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Abstract

Objective: A growing body of evidence suggests that environmental pollutants, such as heavy metals, persistent organic
pollutants and plasticizers play an important role in the development of chronic diseases. Most epidemiologic studies have
examined environmental pollutants individually, but in real life, we are exposed to multi-pollutants and pollution mixtures,
not single pollutants. Although multi-pollutant approaches have been recognized recently, challenges exist such as how to
estimate the risk of adverse health responses from multi-pollutants. We propose an “Environmental Risk Score (ERS)” as a
new simple tool to examine the risk of exposure to multi-pollutants in epidemiologic research.

Methods and Results: \We examined 134 environmental pollutants in relation to serum lipids (total cholesterol, high-density
lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides) using data from the National
Health and Nutrition Examination Survey between 1999 and 2006. Using a two-stage approach, stage-1 for discovery
(n=10818) and stage-2 for validation (n=4615), we identified 13 associated pollutants for total cholesterol, 9 for HDL, 5 for
LDL and 27 for triglycerides with adjustment for sociodemographic factors, body mass index and serum nutrient levels.
Using the regression coefficients (weights) from joint analyses of the combined data and exposure concentrations, ERS were
computed as a weighted sum of the pollutant levels. We computed ERS for multiple lipid outcomes examined individually
(single-phenotype approach) or together (multi-phenotype approach). Although the contributions of ERS to overall risk
predictions for lipid outcomes were modest, we found relatively stronger associations between ERS and lipid outcomes
than with individual pollutants. The magnitudes of the observed associations for ERS were comparable to or stronger than
those for socio-demographic factors or BMI.

Conclusions: This study suggests ERS is a promising tool for characterizing disease risk from multi-pollutant exposures. This
new approach supports the need for moving from a single-pollutant to a multi-pollutant framework.
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Introduction A main issue of the single pollutant approach in epidemiologic
research is that it is prone to confounding. For example, the health
effects of PCBs are subject to confounding by methylmercury if
participants were co-exposed to both toxicants from fish
consumption. This example also suggests that beneficial nutrients
such as omega-3 fatty acids may confound the toxic effects by
PCBs and methylmercury [2,3]. Therefore, a positive association
in a single pollutant approach may be observed if the single
pollutant is a proxy for other co-pollutants or a mixture of
pollutants. Alternatively, if individual pollutants have relatively
are not being detected by single pollutant approaches. In addition, small effects but multiple pollutants as a whole influence the

the impact of combined exposures to multiple pollutants may disease risk, the single-pollutant approach may not capture the
differ from the sum of the impacts from single pollutant true effects [4].

assessments [1].

Over the last several decades, numerous environmental
pollutants have been examined as potential risk factors for various
diseases and health responses. Most studies have focused on single
pollutants, that is, examining a single factor or a set of species (e.g.,
arsenic species; polychlorinated biphenyl (PCB) congeners).
However, in real life we are exposed to multiple pollutants and
pollutant mixtures, not single pollutants. This complex exposure
profile may have additive, synergistic or antagonistic effects which

Recently, several studies have examined multiple pollutants.
Patel and colleagues adopted an approach widely used in
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analyzing high-throughput genotype data, genome-wide associa-
tion study (GWAS), and proposed an Environment-Wide Association
Study (EWAS) to examined wide ranges of environmental factors
including toxic chemicals as well as nutrients in relation to type-2
diabetes [5], lipid profiles [6], blood pressure [7] and all-cause
mortality [8] using data from the National Health and Nutrition
Examination Survey (NHANES). This systematic approach
avoided a potential bias from selective reporting of subsets of
analyses, outcomes, and adjustments [6]. Another EWAS
approach which examined 76 environmental and lifestyle factors
in relation to metabolic syndrome was conducted in Sweden [9].
Although these EWAS studies have yielded intriguing results, the
statistical analyses were still based on single pollutant approaches.
Multi-pollutant models were not considered. Of note, unlike
GWAS with millions of markers, current EWAS studies have a
moderate number of exposures and are not really comprehensive
or “ultra high-dimensional” in nature. Similarly, misclassification,
measurement error, temporal variations, and incomplete exposure
data are inherent challenges to an EWAS study that modern
genotyping techniques have overcome in GWAS.

