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Abstract
Environmental	change	has	reshuffled	communities	often	causing	taxonomic	homog-
enization	rather	than	differentiation.	Some	studies	suggest	that	this	increasing	simi-
larity	of	species	composition	between	communities	is	accompanied	by	an	increase	in	
similarity	of	trait	composition—functional	homogenization—although	different	meth-
odologies	have	failed	to	come	to	any	consistent	conclusions.	Functional	homogeniza-
tion	could	have	a	large	effect	on	ecosystem	functioning	and	stability.	Here,	we	use	
the	general	definition	of	homogenization	as	“reduced	spatial	turnover	over	time”	to	
compare	changes	in	Simpson’s	beta	diversity	(taxonomic	turnover)	with	changes	in	
Rao’s	quadratic	entropy	beta	diversity	(functional	turnover)	in	British	breeding	birds	
at	three	spatial	scales.	Using	biotic	and	climatic	variables,	we	identify	which	factors	
may	predispose	a	site	to	homogenization.	The	change	in	turnover	measures	between	
two	time	periods,	20	years	apart,	was	calculated.	A	null	model	approach	was	taken	to	
identify	occurrences	of	functional	homogenization	and	differentiation	independent	
of	changes	in	taxonomic	turnover.	We	used	conditional	autoregressive	models	fitted	
using	 integrated	 nested	 Laplace	 approximations	 to	 determine	 how	 environmental	
drivers	and	factors	relating	to	species	distributions	affect	changes	in	spatial	turnover	
of	species	and	functional	diversity.	The	measurement	of	functional	homogenization	
affects	 the	chance	of	 rejection	of	 the	null	models,	with	many	sites	 showing	 taxo-
nomic	homogenization	unaccompanied	by	functional	homogenization,	although	oc-
currence	varies	with	spatial	scale.	At	the	smallest	scale,	while	temperature-	related	
variables	drive	 changes	 in	 taxonomic	 turnover,	 changes	 in	 functional	 turnover	are	
associated	with	 variation	 in	 growing	 degree	 days;	 however,	 changes	 in	 functional	
turnover	become	more	difficult	to	predict	at	larger	spatial	scales.	Our	results	high-
light	the	multifactorial	processes	underlying	taxonomic	and	functional	homogeniza-
tion	and	 that	 redundancy	 in	species	 traits	may	allow	ecosystem	functioning	 to	be	
maintained	in	some	areas	despite	changes	in	species	composition.
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1  | INTRODUC TION

The	effects	of	environmental	change	on	ecological	communities	in-
clude	an	increase	in	compositional	similarity	between	many	areas,	a	
process	 known	 as	 biotic	 homogenization	 (McKinney	&	 Lockwood,	
1999;	Olden	&	Rooney,	2006).	Biotic	homogenization	 is	projected	
to	 have	 both	 ecological	 and	 evolutionary	 consequences,	 including	
an	 effect	 on	 ecosystem	 resilience	 to	 environmental	 perturbations	
(Olden,	Poff,	Douglas,	Douglas	&	Fausch,	2004).	The	degree	of	ho-
mogenization	varies	across	space	(Olden,	Poff	&	McKinney,	2006),	
and	certain	areas	may	be	particularly	susceptible	due	to	a	combina-
tion	of	biotic	and	abiotic	factors	(Olden	&	Poff,	2003;	Ross,	Woodin,	
Hester,	Thompson	&	Birks,	2012).

Taxonomic	homogenization,	one	form	of	biotic	homogenization,	
can	be	identified	by	comparing	spatial	turnover	of	species	between	
time	 periods;	 a	 decrease	 in	 spatial	 turnover	 indicates	 homoge-
nization,	 whereas	 an	 increase	 indicates	 differentiation	 (Baiser	 &	
Lockwood,	2011;	McKinney	&	Lockwood,	1999;	Olden	et	al.,	2004;	
Tobias	&	Monika,	 2011).	However,	 homogenization	 can	 also	 com-
prise	increasing	similarity	of	community	trait	composition:	a	process	
known	 as	 “functional	 homogenization”	 (Tobias	 &	 Monika,	 2011).	
Traits	are	an	important	component	of	biodiversity	due	to	their	role	
in	driving	ecosystem	stability	and	functioning	(Dıáz	&	Cabido,	2001;	
Olden	et	al.,	2004),	shaping	species	distributions	(Pollock,	Morris	&	
Vesk,	 2012),	 and	 determining	 responses	 to	 environmental	 change	
(Flynn	et	al.,	2009;	Newbold	et	al.,	2012).	Understanding	the	turn-
over	of	traits	in	space	and	time,	therefore,	has	been	recognized	as	an	
essential	area	of	investigation	to	determine	whether	changes	in	tax-
onomic	turnover	are	accompanied	by	changes	in	functional	turnover,	
or	whether	functional	redundancy	may	ensure	ecosystem	function-
ing	 is	 maintained	 despite	 losses	 in	 taxonomic	 diversity	 (Villéger,	
Grenouillet	&	Brosse,	2014).	Previous	studies	 failed	 to	 find	a	con-
sistent	relationship	between	functional	and	taxonomic	homogeniza-
tion	with	results	varying	between	location,	environmental	pressures,	
and	focal	taxa	(Abadie,	Machon,	Muratet	&	Porcher,	2011;	Devictor,	
Julliard,	Couvet,	Lee	&	Jiguet,	2007;	Monnet	et	al.,	2014;	Reif	et	al.,	
2013;	Sonnier,	Johnson,	Amatangelo,	Rogers	&	Waller,	2014).	Many	
of	 these	 only	 use	 a	 proxy	 for	 functional	 homogenization,	 that	 is,	
mean	community	specialization.	This	method	assumes	that	general-
ist	species	colonize	an	area	and	outcompete	specialist	species,	thus	
decreasing	the	mean	specialization	of	the	community	(Clavel,	Julliard	
&	Devictor,	2011;	Davey,	Chamberlain,	Newson,	Noble	&	Johnston,	
2012).	 Using	 mean	 specialization,	 however,	 ignores	 similarity	 be-
tween	communities	(Gosselin,	2012),	which	is	integral	to	the	general	
definition	of	homogenization	as	 an	 increase	 in	 spatial	 similarity	of	
genetic,	functional,	or	taxonomic	diversity	in	time	(Olden	&	Rooney,	
2006;	Olden	et	al.,	2004).	More	recently,	a	handful	of	studies	have	
measured	 functional	homogenization	by	calculating	 the	difference	
in	functional	 (dis)similarity	between	communities	over	time	(Baiser	
&	Lockwood,	2011;	Monnet	et	al.,	2014;	Sonnier	et	al.,	2014).	Here,	
we	use	 a	 similar	 “difference	 in	 turnover”	method	 to	 incorporate	 a	
variety	of	ecological	traits	 into	a	measure	comparable	with	that	of	
taxonomic	homogenization.

