim Climate −14779.87 0

Full −14658.46 121.41

Biotic −13430.89 1348.98

Change in βrao Climate −11056.94 0

Biotic −11047.75 9.19

Full −11044.92 12.02

30 × 30 km Change in βsim Full −17071.12 0

Biotic −17017.53 53.59

Climate −16828.00 243.12

Change in βrao Biotic −23153.78 0

Full −23148.17 5.61

Climate −23142.58 11.2

90 × 90 km Change in βsim Full −18487.43 0

Climate −18352.79 134.64

Biotic −17971.18 516.25

Change in βrao Biotic −23185.59 0

Climate −23173.58 12.01

Full −23167.89 17.70
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period (Davey et al., 2012). Specifically, our results show that, at the 
hectad scale, mean minimum temperature drives the largest changes in 
βsim, while variance in growing degree days drives the largest changes 
in βrao. Overall, variation in growing degree days appears to promote 
functional homogenization as greater homogenization occurs in areas 

where there is increased variance and less year-to-year predictability. 
Growing degree days has been included in climate envelope models of 
avian distributions a number of times (Beale et al., 2014; Gregory et al., 
2009; Huntley, Collingham, Willis & Green, 2008), as it represents the 
thermal energy available during the growing season and therefore is 

F IGURE  3 Coefficient plots of the 
climate only model for the analyses 
carried out at the 10 × 10 km scale, which 
was the best-fitting model determined 
using DIC, for (a) change in βsim and (b) 
change in βrao. Points indicate the median 
estimate of the posterior distribution, and 
lines represent the 95% credible interval. 
Where the credible intervals cross the 
dashed 0 line that particular independent 
variable does not have a substantial effect 
on the dependent variable. autox: lag 
autocorrelation; D: variables relating to 
drought; Drought: mean drought; Ftailx: 
fat tail measure of extreme events; G: 
variables relating to growing degree 
days; GDD: mean growing degree days; 
Lat.: latitude; Long.: longitude; LTTx: 
detrended long-term trend; Min. temp.: 
mean minimum temperature; T: variables 
relating to minimum temperature; varx: 
variance

F IGURE  4 Coefficient plot of the full model for change in βsim at the 30 × 30 km scale. This was the best-fitting model, determined using 
DIC, at this scale. Points indicate the median estimate of the posterior distribution, and lines represent the 95% credible interval. Where the 
credible intervals cross the dashed 0 line that particular independent variable does not have a substantial effect on the dependent variable. 
Squares denote spatial covariates, triangles denote biotic covariates, and circles denote climate covariates. autox: lag autocorrelation; D: 
variables relating to drought; Drought: mean drought; Ftailx: fat tail measure of extreme events; G: variables relating to growing degree days; 
GDD: mean growing degree days; Lat.: latitude; Long.: longitude; LTTx: detrended long-term trend; MBV: mean binomial variance; Min. temp.: 
mean minimum temperature; RaoQ: Rao’s quadratic entropy; SR: species richness; T: variables relating to minimum temperature; varx: variance
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linked to resource availability (Huntley et al., 2008). Our results suggest 
that the variation in this energy at the hectad scale selects directly on 
species traits and, thus, spatial heterogeneity of functional diversity. 
Homogenization is occurring where resource availability is unstable. At 
larger spatial scales, temporal variation is also important to changes in 
βsim with steeper long-term trends (i.e., larger changes over the entire 
time period) and greater relative number of extreme events of multiple 
climatic components appearing to increase the degree of taxonomic 
homogenization. The observed relationships of changes in taxonomic 
and functional turnover with climatic variance, year-to-year predict-
ability, long-term trends, and extreme events measures at various 
scales show that more negative changes in turnover, that is, homog-
enization, occur in unstable environments, while a stable environment 
maintains spatial turnover and promotes more positive changes. This 
contrasts with the findings of Martin and Ferrer (2015), who showed 
that for Mediterranean birds, mammals, amphibians, and reptiles, 
temporally variable environments maintained higher spatial turnover; 
however, it supports the suggestion that environmental disturbances 
contribute to community homogenization through niche selection of 
disturbance-tolerant species (Myers, Chase, Crandall & Jiménez, 2015). 
Environmental stability–spatial turnover relationships appear to be 
sparse within the literature, and the results found in the present paper 
open up a potential area of future research to further investigate this 
relationship.