Sun et al. [10] considered a number of statistical strategies to
examine multiple pollutants and their interactions using regression
methods for high-dimensional covariates, such as least absolute
shrinkage and selection operator (LASSO) [11], Bayesian model
averaging (BMA) [12] or supervised principal component analysis
(SPCA) [13]. This study showed that LASSO and other dimension
reduction techniques worked well for estimating risk models when
a large number of candidate pollutants exist. Elastic-net method
[14] or the adaptive elastic-net method [15] were proposed to take
into account the issue of multi-collinearity when highly correlated
predictors are fit simultaneously.

Another challenge in quantifying the health effects of multi-
pollutant exposure is how to estimate the risk of adverse health
responses from multiple pollutants. As stated above, single
pollutant approaches and even EWAS in which the unit of
analysis 1s based on a single pollutant have had small to modest
effect sizes. The challenge is to construct the disease risk from
exposure to multiple environmental risk factors [16-18]. Some
advances have been made in the air pollution area (air pollution
mixtures). For example, in the indicator approach one pollutant
represents the combined exposure to several pollutants [19,20]; or,
in the source apportionment approach particle constituents are
assigned to emission sources using principal component analysis
and hierarchical clustering [21,22]. However, these approaches do
not account for a wide range of environmental pollutants.

In the general context of risk factor epidemiology, risk
prediction models, such as the Framingham risk score for coronary
heart disease [23] and genetic risk scores (a.k.a Genetic Risk
Prediction Studies (GRIPS)) [24-29], have been widely used.
Following from these ideas, it would be interesting to assess the
predictive ability of an ““Environmental Risk Score” as a follow-up to
an EWAS study after identifying environmental pollutants
significantly associated with health outcomes. A risk score may
also facilitate targeting of preventive interventions [27].

Here, we propose an “Environmental Risk Score (ERS)” as a
new tool to examine the risk of exposure to multi-pollutants in
epidemiologic research. As a “proof of concept”, we used
environmental biomonitoring data from NHANES to illustrate
our methodology because it includes a wide range of environ-
mental pollutants from representative U.S. populations and
independent data from different cycles enabled us to discover
and validate our findings. As outcomes, we examined serum lipid
levels including total cholesterol, high-density lipoprotein choles-
terol (HDL), low-density lipoprotein cholesterol (LDL) and
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triglycerides, because these are continuous measures that can be
dichotomized at clinically relevant cutoff points, allowing us to
evaluate both continuous and binary outcomes. These outcomes
were used in the previous EWAS by Patel et al. [6]. We focused on
environmental pollutants in this study rather than a broader array
of environmental exposures including dietary, behavioral, psycho-
social, socioeconomic and neighborhood, and microorganismic
factors, which may limit the feasibility and applicability of ERS.
Instead, we treated important determinants of lipid outcomes such
as age, sex, race/ethnicity, education (an indicator of socioeco-
nomic factor), body mass index (BMI), and selected dietary
nutrients as covariates and confounding factors. The methodology
can of course be generalized when the agnostic search for
important predictors is expanded to a broader set of exposures
capturing personal and community environment.

As the primary goal of the present study is to introduce this
novel approach rather than to estimate and generalize actual risks
in the U.S. population, and as some of the statistical procedures
used in our approach are not equipped with automated handling
of survey weights, we did not account for the complex sampling
design and used conventional regression modeling. Biomonitoring
data in NHANES were not measured in all participants; some
pollutants were measured only in a subset (e.g., one third) and
different kinds (classes) of pollutants were measured in different
subsets in order to reduce the burden of examinations, which
limits the sample size for this multi-pollutant model. To maximize
the power of the proposed approach, we imputed unmeasured or
missing pollutant data. For these reasons, our findings should be
cautiously interpreted as potential associations. Another new
feature of the present study is that we examined 4 lipid outcomes
separately (single-phenotype approach) as well as all 4 lipid
outcomes together as a whole (multi-phenotype approach). This
multi-phenotype approach can also help improve the power to
detect modest individual effects of environmental pollutants and
reduce the burden of multiple testing [30-32].

Methods

Ethics Statement

NHANES is a publicly available data set and all participants in
NHANES provide written informed consent, consistent with
approval by the National Center for Health Statistics Institutional
Review Board.