Climate	modifies	 the	 local	 environment,	 leading	 to	 both	 taxo-
nomic	and	functional	homogenization	(Meynard	et	al.,	2011;	Sonnier	
et	al.,	2014).	For	example,	areas	which	have	undergone	a	long-	term	
increase	 in	minimum	 temperature	are	expected	 to	exhibit	homog-
enization	 as	 species	 adapted	 to	 warmer	 conditions	 dominate	 the	
landscape	by	shifting	their	range	(Devictor,	Julliard,	Couvet	&	Jiguet,	
2008;	Powney,	Cham,	Smallshire	&	Isaac,	2015).	Additionally,	tem-
perature,	 precipitation,	 and	 soil	 acidity	 have	 all	 been	 identified	 as	
drivers	of	taxonomic	homogenization	in	plants	(Ross	et	al.,	2012),	in-
dicating	the	importance	of	environmental	factors	to	changes	in	com-
munity	similarity.	Much	of	the	literature	concerning	environmental	
change	and	biodiversity	 focuses	on	mean	measures	 (e.g.,	Moreno-	
Rueda	&	Pizarro,	2008);	however,	with	climate	change,	a	higher	in-
cidence	of	extreme	events	is	expected	with	regards	to	temperature	
and	precipitation	 (Jentsch	&	Beierkuhnlein,	 2008).	 It	 is,	 therefore,	
important	to	consider	more	criteria	than	just	mean	values	of	climatic	
parameters	 to	 forecast	 effects	 of	 climate	 change	 on	 biodiversity	
(Buckley	&	Kingsolver,	2012).

Biotic	factors	may	also	affect	homogenization.	Conceptual	mod-
els	 suggest	 that	 initial	 community	 similarity,	 species	 richness,	 and	
ratio	of	invading	species	to	those	that	undergo	local	extinction	may	
influence	changes	in	spatial	turnover	of	species	over	time	(Olden	&	
Poff,	 2003).	 The	 effect	 of	 biotic	 factors	 on	 homogenization	 using	
empirical	data,	however,	remains	to	be	investigated.

Here,	we	use	data	on	British	bird	distributions	from	two	atlas	data-
sets	collected	20	years	apart	to	map	changes	 in	neighborhood	turn-
over	of	species	and	traits	using	a	moving	window	(similar	to	Barnagaud	
et	al.,	2017;	McKnight	et	al.,	2007)	and	address	two	main	objectives:	
(a)	determine	whether	functional	homogenization	accompanies	taxo-
nomic	homogenization,	improving	on	previous	methods	by	measuring	
how	 spatial	 turnover	 of	 taxonomic	 and	 functional	 diversity	 changes	
between	the	two	time	periods,	and	(b)	identify	climatic	and	biotic	fac-
tors	 that	 influence	 the	vulnerability	of	communities	 to	homogeniza-
tion.	As	the	drivers	of	avian	β	diversity	differ	between	functional	and	
taxonomic	 diversity	 (Meynard	 et	al.,	 2011),	 it	 is	 likely	 that	 the	 driv-
ers	of	change	in	β	diversity,	or	turnover,	over	time	also	vary	between	
functional	and	taxonomic	diversity.	To	address	this,	we	use	a	range	of	
climatic	variables	 covering	multiple	 physical	 aspects	 of	 the	 environ-
ment	along	with	three	biotic	factors:	mean	binomial	variance	(relating	
to	local	species	occurrence),	species	richness	in	the	earlier	atlas,	and	
functional	diversity	in	the	earlier	atlas.	The	mean	binomial	variance	of	
species’	local	ranges	is	likely	to	affect	the	ability	of	a	species	to	increase	
its	local	range,	that	is,	if	the	majority	of	species	are	present	in	50%	of	
the	neighboring	squares,	then	it	is	more	likely	that	sufficient	numbers	
of	species	will	be	able	to	increase	or	decrease	their	local	range	size	so	
that	their	occurrences	are	more	homogeneous	and,	therefore,	contrib-
ute	to	taxonomic	homogenization.	On	the	other	hand,	if	the	majority	
of	species	in	the	neighboring	area	are	either	locally	common	or	locally	
rare,	then	it	is	less	likely	that	there	will	be	a	negative	change	in	β diver-
sity	as	the	area	is	already	taxonomically	similar.	We	expect,	therefore,	
that	areas	are	more	susceptible	 to	taxonomic	homogenization	 if	 the	
central	 tendency	of	species’	 local	 ranges	 is	 intermediate,	 that	 is,	 the	
mean	binomial	variance	of	all	the	species	in	the	area	is	high.
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Given	the	above,	we	test	the	hypotheses:	(a)	functional	and	tax-
onomic	homogenization	occur	independently	of	each	other;	and	(b)	
biotic	factors	have	a	larger	effect	on	taxonomic	homogenization	due	
to	 the	geographical	 limits	on	 species	dispersal	potential,	while	 cli-
matic	 variables	 have	 a	 larger	 effect	 on	 functional	 homogenization	
due	to	trait–environment	associations	(Cormont,	Vos,	Van	Turnhout,	
Foppen	&	ter	Braak,	2011).	 Identifying	key	promoters	of	homoge-
nization	will	help	inform	policymakers	to	prioritize	areas	which	are	
vulnerable	 to	 future	 homogenization	 for	 conservation	 planning	
and,	 therefore,	help	mitigate	 the	adverse	consequences	of	climate	
change	(Rooney,	Olden,	Leach	&	Rogers,	2007).

2  | MATERIAL S AND METHODS

2.1 | Data

British	bird	distribution	data	at	the	10	×	10	km	(hectad)	scale	for	the	
periods	1968–1972	and	1988–1991	were	obtained	from	two	atlases	
of	breeding	birds	 (Gibbons,	Reid	&	Chapman,	1993;	Sharrock,	1976;	
respectively).	We	excluded	marine	species	and	rare	vagrants	from	the	
analyses.	Squares	with	less	than	50%	land	or	no	immediately	neighbor-
ing	squares	were	also	excluded	leaving	a	total	of	167	species	recorded	
in	2,253	sites	across	Great	Britain.	Throughout	the	analyses,	the	focal	
square	 is	defined	as	each	hectad	 in	turn	and	neighboring	squares	as	
each	immediately	surrounding	square,	that	is,	one	focal	square	and	the	
eight	 neighboring	 squares	would	 form	a	30	×	30	km	grid.	This	mov-
ing	window	 approach	measures	 the	 neighborhood	 turnover	 of	 each	
individual	hectad	and	matches	the	methods	used	by	Barnagaud	et	al.	
(2017),	 but	 at	 a	 finer	 resolution.	We	 also	 considered	multiple	 focal	
square	sizes	by	aggregating	the	hectad	data,	increasing	the	scale	of	the	
analyses	to	a	focal	square	of	30	×	30	km	and	90	×	90	km.	Often,	differ-
ences	in	recorder	effort	can	confound	analyses	of	citizen	science	data;	
however,	recorder	effort	for	the	two	atlases	used	here	is	considered	in-
tensive	and	relatively	consistent	(Evans,	Greenwood	&	Gaston,	2005).