The “difference in turnover” approach we employed for this study 
may help identify additional drivers of functional homogenization, such 
as land degradation. Results using mean community specialization have 
varied; for example, avian community specialization increased along a 
forest–agricultural gradient (Clavero & Brotons, 2010) but decreased 
along an urbanization gradient (Devictor et al., 2007). While the ef-
fects of changes in climate and land use have often been considered 

separately, their combined effects should also be considered when 
studying the impact of environmental change on ecological commu-
nities (Oliver & Morecroft, 2014). Building the framework used in this 
paper into investigations of the effects of multiple components of 
environmental change, along with their interactions, may further im-
prove our predictions of areas susceptible to taxonomic and functional 
homogenization. Nonnative species may also contribute to functional 
homogenization, as they have been frequently implicated in taxonomic 
homogenization (Lockwood, Brooks & McKinney, 2000; McKinney & La 
Sorte, 2007; Rooney, Wiegmann, Rogers & Waller, 2004). We excluded 
nonnative and vagrant species from our analyses which focussed on 
changes in turnover of native and naturalized species. Despite this, 
there was evidence of both taxonomic and functional homogenization 
in a number of areas, indicating that mechanisms contributing to biotic 
homogenization are multifactorial: targeting invasive species alone will 
not prevent increasing community similarity of either species or traits.

Functional diversity is an important axis of biodiversity which dic-
tates ecosystem functioning (Clark, Flynn, Butterfield & Reich, 2012; 
Díaz et al., 2007), community responses to environmental change 
(Ernst, Linsenmair & Rödel, 2006; Forrest, Thorp, Kremen & Williams, 
2015; Meynard et al., 2011), and community stability and resilience 
(Mori, Furukawa & Sasaki, 2013). Using spatial (dis)similarity rep-
resents a recent approach to investigating functional homogenization 
and makes it more comparable with measures of taxonomic homoge-
nization than previously used measures of mean community special-
ization. The changes in functional turnover independent of changes in 
taxonomic turnover evident in British avifauna reinforce the assertion 
that local colonizations and extinctions do not necessarily result in an 
associated change in trait composition (Baiser & Lockwood, 2011), 
and it is ill-advised, therefore, to make any predictions about changes 
in ecosystem functioning based on the identification of taxonomic 

F IGURE  5 Coefficient plot of the full model for change in βsim at the 90 × 90 km scale. This was the best-fitting model, determined using 
DIC, at this scale. Points indicate the median estimate of the posterior distribution, and lines represent the 95% credible interval. Where the 
credible intervals cross the dashed 0 line that particular independent variable does not have a substantial effect on the dependent variable. 
Squares denote spatial covariates, triangles denote biotic covariates and circles denote climate covariates. autox: lag autocorrelation; D: 
variables relating to drought; Drought: mean drought; Ftailx: fat tail measure of extreme events; G: variables relating to growing degree 
days; GDD: mean growing degree days; Lat.: latitude; Long.: longitude; LTTx: detrended long-term trend; MBV: mean binomial variance; Min. 
temp.: mean minimum temperature; RaoQ: Rao’s quadratic entropy; SR: species richness; T: variables relating to minimum temperature; varx: 
variance
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homogenization alone. The mechanisms driving taxonomic and func-
tional homogenization are multifactorial, and actions taken to mitigate 
homogenization and its ecological consequences must account for 
this. Both functional diversity and species richness should be consid-
ered when planning habitat conservation to protect areas vulnerable 
to functional homogenization. Understanding the link between cli-
mate and homogenization will also help inform predictions of biodiver-
sity responses to future climate projections. This study begins to build 
a comprehensive checklist of factors that increase the susceptibility of 
avian communities to homogenization at multiple spatial scales, which 
can be added to with further analyses on community composition, 
land cover, and invasive species potential.
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