Data

We obtained all publicly available data from the NHANES
website (http://www.cdc.gov/nchs/nhanes.htm). Following the
two-stage design as in genome-wide association studies [33], we
selected three NHANES cycles, 1999-2000, 2001-2002, and
20052006 as stage 1 samples and NHANES 2003-2004 as stage
2 samples, because not all measures of environmental pollutants
are available in all cycles and the 2003-2004 cycle had the largest
number of shared pollutants. We restricted the sample to adults
aged 20 years or older and did not include children in this study.

We focused on the 149 environmental pollutant variables that
were measured in both stage 1 and 2 samples. The basic idea of an
EWAS, like GWAS, is to conduct an agnostic search in a broad set
of environmental compounds without any prior belief or
hypothesis regarding the effects related to a given outcome. As
our study was based on such a non-targeted approach and had no
a priort assumption of the association directions, chemicals known
to be less toxic, such as arsenosugars, were not screened out. For
the concentrations below the National Centers for Health Statistics
(NCHS) documented limit of detection (LOD), the values of each
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pollutant’s LOD/2 were replaced. We eliminated 15 variables
that had more than 90% of the observations missing (including
missing due to below LOD), leaving 134 pollutants available for
our analysis (T'able S1). As stated above the four outcome variables
included total cholesterol, HDL, LDL and triglycerides. Important
covariates were chosen a priorn and included age, sex, race/
ethnicity (Mexican American, Other Hispanic, non-Hispanic
white, non-Hispanic black, Other), education (categorized to less
than high school diploma, high school diploma, and greater than
high school diploma), BMI, and NHANES cycle. We selected
education as an indicator of socioeconomic status because it is
widely used and has less missing data than other proxies, such as
household income or poverty income ratio. We also considered 21
blood measures of micronutrients (vitamins and isoflavone
compounds), some of which were identified to predict serum
lipids in the previous EWAS [6]. We imputed our data with a
sequential imputation strategy using IVEWARE where the
variables to be imputed were treated as the outcomes and all
other variables were used as predictors [34,35]. Since we used the
data solely for an illustrative purpose, we used only one imputed
dataset. The distributions of the data before and after imputation
were similar (see File S1 for more details). The sample sizes after
imputation were 10818 for the stage 1 sample and 4615 for the
stage 2 sample. We applied logarithmic transformation with base
10 to the continuous outcomes and pollutant levels because of
skewness in the distributions of the raw values.

Discovery Process of Environmental Factors Contributing
to ERS for Single Phenotype

1. Choice of covariates and micronutrients. Our base
model included age, gender, race/ethnicity, education and BMI as
was also done by Patel et al. [5,6]. Then we selected important
micronutrients corresponding to each phenotype using the full
data (stage 1 and 2 samples combined). Specifically, we first
regressed each phenotype on the set of covariates in the base
model to obtain the residuals, and then used the residuals as the
outcome to select the micronutrients. For micronutrient selection
we applied the Bayesian model averaging technique (BMA) to
jointly analyze all micronutrients and select the ones with posterior
inclusion probability greater than 0.8 (see Sun et al. [10] for
details). Other simpler methods (e.g., best subset regression) may
also be used at this step.

2. Single-pollutant models. We sclected environmental
pollutants for each lipid outcome with adjustment for base
covariates and outcome-specific micronutrients. Specifically, for
subject 7 (¢ =1, ..., N), let 1; represent one given phenotype, E; be
one given environmental pollutant, and <; (kx1) be the vector of
base covariates and micronutrients. The fitted single-pollutant
model was

Yi=Bo+BE+BrZi+e, (1)

where &;~N(0,6%). We adopted a two-stage analyses strategy
following Skol et al. [36] using the model in (1). In stage 1, we
analyzed the single-pollutant model for every pollutant using stage
1 samples and calculated the standard Wald test statistic z
corresponding to ﬁl. In stage 2, we only included pollutants with
|z1| > C) (pre-defined significance threshold). For each of these
chosen pollutants, we repeated the same regression analysis using
stage 2 samples, and calculated Wald test statistics zo correspond-
ing to B 1- Finally, we conducted joint analysis to combine z; and zy
and get a new statistic that allows for between-stage heterogeneity

[36],
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Zjoint = / TsamplesZ1 + \Y4 1— T samplesZ2 » (2)

where Tgumpies was the proportion of samples in stage 1 (0.7 in our
case). Zjy was compared with a significance threshold Gy
Thresholds C; and Cj,;,, were selected to control for the false
positive rate. Details for the calculation can be found in Skol et al.
[36]. Pollutants with |z, |>C; and | Zjyiu| > Gjoine were selected for
ERS and in our study, we chose €} and G, to be 2.58 and 3.57,
respectively (corresponding to a significance level of 0.01 for the
Wald test in both stage 1 and stage 2 analyses). The choice of these
thresholds can be optimized for enhanced power at a given false
positive rate; however, we wanted to be liberal in the choice of
these thresholds. Our primary goal was to identify pollutants to be
included in the construction of the ERS that can be used for
prediction of health risks, not just identification of individual
pollutants, thus, we are less concerned about the false positive rate
of the discovery process at this step. We denote the set of pollutants
selected in this step as E".