Trait	 data	was	 obtained	 from	 the	 European	 Bird	 Trait	 Database	
(Storchová,	Hořák	&	Hurlbert,	2018).	Body	mass,	 clutch	size,	 age	at	
first	breeding,	young	developmental	type	(altricial,	semialtricial,	or	pre-
cocial),	nesting	behavior	(solitary	nester,	semicolonial,	and/or	colonial),	
nest	type	(ground,	hole,	open	arboreal,	closed	arboreal,	ground	closed,	
and/or	nest	parasite),	migratory	behavior,	and	diet	were	selected	for	
our	analyses	as	they	“impact	fitness	indirectly	via	effects	on	growth,	
reproduction,	 and	 survival”	 (Violle	 et	al.,	 2007),	 have	 complete	 cov-
erage	of	the	species	included	in	the	study,	are	important	response	or	
effect	traits	(Petchey	&	Gaston,	2006),	and	minimize	redundant	infor-
mation	between	traits	(Lefcheck,	Bastazini	&	Griffin,	2014).	Although	
they	 are	 technically	 behavioral	 characteristics,	migratory	 status	 and	
diet	were	included	as	traits,	as	in	other	studies	of	vertebrate	functional	
diversity	(Luck,	Carter	&	Smallbone,	2013).

2.2 | Variable calculation

Three	 biotic	 variables	 were	 included	 in	 each	 analysis;	 taxonomic	
and	functional	diversity	in	the	focal	square	in	the	earlier	of	the	two	

atlases,	 and	mean	binomial	 variance	 of	 local	 species	 distributions,	
details	 of	which	 follow.	 Species	 richness	was	 included	 as	 a	meas-
ure	of	 taxonomic	diversity	 in	 the	earlier	atlas.	Functional	diversity	
was	calculated	using	Rao’s	quadratic	entropy	(Rao	Q;	Botta-	Dukát,	
2005).	 Among	 the	 large	 number	 of	 functional	 diversity	 measures	
currently	 used	within	 the	 literature	 (Mouchet	 et	al.,	 2010),	 Rao	Q	
was	chosen	as	it	can	be	used	to	calculate	both	α	and	β	components	of	
diversity.	Rao	Q	measures	the	functional	distance	between	two	ran-
domly	selected	individuals	within	a	community	(Ricotta,	2005).	We	
used	Gower	distances	to	measure	functional	distances	which	can	in-
corporate	both	continuous	and	discrete	traits.	Rao	Q	was	calculated	
using	the	dbFD	function	in	the	R	package	FD	(Laliberté	&	Legendre,	
2010;	Laliberté,	Legendre	&	Shipley,	2014).

The	mean	binomial	variance	represents	the	local	commonness	or	
rarity	of	species	locally.	This	measure	was	chosen	as	it	reflects	the	
distribution	of	species’	local	occurrences	which	we	might	expect	to	
influence	species	turnover.	Mean	binomial	variance	is	calculated	by	
taking	the	average	of	the	binomial	variance	(npq—where	n	=	number	
of	hectads,	p	=	number	surrounding	hectads	in	which	the	species	is	
present,	and	q	=	number	of	surrounding	hectads	 in	which	the	spe-
cies	is	absent)	of	occurrence	of	all	species	found	in	the	focal	square	
and	 its	neighboring	squares	 (i.e.,	within	a	grid	of	30	×	30	km).	This	
measure	was	 then	 recalculated	with	 a	 focal	 square	 of	 30	×	30	km	
and	neighborhood	of	90	×	90	km,	and	again	with	a	focal	square	of	
90	×	90	km	and	neighborhood	of	270	×	270	km.	This	measure	has	a	
maximum	value	if	all	species	occurring	locally	are	present	in	50%	of	
the	neighboring	squares	and	a	minimum	value	if	either	all	species	in	
the	focal	square	are	locally	ubiquitous	or	locally	absent.

Monthly	 temperature	and	precipitation	data	were	downloaded	
from	 UKCP09	 (metoffice.gov.uk/climatechange/science/monitor-
ing/ukcp09)	for	the	years	1961–1990	and	used	to	calculate	climatic	
variables	relating	to:

1.	 Minimum	 temperature—the	 mean	 daily	 minimum	 temperature	
for	 the	 coldest	 annual	 month;

2.	 Drought—potential	 evapotranspiration	 minus	 the	 total	 annual	
precipitation	using	the	method	of	Burt	and	Shahgedanova	(1998);	
and

3. Growing	degree	days—the	mean	total	accumulated	temperature	
above	a	threshold	of	5.5°C.

For	 each	 of	 these	 attributes	 the	 following	 measures	 were	
calculated:

1.	Mean—average	of	the	30	(each	year)	values;
2.	Variance—residual	variance	of	an	observed	least	squares	regres-
sion	through	the	data;

3.	Lag	autocorrelation—correlation	between	each	variable	at	time	t 
and	time	t	−	1;

4.	Long-term	trend—slope	of	observed	least	squares	regression	line	
fitted	through	the	time	series;

5.	Fat	tail—relative	frequency	of	more	extreme	climatic	events,	that	
is,	 time	spent	 in	 the	 tail	of	 the	distribution	of	values	 relative	 to	
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the	 time	 spent	 in	 the	 central	 distribution	mass	 calculated	 as	 (Q 
0.975	−	Q	 0.025)/(Q	 0.875	−	Q	 0.125),	 where	Q	 is	 the	 quantile	
function	(Brys,	Hubert	&	Struyf,	2006);

In	 total,	 this	 produces	 15	 climatic	 variables	 included	 within	 the	
analyses.

2.3 | Turnover calculations

We	 measured	 taxonomic	 turnover	 using	 the	 modified	 Simpson’s	
index,	βsim	(Lennon,	Koleff,	Greenwood	&	Gaston,	2001):	

 where a	is	the	number	of	species	found	in	both	the	focal	community	
and	the	neighboring	community,	b	 is	 the	number	of	species	 found	
only	in	the	neighboring	community	and	not	the	focal	community,	and	
c	is	the	number	of	species	found	in	the	focal	community	but	absent	
from	the	neighboring	community.	βsim	was	found	to	perform	best	in	a	
review	of	24	β	diversity	measures	(Koleff,	Gaston	&	Lennon,	2003).	It	
is	a	“narrow”	sense	measure	of	β	diversity	which	focuses	on	compo-
sitional	differences	in	communities	independent	of	any	species	rich-
ness	gradients	(Lennon	et	al.,	2001)	and	satisfies	the	requirements	
of	 symmetry,	 homogeneity,	 and	 nestedness	 of	 robust	 β	 diversity	
measures	(Koleff	et	al.,	2003).