3. Conditional analysis via multi-pollutant
Motivated by the discovery strategy of additional
genetic loci via conditioning on the loci identified through
marginal association in GWAS [37], we further explored the
possibility of identifying additional pollutants not selected in the
previous two-stage analysis, in the presence of the previously
selected ones in a multivariate model. Specifically, for subject ¢, let
E;" denote a pollutant not belonging to E°. The conditional model
is given by.

models.

! !
Yi=yo+nE" +0,E +7y:Zi+ei, 3)

where e;~N(0,7%). We repeated the two-stage analysis with this
conditional model for each pollutant not belonging to E°. We
calculated the same Wald test statistics and compared them to the
same thresholds to select additional exposures for ERS. We
denoted the set of pollutants selected in this step as E°, denoting
pollutants identified based on conditional analysis.

Construction of ERS and Assessment of its Predictive
Power

We conceptualized the ERS as a weighted sum of the exposures
identified by marginal and conditional analysis, namely, £* and E*
i.e., for subject 7, ERS; = wES + w Ef, where @' and ' are
vectors of weights corresponding to E* and E*, respectively. Given
that all exposure variables were log-transformed in the present
study, the weights (regression coefficients) are on a relative (ratio)
scale, not an absolute (difference) scale, and therefore the weights
did not need to be scaled. For comparability of the weights on an
absolute scale if exposure variables are linearly fit, they need to be
scaled (by either standard deviation or IQR).

To estimate the weights and evaluate the performance of ERS,
we randomly split the full data (all cycles combined) by a 3:1 ratio:
the larger part (n=11586) used for estimation/training and the
smaller part (n=3847) for validation/testing. We considered two
types of weights. ERS1 used regression coefficients from single-
pollutant models for each pollutant in the E' and E° sets as
weights, while ERS2 used regression coefficients from a mult-
pollutant model that included all members of E' and E°
simultaneously. The weights of ERSI and ERS2 were both
adjusted for base covariates and phenotype-specific micronutri-
ents. ERS1 and ERS2 differ in terms of the weights corresponding
to each pollutant, in particular, the weights in ERS2 are taking
into account correlation among the pollutants in the entire £’ and
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NHANES
4 cycles (1999/2000, 2001/2002, 2003/2004, 2005/2006)

Population: Adults 20 years and older (n=15,433)
Exposures: 134 environmental pollutant biomarkers
Outcomes: Total cholesterol, HDL, LDL, triglycerides

(Single Phenotype individually & Multiple Phenotypes together)
Covariates: age, sex, race, education, BMI, micronutrients

Stage 1: using NHANES 99/00, 01/02 and 05/06 (n=10,818)
Stage 2: using NHANES 03/04 (n=4,615)

Single Pollutant Approach Multi-Pollutant Approach

Association for the pollutants that did not
—>»| meet |z,]>C, in stage 1 conditional on E®
using stage 1 samples

211 > Cid, 23] < Cy v 121> C

Association for 134 pollutants individually
using stage 1 samples

Association for the pollutants that met |z,]>C, Association for the pollutants that met
in stage 1 using stage 2 samples |z,]>C, in stage 1 using stage 2 samples

12 > Es: the set of 12| > E° : the set of
ointl > Cioin pollutants In this step ointl > Cioin pollutants In this step

ERS construction using ES and E°

Randomly split NHANES data into 3:1
3 for Estimation (n=11,586)
1 for Prediction (n=3,847)