Functional	turnover	was	calculated	using	the	decomposition	of	
Rao	Q,	which	we	call	βrao.	This	measures	the	gain	in	functional	diver-
sity	when	communities	are	pooled,	that	is,	the	difference	between	
the	dissimilarity	of	two	random	individuals	in	the	whole	region	(the	
pooled	communities)	and	the	dissimilarity	of	two	individuals	within	
communities	 (De	 Bello	 et	al.,	 2009).	 We	 used	 the	 R	 function	 be-
taQmult	 provided	 in	 Villéger,	 Ramos	 Miranda,	 Flores	 Hernandez	
and	 Mouillot	 (2012)	 to	 calculate	 βrao. βrao	 was	 calculated	 for	 the	
focal	square	and	each	of	its	neighbors	(maximum	8)	in	turn,	and	the	
mean	of	each	taken.	This	accounted	for	fewer	neighbors	for	coastal	
squares.	We	applied	a	moving	window	algorithm	so	that	each	square	
within	the	dataset	was	included	as	the	focal	square	in	the	calculations	
of	turnover	for	both	atlases.	Two	additional	measures	of	functional	
turnover,	nearest	functional	neighbor	and	mean	functional	dissimi-
larity	(Sonnier	et	al.,	2014;	Swenson	et	al.,	2012)	between	neighbor-
ing	hectads	were	also	calculated	to	test	whether	the	occurrence	of	
functional	 homogenization	 differs	with	 the	measure	 of	 functional	
turnover	 used.	 These	measures	 use	 functional	 distances	 between	
species,	similar	to	βrao,	to	calculate	functional	dissimilarity	between	
communities;	however,	their	construction	and	interpretation	are	less	
similar	to	βsim.	The	details	and	results	of	nearest	functional	neighbor	
and	mean	 functional	 dissimilarity	measures	of	 functional	 turnover	
are	provided	in	the	supplementary	information.

2.4 | Analyses

Two	sets	of	analyses	were	carried	out;	investigating	the	occurrence	
of	homogenization	and	investigating	the	drivers	of	homogenization.	

For	both	sets	of	analyses,	the	degree	of	homogenization	for	all	turn-
over	measures	was	calculated	as	the	spatial	turnover	in	the	second	
atlas	minus	the	spatial	turnover	in	the	first	atlas.	As	βsim	and	βrao	are	
dissimilarity	measures,	negative	differences	represent	homogeniza-
tion,	while	positive	values	indicate	differentiation	between	the	two	
time	periods.	All	analyses	were	carried	out	at	the	three	spatial	scales:	
10	×	10;	30	×	30;	and	90	×	90	km.

We	 took	 a	 null	model	 approach	 to	 test	 the	 presence	 of	 func-
tional	 homogenization	 irrespective	 of	 taxonomic	 homogenization.	
We	 used	 the	 random	 assembly	 model,	 which	 is	 a	 trait-	level	 null	
model	 (Morlon	et	al.,	2011)	where	species	row	names	are	shuffled	
in	the	species-	by-	trait	matrix	using	the	independent	swap	algorithm	
(Gotelli	&	Entsminger,	2003)	to	create	999	new	random	species-	by-	
trait	matrices.	This	 constrained	 randomization	approach	maintains	
species	richness,	species	 turnover,	spatial	structure	of	species	dis-
tributions,	trait	ranges,	and	trait	covariances	(Swenson	et	al.,	2012).	
The	 random	trait	matrices	were	used	 to	calculate	βrao	 for	both	at-
lases	 from	which	change	between	 the	 two	atlases	was	calculated.	
This	gave	us	a	null	distribution	of	changes	in	functional	turnover	to	
address	the	question	of	whether	functional	homogenization	accom-
panies	 taxonomic	homogenization.	We	calculated	p	 values	 for	 the	
location	of	the	observed	change	 in	turnover	 in	the	null	probability	
distribution	to	determine	whether	to	reject	the	null	hypothesis	using	
a	two-	tailed	test.

We	used	 intrinsic	conditional	autoregressive	models,	which	ac-
count	for	spatial	autocorrelation	within	the	error	term,	under	Bayesian	
inference	using	the	Integrated	Nested	Laplace	Approximation	(INLA)	
to	model	changes	in	functional	turnover	(βrao)	as	a	function	of	change	
in	taxonomic	turnover	(βsim)	using	a	normally	distributed,	uninforma-
tive	prior	with	a	precision	of	0.001.	Spatial	errors	were	given	 log-	
gamma	priors	with	a	precision	of	0.005.	Plotting	these	relationships	
at	each	scale	allowed	the	identification	of	homogenization	and	dif-
ferentiation	processes	within	each	square.

To	identify	specific	drivers	of	homogenization	we	regressed	cli-
matic	and	biotic	variables	against	the	changes	in	turnover	calculated	
above.	These	were	 combined	 into	a	multimodel	 information	 theo-
retic	approach	 (Burnham	&	Anderson,	2002)	using	a	restricted	set	
of	 three	models,	 shown	 in	 Table	1,	 and	 compared	 using	Deviance	
Information	Criterion	(DIC)	which	provides	a	measure	of	model	fit.	
Although	 this	measure	 can	 underpenalize	models	 with	 a	 complex	
random	 error	 structure,	 we	 chose	 this	 criterion	 over	 Watanabe-	
Akaike	 information	 criterion	 (WAIC)	 which	 assumes	 independent	
observations	 and,	 therefore,	 is	 not	 appropriate	 for	 our	 spatially	
structured	 data	 (Hooten	 &	 Hobbs,	 2014).	 This	 combination	 of	
models	 was	 selected	 to	 test	 the	 hypothesis	 that	 biotic	 variables	
drive	changes	 in	taxonomic	turnover,	while	climatic	variables	drive	
changes	in	functional	turnover.	Out	of	the	vast	number	of	variable	
combinations	possible,	the	restricted	set	of	models	included	in	this	
analysis	do	not	favor	the	selection	of	one	set	of	variables	over	the	
other.	Due	 to	 the	spatial	nature	of	 the	data,	we	again	used	 intrin-
sic	conditional	autoregressive	models	which	account	for	the	spatial	
structure	within	the	residuals	 to	model	 the	change	 in	spatial	 turn-
over	between	the	two	time	periods	as	a	function	of	the	climatic	and	

�sim=
min (b,c)

min (b,c)+a
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biotic	 variables	outlined	above.	We	 took	a	Bayesian	 inference	ap-
proach	to	these	models	using	INLA.	Latitude	and	longitude	were	also	
included	as	fixed	effects	 in	all	models;	this	relaxes	the	assumption	
of	intrinsic	conditional	autoregressive	models	that	spatial	errors	are	
stationary	(Beale,	Brewer	&	Lennon,	2014;	Beale,	Lennon,	Yearsley,	
Brewer	&	Elston,	2010).	This	improves	the	accuracy	of	credible	in-
terval	estimation	 (Beale	et	al.,	2014).	All	variables	were	scaled	and	
centered	to	aid	with	convergence	and	to	enable	comparisons	of	ef-
fect	 sizes	 post	 hoc.	 All	models	were	 scaled	 to	 have	 a	 generalized	
variance	equal	to	1,	which	reduced	the	number	of	effective	param-
eters,	and	were	 fitted	with	a	Gaussian	 likelihood.	Covariates	were	
given	normally	distributed,	uninformative	priors	with	a	precision	of	
0.001,	while	spatial	errors	were	fitted	with	log-	gamma	priors	and	a	
precision	of	0.005.	Analyses	were	carried	out	in	R	v3.2.2	using	the	
package	R-	INLA	(Rue,	Martino	&	Chopin,	2009).

3  | RESULTS

3.1 | Occurrence of functional homogenization

Changes	 in	 βsim	 and	 βrao	 varied	 in	 space	 (Figure	1).	 Change	 in	 βrao 
varied	 with	 change	 in	 βsim	 at	 the	 hectad	 scale	 [median	=	0.0083,	
credible	intervals	(CI)	=	(0.0038,	0.013);	Figure	2a]	but	not	at	either	
of	 the	 larger	 scales	 investigated	 [30	km	 scale:	 median	=	0.0055,	
CI	=	(−0.0046,	0.0155);	90	km	scale:	median	=	0.00190,	CI	=	(−0.014,	
0.0178);	Figure	2b,c].	The	null	model	of	random	change	in	βrao	was	
rejected	in	25.6%	of	squares	at	the	hectad	scale,	54.8%	of	squares	
at	the	30	km	scale,	and	81.5%	sites	at	the	90	km	scale,	meaning	that	
as	spatial	scale	increases,	functional	turnover	changes	are	more	than	
expected	by	chance	given	changes	in	taxonomic	turnover.	The	ob-
served	occurrences	of	 homogenization	 and	differentiation	of	 spe-
cies	and	traits	varied	with	spatial	scale	 (Tables	2–4).	At	the	hectad	
scale,	where	 the	 change	 in	 βrao	 differed	 from	 that	 expected	 from	
the	null	model,	the	majority	of	squares	(438	of	599)	showed	an	in-
crease	 in	 functional	 turnover	between	 the	 two	 time	periods,	 indi-
cating	 functional	 differentiation.	Most	 of	 these	 sites	 (349	 of	 599)	
also	exhibited	taxonomic	differentiation	through	an	increase	in	βsim; 
however,	189	sites	showed	functional	differentiation	but	taxonomic	
homogenization,	 that	 is,	 an	 increase	 in	βrao	 but	 a	 decrease	 in	βsim. 
The	 largest	 spatial	 scale	 (90	×	90	km)	was	 the	 only	 scale	 at	which	
taxonomic	 homogenization	 was	 more	 frequently	 associated	 with	
functional	homogenization	rather	functional	differentiation.	The	use	
of	additional	measures	of	functional	turnover,	that	is,	nearest	func-
tional	neighbor	and	mean	functional	dissimilarity,	showed	that	 the	
occurrence	of	functional	homogenization	depends	on	the	measure	
of	functional	turnover	used	(Supporting	Information	Appendix	S2).

3.2 | Drivers of changes in turnover

The	climate	only	model	had	the	lowest	DIC	for	both	change	in	βsim 
and	change	in	βrao	at	the	hectad	scale	(Table	5),	meaning	that	biotic	
variables	were	excluded	from	both	best-	fitting	models.	For	the	two	
larger	 spatial	 scales,	 the	 full	model	performed	best	 for	 changes	 in	TA
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βsim,	while	the	biotic	only	model	performed	best	for	changes	in	βrao. 
The	covariates	with	the	largest	effect	sizes	varied	between	turnover	
measures	and	spatial	scale	(Figures	3–5).

At	 the	hectad	scale,	mean	minimum	temperature	had	the	 larg-
est	effect	size	on	change	 in	βsim	 [median	=	−0.0155,	CI	=	(−0.0226,	
−0.0084)].	Variance	in	minimum	temperature	also	had	a	strong,	neg-
ative	 effect	 [median	=	−0.0106,	 CI	=	(−0.0154,	 0.0058)].	 Although	
variance	 in	 minimum	 temperature	 also	 affected	 changes	 in	 βrao 
[median	=	−0.1391,	 CI	=	(−0.2688,	 −0.0095)],	 the	 covariates	 with	
the	 strongest	 effect	 sizes	were	 both	 related	 to	 variation	 in	 grow-
ing	 degree	 days,	 that	 is,	 variance	 in	 growing	 degree	 days	 [me-
dian	=	−0.2292,	CI	=	(−0.4032,	−0.0553)]	and	lag	autocorrelation	in	
growing	degree	days	[median	=	0.2006,	CI	=	(0.1086,	0.2925)].	The	
frequency	of	extreme	events	in	minimum	temperature	and	growing	
degree	days	 influenced	 the	degree	of	 change	 in	βsim,	 but	 extreme	

events	had	no	effect	on	changes	in	βrao	as	the	credible	intervals	al-
ways	spanned	zero.

Changes	in	βrao	were	not	explained	by	any	of	our	covariates	at	
either	of	the	larger	two	scales	as	the	credible	intervals	of	the	dis-
tributions	always	spanned	zero.	Species	richness	explained	some	
of	 the	 variation	 in	 changes	 in	 βsim	 in	 models	 at	 all	 three	 spatial	
scales,	but	 the	mean	binomial	variance	only	appeared	 important	
in	 models	 at	 the	 two	 larger	 scales	 [30	km:	 median	=	−0.0033,	
CI	=	(−0.0042,	−0.0024);	90	km:	median	=	−0.0014,	CI	=	(−0.0019,	
−0.0009)].	The	covariate	with	the	 largest	effect	size	for	changes	
in	βsim	at	the	30	×	30	km	scale	was	the	relative	number	of	extreme	
events	in	minimum	temperature	[median	=	−0.0074,	CI	=	(−0.009,	
−0.0058)],	 while	 at	 the	 90	×	90	km	 scale	 it	 was	 the	 long-	term	
trend	 in	 growing	 degree	 days	 [median	=	−0.0068,	 CI	=	(−0.0097,	
−0.0039)].