Training/Estimation

Estimate weights (B coefficients) for ERS1 using ES
Estimate weights (B coefficients) for ERS2 using E£5 & E°

v

Testing/Prediction

Calculate ERS1 and ERS2 using testing data

Evaluation of ERS performance
Continuous ERS Categorized ERS

Continuous outcomes Dichotomous outcome Dichotomous outcomes

R? and PRESS AUC OR

Figure 1. Schematic plot of statistical methods for Environmental Risk Score.
doi:10.1371/journal.pone.0098632.g001
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E° sets. We estimated the weights using the training data and
calculated the ERS in the validation data based on those weights
to avoid issues of over-fitting. We realize that the multiple
regression model that includes both E* and E° with adjustment for
base covariates and phenotype-specific micronutrients may have
some redundant variables in terms of statistical significance, and a
further variable selection step may lead to a smaller model and a
more concise measure of ERS. We wanted to retain all the
identified pollutants in both versions of ERS and thus refrained
from applying this additional model selection step in constructing
the weights from the multivariate model.

We evaluated the performance of ERS using three metrics. In
each case, the contribution of ERS was measured in the presence
of base covariates and micronutrients retained in the model. First,
we used linear regression with the continuous phenotype outcome
and continuous version of the ERS, with R? and the predicted
residual sums of squares (PRESS) statistic measuring model fit.
Second, we dichotomized the levels of the phenotypes as high vs.
low (200 mg/dL for total cholesterol; 40 mg/dL (male) or 50 mg/
dL (female) for HDL; 130 mg/dL for LDL; and 150 mg/dL for
triglycerides [38]), and conducted logistic regression analysis with
this dichotomized outcome and with continuous ERS as predictor.
We used area under the receiver operating characteristic (ROC)
curve or AUC to assess predictive ability of the ERS with these
binary endpoints. In each of the above two metrics we compared a
sequence of models, with only base covariates, base covariates +
micronutrients, base covariates + micronutrients + ERS. Note that
the above two metrics measure overall prediction, aggregated over
all subjects. A bootstrap resampling (2000 iterations) was used to
compute 95% confidence intervals of AUCs for different models
[39] (the ci.auc() function in the pROC package in R [40]).

In order to assess risk stratification/discrimination power of the
ERS we further categorized ERS by its quintiles and conducted
logistic regression for the binary phenotype and categorical ERS.
We used the odds ratio (OR) for the highest quintile vs. the lowest
quintile of ERS to measure the risk stratification properties of

ERS.

Extension to Multiple Phenotypes

Since we are dealing with multiple lipid outcomes that are
correlated, a natural question may be to investigate whether
simultaneously analyzing the phenotypes lead to methods with
superior/different performance. In this step we used four
phenotypes together to select environmental pollutants by
multivariate regression. The micronutrients adjusted for were the
union of all phenotype-specific micronutrients selected in Section
1. Specifically, for subject ¢, the multivariate single-pollutant model
is.

Yi=oo+o Ei+o W;+é;, 4)

where Y; is the 4x1 vector of phenotypes, & and &are 4x1
vectors of intercepts and regression coeflicients for one given
pollutant, respectively, o is the 4x m matrix of regression
coefficients for base covariates and micronutrients W, (mx1) and
&iN(0,Z44). Similar to the single-phenotype method, we also
applied the two-stage analysis. In stage 1, we analyzed the
multivariate single-pollutant model for every pollutant using stage
1 samples and calculated the likelihood ratio Chi-squared test
statistic with 4 degrees of freedom, namely, y; comparing the
multivariate single-pollutant model with the base model (& = 0).
In stage 2, we repeated the same analysis using stage 2 samples,
but only for pollutants with |y;| > C} (pre-defined significance
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threshold), and calculated the same likelihood ratio test statistic yo.
We also used equation (2) (replace z with ) to calculate ;y;,, which
was compared with a significance threshold Cj,;,. Again,

thresholds Cy and C},;,, were selected to control the false positive

rate and we set them to be 13.3 and 18.4, respectively
(corresponding to a significance level of 0.01 for the chi-squared
test with 4 degrees of freedom in each stage).

Similarly, we also conduct the conditional analysis using the
multivariate multi-pollutant model adjusted for pollutants selected
in the previous step, base covariates and micronutrients. We
calculated the same likelihood ratio test statistics and compared
them to the same thresholds to select additional exposures for
ERS.

The ERS consists of pollutants selected in the multivariate
single- or multi-pollutant analyses. Its construction and assessment
steps were the same as in Section 2. A schematic representation of
the procedures is presented in Figure 1.