F IGURE  1 Maps	showing	change	
in	βsim	(a,c,e)	and	βrao	(b,d,f)	of	British	
avifauna	in	squares	of	10	×	10	km	(top	
row),	30	×	30	km	(middle	row),	and	
90	×	90	km	(bottom	row)	between	two	
time	periods	20	years	apart
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4  | DISCUSSION

Taxonomic	and	functional	homogenization	of	birds	appears	to	be	hap-
pening	globally	at	a	large	scale,	driven	by	human	influences	(Barnagaud	
et	al.,	2017);	however,	using	a	null	model	approach,	we	show	that	the	
occurrence	of	 functional	 homogenization	 among	British	birds	 is	 not	
consistent	 given	 changes	 in	 taxonomic	 turnover	 at	 multiple	 spatial	
scales.	The	occurrence	of	functional	homogenization	varies	with	both	
spatial	 scale	and	measure	of	 functional	 turnover	 (results	 for	nearest	
functional	 neighbor	 and	mean	 functional	 dissimilarity	 are	 presented	
in	Supporting	Information	Appendix	S2).	At	the	largest	spatial	scale,	in	
squares	where	changes	in	βrao	differ	from	the	null	expectation,	the	ma-
jority	of	squares	show	both	taxonomic	and	functional	homogenization,	
whereas	at	 the	smallest	spatial	scale,	most	squares	show	taxonomic	
and	functional	differentiation,	although	the	overall	number	of	squares	
where	the	null	was	rejected	was	considerably	less	at	this	scale.

Changes	in	taxonomic	and	functional	turnover	only	appear	to	be	
correlated	at	the	smallest	spatial	scale.	Although	this	correlation	is	

positive,	nearly	a	quarter	of	hectads	show	taxonomic	homogenization	
with	either	no	associated	change	in	βrao	or	functional	differentiation.	
Taxonomic	homogenization	was	also	more	frequently	accompanied	
by	functional	differentiation	than	functional	homogenization	at	the	
30	×	30	km	scale.	This	suggests	that	despite	areas	becoming	more	
compositionally	similar,	 trait	diversity	 is	maintained.	The	 impact	of	
losing	or	gaining	species	on	ecosystem	functioning	depends	on	the	
degree	of	trait	overlap	between	species	within	a	community	(Baiser	
&	Lockwood,	2011).	Our	results	suggest	a	high	level	of	trait	overlap	
within	a	hectad,	known	as	functional	redundancy,	as	although	spe-
cies	composition	 is	becoming	more	similar,	 trait	heterogeneity	be-
tween	squares	is	maintained,	or,	in	some	cases,	even	differentiates.	
This	is	consistent	with	Monnet	et	al.	(2014)	who	found	that	temporal	
changes	in	taxonomic	β	diversity	were	not	necessarily	accompanied	
by	corresponding	changes	in	either	functional	or	phylogenetic	β di-
versity	of	avian	communities	in	France.	The	same	dataset,	however,	
has	revealed	functional	homogenization	in	response	to	urbanization	
(Devictor	 et	al.,2007),	 although	 this	 study	 used	 a	 homogenization	

F IGURE  2 Scatter	plot	of	change	
in	functional	turnover	(βrao)	plotted	
against	change	in	taxonomic	turnover	
(βsim)	at	three	spatial	scales	(a)	10	km,	
(b)	30	km,	and	(c)	90	km	squares.	Dark	
points	indicate	sites	where	the	change	
in	functional	turnover	is	different	from	
that	expected	from	the	null	distribution	
generated,	and	therefore,	we	reject	the	
null	model.	The	null	distribution	was	
generated	using	a	random	name	swap	
algorithm	to	randomize	the	species-	by-	
trait	matrix	for	calculation	of	βrao
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index	of	generalist	and	specialist	species	to	measure	functional	ho-
mogenization,	which	may	account	 for	 the	contrasting	 results.	This	
highlights	the	need	to	widen	the	focus	from	specialization	when	in-
vestigating	functional	homogenization	and	consider	it	in	the	context	
of	 temporal	 changes	 in	 the	spatial	dissimilarity	of	 communities,	 as	
outlined	by	Olden	et	al.	(2004).

Despite	 observations	 that	 changes	 in	 occurrences	 of	 British	
butterfly	 species	 between	 1970–1982	 and	 1995–1999	 can	 be	
deduced	from	spatial	distribution	patterns	(Wilson,	Thomas,	Fox,	
Roy	&	Kunin,	2004),	as	well	as	theoretical	and	empirical	evidence	

for	the	influence	of	biodiversity	on	biotic	homogenization	(Doxa,	
Paracchini,	 Pointereau,	 Devictor	 &	 Jiguet,	 2012;	 Olden	 &	 Poff,	
2003;	 Villéger	 et	al.,	 2014),	 species	 richness	 and	mean	 binomial	
variance	 were	 only	 included	 in	 the	 best	 performing	 model	 for	
changes	 in	 taxonomic	 turnover	 at	 the	 two	 larger	 spatial	 scales,	
showing	 negative	 relationships.	 Our	 hypothesis	 that	 biotic	 vari-
ables	 drive	 taxonomic	 homogenization,	 while	 climatic	 variables	
drive	 functional	 homogenization	 is	 therefore	 opposed	 at	 the	
smallest	spatial	scale.	At	larger	spatial	scales,	however,	our	results	
support	our	predictions	that	squares	where	all	occurring	species	
are	 either	 locally	 rare	or	 locally	 common	 showed	more	negative	
changes	 in	 βsim,	 that	 is,	 taxonomic	 homogenization.	 The	 varia-
tion	in	results	with	spatial	scale	may	represent	the	scale	at	which	
dispersal	 becomes	 a	 limiting	 factor	 to	 a	 species’	 distribution.	
Additionally,	using	a	more	recent	bird	atlas	(i.e.,	Gillings,	Balmer	&	
Fuller,	2015)	to	study	changes	over	a	longer	and	more	recent	time	
period,	 such	as	 that	 studied	by	Wilson	et	al.	 (2004),	may	yet	 re-
veal	greater	changes	in	turnover	driven	by	measures	of	the	spatial	
structure	of	distributions.	The	impact	of	these	variables	may	also	
work	at	the	species	level,	determining	changes	in	species	distribu-
tions,	as	shown	in	British	and	French	butterflies	where	the	signal	
was	 lost	 when	 combined	 into	 a	 community-	level	 study	 (Wilson	
et	al.,	2004).

Although	no	covariate	had	an	opposing	effect	on	changes	in	taxo-
nomic	and	functional	turnover,	unlike	Barnagaud	et	al.	(2017),	many	co-
variates	only	appear	important	for	changes	in	one	type	of	turnover.	For	
example,	at	the	hectad	scale,	although	both	mean	minimum	tempera-
ture	and	mean	drought	show	an	association	with	changes	 in	βsim,	no	
mean	measures	showed	any	relationship	with	changes	in	βrao.	Crucially,	
none	of	our	covariates	explained	variation	in	change	in	βrao	at	either	of	
the	larger	spatial	scales.	At	the	smallest	scale,	however,	the	strongest	
climatic	drivers	differ	between	changes	in	βsim	and	changes	in	βRao;	tem-
perature	is	important	for	changes	in	taxonomic	turnover,	while	growing	
degree	days	are	important	for	changes	in	functional	turnover,	despite	
concurrent	 changes	 in	 community	 specialization	of	British	birds	with	
changes	 in	both	mean	temperature	and	mean	rainfall	over	a	13-	year	

Functional homogenization Functional differentiation

Taxonomic	homogenization 61 189

Taxonomic	differentiation 100 249

TABLE  2 Table	of	counts	of	squares	
where	changes	in	βrao	differed	from	
expected	given	a	null	distribution	of	
changes	at	the	10	×	10	km	scale

Functional homogenization Functional differentiation

Taxonomic	homogenization 152 305

Taxonomic	differentiation 216 567

TABLE  3 Table	of	counts	of	squares	
where	changes	in	βrao	differed	from	
expected	given	a	null	distribution	of	
changes	at	the	30	×	30	km	scale

Functional homogenization Functional differentiation

Taxonomic	homogenization 618 321

Taxonomic	differentiation 433 463

TABLE  4 Table	of	counts	of	squares	
where	changes	in	βrao	differed	from	
expected	given	a	null	distribution	of	
changes	at	the	90	×	90	km	scale

TABLE  5 Table	showing	the	models	ranked	by	DIC	for	changes	
in	each	of	the	measures	of	turnover	and	the	differences	in	DIC	from	
the	best	performing	model

Scale
Turnover 
measure Model DIC ΔDIC

10	×	10	km Change	in	βsim Climate −14779.87 0

Full −14658.46 121.41

Biotic −13430.89 1348.98

Change	in	βrao Climate −11056.94 0

Biotic −11047.75 9.19

Full −11044.92 12.02

30	×	30	km Change	in	βsim Full −17071.12 0

Biotic −17017.53 53.59

Climate −16828.00 243.12

Change	in	βrao Biotic −23153.78 0

Full −23148.17 5.61

Climate −23142.58 11.2

90	×	90	km Change	in	βsim Full −18487.43 0

Climate −18352.79 134.64

Biotic −17971.18 516.25

Change	in	βrao Biotic −23185.59 0

Climate −23173.58 12.01

Full −23167.89 17.70
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period	 (Davey	et	al.,	2012).	Specifically,	our	 results	 show	that,	at	 the	
hectad	scale,	mean	minimum	temperature	drives	the	largest	changes	in	
βsim,	while	variance	in	growing	degree	days	drives	the	largest	changes	
in	βrao.	Overall,	variation	 in	growing	degree	days	appears	to	promote	
functional	homogenization	as	greater	homogenization	occurs	in	areas	

where	there	is	increased	variance	and	less	year-	to-	year	predictability.	
Growing	degree	days	has	been	included	in	climate	envelope	models	of	
avian	distributions	a	number	of	times	(Beale	et	al.,	2014;	Gregory	et	al.,	
2009;	Huntley,	Collingham,	Willis	&	Green,	2008),	as	it	represents	the	
thermal	energy	available	during	 the	growing	 season	and	 therefore	 is	

F IGURE  3 Coefficient	plots	of	the	
climate	only	model	for	the	analyses	
carried	out	at	the	10	×	10	km	scale,	which	
was	the	best-	fitting	model	determined	
using	DIC,	for	(a)	change	in	βsim	and	(b)	
change	in	βrao.	Points	indicate	the	median	
estimate	of	the	posterior	distribution,	and	
lines	represent	the	95%	credible	interval.	
Where	the	credible	intervals	cross	the	
dashed	0	line	that	particular	independent	
variable	does	not	have	a	substantial	effect	
on	the	dependent	variable.	autox:	lag	
autocorrelation;	D:	variables	relating	to	
drought;	Drought:	mean	drought;	Ftailx: 
fat	tail	measure	of	extreme	events;	G: 
variables	relating	to	growing	degree	
days;	GDD:	mean	growing	degree	days;	
Lat.:	latitude;	Long.:	longitude;	LTTx: 
detrended	long-	term	trend;	Min.	temp.:	
mean	minimum	temperature;	T:	variables	
relating	to	minimum	temperature;	varx: 
variance

F IGURE  4 Coefficient	plot	of	the	full	model	for	change	in	βsim	at	the	30	×	30	km	scale.	This	was	the	best-	fitting	model,	determined	using	
DIC,	at	this	scale.	Points	indicate	the	median	estimate	of	the	posterior	distribution,	and	lines	represent	the	95%	credible	interval.	Where	the	
credible	intervals	cross	the	dashed	0	line	that	particular	independent	variable	does	not	have	a	substantial	effect	on	the	dependent	variable.	
Squares	denote	spatial	covariates,	triangles	denote	biotic	covariates,	and	circles	denote	climate	covariates.	autox:	lag	autocorrelation;	D: 
variables	relating	to	drought;	Drought:	mean	drought;	Ftailx:	fat	tail	measure	of	extreme	events;	G:	variables	relating	to	growing	degree	days;	
GDD:	mean	growing	degree	days;	Lat.:	latitude;	Long.:	longitude;	LTTx:	detrended	long-	term	trend;	MBV:	mean	binomial	variance;	Min.	temp.:	
mean	minimum	temperature;	RaoQ:	Rao’s	quadratic	entropy;	SR:	species	richness;	T:	variables	relating	to	minimum	temperature;	varx:	variance
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linked	to	resource	availability	(Huntley	et	al.,	2008).	Our	results	suggest	
that	the	variation	in	this	energy	at	the	hectad	scale	selects	directly	on	
species	 traits	 and,	 thus,	 spatial	 heterogeneity	 of	 functional	 diversity.	
Homogenization	is	occurring	where	resource	availability	is	unstable.	At	
larger	spatial	scales,	temporal	variation	is	also	important	to	changes	in	
βsim	with	steeper	long-	term	trends	(i.e.,	larger	changes	over	the	entire	
time	period)	and	greater	relative	number	of	extreme	events	of	multiple	
climatic	 components	 appearing	 to	 increase	 the	 degree	 of	 taxonomic	
homogenization.	The	observed	relationships	of	changes	in	taxonomic	
and	 functional	 turnover	with	 climatic	 variance,	 year-	to-	year	 predict-
ability,	 long-	term	 trends,	 and	 extreme	 events	 measures	 at	 various	
scales	show	that	more	negative	changes	 in	 turnover,	 that	 is,	homog-
enization,	occur	in	unstable	environments,	while	a	stable	environment	
maintains	spatial	 turnover	and	promotes	more	positive	changes.	This	
contrasts	with	the	findings	of	Martin	and	Ferrer	(2015),	who	showed	
that	 for	 Mediterranean	 birds,	 mammals,	 amphibians,	 and	 reptiles,	
temporally	variable	environments	maintained	higher	spatial	 turnover;	
however,	 it	supports	 the	suggestion	that	environmental	disturbances	
contribute	 to	 community	homogenization	 through	niche	 selection	of	
disturbance-	tolerant	species	(Myers,	Chase,	Crandall	&	Jiménez,	2015).	
Environmental	 stability–spatial	 turnover	 relationships	 appear	 to	 be	
sparse	within	the	literature,	and	the	results	found	in	the	present	paper	
open	up	a	potential	area	of	future	research	to	further	investigate	this	
relationship.