Results

Table 1 shows population characteristics of the stage 1 and 2
samples. Mean (SD) age and the proportion female were 48 (18.7)
years and 53.5% in Stage 1 and 50 (19.5) years and 51.9% in
Stage 2, respectively. The mean BMI was 28.4 kg/m?* in both
Stages. The Stage 1 samples included more Mexican American
and other Hispanic and were less educated than the Stage 2
samples. Participants in the Stage 1 had lower HDL (53.0 vs. 54.7
mg/dL) and higher triglycerides (150.2 vs. 140.0 mg/dL) than
those in the Stage 2. Total cholesterol was highly correlated with
LDL (Spearman correlation coefficient (rho) =0.86) but modestly
correlated with HDL (rtho=0.16) and triglycerides (rho=0.37)
(Table S2). HDL was inversely correlated with triglycerides
(rho =-0.42).

Of 31 micronutrient measures in blood, we identified 12
significant predictors for total cholesterol, 9 for HDL, 9 for LDL
and 11 for triglycerides (Table S3). Measures of B vitamins (folate,
B12, methylmalonic acid), vitamin A (retinol, retinyl palmitate,
retinyl stearate), carotenoids (o-carotene, P-carotene, P-crypto-
xanthin, lutein/zeaxanthin, lycopene), and/or vitamin E (o- and
v-tocopherol) were selected for each lipid outcome. These
phenotype-specific nutrient variables along with the pre-selected
base covariates were adjusted for when identifying environmental
pollutants for ERS.

Discovery of Environmental Pollutants for ERS

Table 2 shows environmental pollutants that reached the
significance threshold (G, of 0.01) for each lipid outcome and
their estimated weights (regression coefficients) for ERS from
single-pollutant models (ERS1) and a multi-pollutant model
(ERS2). Figure S1 presents visual distributions of the P values
for the individual environmental pollutants examined in the Stage-
1 samples (Manhattan plot [41]). Out of 134 environmental
pollutants, 11, 9, 5 and 23 pollutants were significantly associated
with total cholesterol, HDL, LDL, and triglycerides, respectively,
in single pollutant models (marginal analyses) with adjustment for
the base covariates and phenotype-specific nutrients. Note that the
weights in Table 2 are the regression coefficients for each log-
transformed exposure in relation to the log-transformed lipid
outcome, which are not directly interpretable. Generally, percent
changes for a two-fold increase in exposure concentrations are
presented as [exp(regression coefficientxlog(2)) —1]x100%. For
example, a two-fold increase in blood lead was associated with a
19% higher levels of total cholesterol ([exp(1.71xlog(2)) —
1]x100% =19%). Since we used these weights to construct
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Stage 2 Samples (n=4615)

50.3 (19.5)
28.4 (6.3)
202.0 (44.0)
54.7 (16.3)
119.9 (38.1)
140.0 (139)

2220 (48.1)
2395 (51.9)

2447 (53.0)
925 (20.0)
905 (19.6)
139 (3.0)
199 (4.3)

1356 (29.4)

1159 (25.1)
2100 (45.5)

4615 (100)

ERS rather than interpret the associations of individual pollutants,
we presented the direct weights rather than more interpretable
estimates (percent changes). Also note that less significant
associations in ERS2 compared with ERSI are mainly due to
lower power due to fitting of a larger model with larger number of
parameters and with multiple pollutants that are potentially
correlated. Two pollutants (1,2,3,4,6,7,8-HpCDD and PCB 177)
for total cholesterol and 4 pollutants (PCB 118, PCB 138, PCB
153 and 3,3,4,4,5,5-PnCB) for triglycerides were additionally
identified in conditional analyses in which the pollutants selected
in the previous two-stage analyses were included as covariates. No
further pollutants were identified in relation to HDL and LDL in
the conditional analyses. Therefore, a total of 13 pollutants for
total cholesterol, 9 for HDL, 5 for LDL and 27 for triglycerides
were identified and used to construct ERS for each outcome.
Various persistent organic pollutants (POPs) were positively
associated with total cholesterol and triglycerides and inversely
associated with HDL in single-pollutant models but the association
directions for some POPs (2,3,4,7,8-PnCDF, 3,3,4,4,5-HxCB,
PCB 138, PCB 146, PCB 156, PCB 177, PCB 180, and PCB 183)
changed in the multi-pollutant model, probably due to multi-
collinearity. Phthalates were inversely associated with HDL.
Cadmium and lead were associated with lipid outcomes in
expected directions, that is, higher concentrations of cadmium and
lead were associated with higher levels of lipid outcomes except the
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Table 1. Population characteristics by two stage samples.
Variable Stage 1 Samples (n=10818)
Continuous (Mean (SD))