The	“difference	in	turnover”	approach	we	employed	for	this	study	
may	help	identify	additional	drivers	of	functional	homogenization,	such	
as	land	degradation.	Results	using	mean	community	specialization	have	
varied;	for	example,	avian	community	specialization	increased	along	a	
forest–agricultural	gradient	 (Clavero	&	Brotons,	2010)	but	decreased	
along	 an	 urbanization	 gradient	 (Devictor	 et	al.,	 2007).	While	 the	 ef-
fects	of	changes	in	climate	and	land	use	have	often	been	considered	

separately,	 their	 combined	 effects	 should	 also	 be	 considered	 when	
studying	 the	 impact	 of	 environmental	 change	on	 ecological	 commu-
nities	(Oliver	&	Morecroft,	2014).	Building	the	framework	used	in	this	
paper	 into	 investigations	 of	 the	 effects	 of	 multiple	 components	 of	
environmental	 change,	 along	with	 their	 interactions,	may	 further	 im-
prove	our	predictions	of	areas	susceptible	to	taxonomic	and	functional	
homogenization.	Nonnative	species	may	also	contribute	to	functional	
homogenization,	as	they	have	been	frequently	implicated	in	taxonomic	
homogenization	(Lockwood,	Brooks	&	McKinney,	2000;	McKinney	&	La	
Sorte,	2007;	Rooney,	Wiegmann,	Rogers	&	Waller,	2004).	We	excluded	
nonnative	and	vagrant	 species	 from	our	analyses	which	 focussed	on	
changes	 in	 turnover	 of	 native	 and	 naturalized	 species.	 Despite	 this,	
there	was	evidence	of	both	taxonomic	and	functional	homogenization	
in	a	number	of	areas,	indicating	that	mechanisms	contributing	to	biotic	
homogenization	are	multifactorial:	targeting	invasive	species	alone	will	
not	prevent	increasing	community	similarity	of	either	species	or	traits.

Functional	diversity	is	an	important	axis	of	biodiversity	which	dic-
tates	ecosystem	functioning	(Clark,	Flynn,	Butterfield	&	Reich,	2012;	
Díaz	 et	al.,	 2007),	 community	 responses	 to	 environmental	 change	
(Ernst,	Linsenmair	&	Rödel,	2006;	Forrest,	Thorp,	Kremen	&	Williams,	
2015;	Meynard	et	al.,	 2011),	 and	 community	 stability	 and	 resilience	
(Mori,	 Furukawa	 &	 Sasaki,	 2013).	 Using	 spatial	 (dis)similarity	 rep-
resents	a	recent	approach	to	investigating	functional	homogenization	
and	makes	it	more	comparable	with	measures	of	taxonomic	homoge-
nization	than	previously	used	measures	of	mean	community	special-
ization.	The	changes	in	functional	turnover	independent	of	changes	in	
taxonomic	turnover	evident	in	British	avifauna	reinforce	the	assertion	
that	local	colonizations	and	extinctions	do	not	necessarily	result	in	an	
associated	 change	 in	 trait	 composition	 (Baiser	 &	 Lockwood,	 2011),	
and	it	is	ill-	advised,	therefore,	to	make	any	predictions	about	changes	
in	 ecosystem	 functioning	 based	 on	 the	 identification	 of	 taxonomic	

F IGURE  5 Coefficient	plot	of	the	full	model	for	change	in	βsim	at	the	90	×	90	km	scale.	This	was	the	best-	fitting	model,	determined	using	
DIC,	at	this	scale.	Points	indicate	the	median	estimate	of	the	posterior	distribution,	and	lines	represent	the	95%	credible	interval.	Where	the	
credible	intervals	cross	the	dashed	0	line	that	particular	independent	variable	does	not	have	a	substantial	effect	on	the	dependent	variable.	
Squares	denote	spatial	covariates,	triangles	denote	biotic	covariates	and	circles	denote	climate	covariates.	autox:	lag	autocorrelation;	D: 
variables	relating	to	drought;	Drought:	mean	drought;	Ftailx:	fat	tail	measure	of	extreme	events;	G:	variables	relating	to	growing	degree	
days;	GDD:	mean	growing	degree	days;	Lat.:	latitude;	Long.:	longitude;	LTTx:	detrended	long-	term	trend;	MBV:	mean	binomial	variance;	Min.	
temp.:	mean	minimum	temperature;	RaoQ:	Rao’s	quadratic	entropy;	SR:	species	richness;	T:	variables	relating	to	minimum	temperature;	varx: 
variance
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homogenization	alone.	The	mechanisms	driving	taxonomic	and	func-
tional	homogenization	are	multifactorial,	and	actions	taken	to	mitigate	
homogenization	 and	 its	 ecological	 consequences	 must	 account	 for	
this.	Both	functional	diversity	and	species	richness	should	be	consid-
ered	when	planning	habitat	conservation	to	protect	areas	vulnerable	
to	 functional	 homogenization.	 Understanding	 the	 link	 between	 cli-
mate	and	homogenization	will	also	help	inform	predictions	of	biodiver-
sity	responses	to	future	climate	projections.	This	study	begins	to	build	
a	comprehensive	checklist	of	factors	that	increase	the	susceptibility	of	
avian	communities	to	homogenization	at	multiple	spatial	scales,	which	
can	 be	 added	 to	with	 further	 analyses	 on	 community	 composition,	
land	cover,	and	invasive	species	potential.
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