Age (years) 48.0 (18.7)

BMI (kg/m?) 28.4 (6.4)

Total cholesterol (mg/dL) 201.8 (43.9)

HDL (mg/dL) 53.0 (16.3)

LDL (mg/dL) 118.9 (37.8)
Triglycerides (mg/dL) 150.2 (135)
Categorical (N (%))

Gender

Male 5029 (46.5)

Female 5789 (53.5)
Race/Ethnicity

Non-Hispanic White 5397 (49.9)

Mexican American 2433 (22.5)
Non-Hispanic Black 2121 (19.6)

Other Hispanic 498 (4.6)

Others 369 (3.4)

Education

< High School 3383 (31.3)

High School 2522 (23.3)

College or Above 4913 (45.4)

Study Year

1999-2000 3089 (28.5)
2001-2002 4736 (43.8)
2003-2004 ®

2005-2006 2993 (27.7)

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
doi:10.1371/journal.pone.0098632.t001

association between lead and HDL (good cholesterol) which was
positive. Interestingly, the mercury (blood total and urinary) and
arsenobetaine measures were inversely associated with triglycer-
ides; as were perfluoroheptanoic acid and diethylphosphate with
LDL.

Risk Prediction by ERS and its Associations with Lipid
Outcomes

The ERS’s from single-pollutant models ranged from —0.068 to
0.239 (mean*SD =0.090%+0.043) for total cholesterol (fit as a
continuous outcome (log-transformation). Same for other out-
comes); —0.226 to 0.205 (0.030%0.057) for HDL; —0.059 to
0.195 (0.088%0.029) for LDL; and —1.278 to 0.563 (-
0.445*0.228) for triglycerides. Those from a multi-pollutant
model ranged from —0.009 to 0.135 (0.058%*0.019) for total
cholesterol; —0.013 to 0.152 (0.061%0.022) for HDL; —0.054 to
0.183 (0.086%x0.027) for LDL; and —0.291 to 0.339 (-
0.009£0.082) for triglycerides (Table S4). The ERS2 were
generally smaller than the ERSI because of more inverse
associations in ERS2.

Table 3 presents risk prediction measures by ERS when
outcomes were continuous (R? and PRESS) and dichotomized
(AUCQ). Base covariates and micronutrients explained approxi-
mately 13% of the variation for LDL, 26% for HDL, 33% for total
cholesterol and 37% for triglycerides. ERS constructed with
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coefficients from single-pollutant models (ERS1) additionally
explained variations from 0.33% for LDL to 0.72% for
triglycerides. Addition of ERS1 decreased the PRESS by from
0.33% [(539.62-537.84)/539.62] for LDL to 1.1% [(967.24—
956.76)/967.24] for triglycerides. When the dichotomous out-
comes were used, the addition of the ERSI only minimally
modestly improved the AUC for each lipid outcome (Table 3 and
Figure S2). Similar results were found with the ERS constructed
with coefficients from multi-pollutant models (ERS2). Similar risk
predictions were observed in the multi-phenotype approach
although six new pollutants were identified in the multi-phenotype
approach (Table S5).

Table 4 shows ORs of having adverse levels of lipid outcomes
comparing the highest vs. the lowest quintiles of ERS. After
controlling for base covariates and micronutrients, ORs of total
cholesterol comparing the highest vs. the lowest quintiles were
from 1.45 (95% confidence interval (CI), 1.11, 1.89) for ERS1 and
single-phenotype approach to 1.78 (95% CI, 1.34, 2.37) for ERSI
and multi-phenotype approach. For HDL, ORs ranged from 1.37
(95% CI, 1.08, 1.75) for ERSI and single-phenotype approach to
1.57 (95% CI, 1.23, 1.99) for ERS2 and multi-phenotype
approach. For LDL, the highest quintile had a 82% higher odds
of having high LDL levels (95% CI, 1.39, 2.38) compared with the
lowest quintile in single-phenotype approaches, whereas the
associations were relatively weak in multi-phenotype approaches
(OR=1.36 (95% CI, 1.06, 1.74) for ERSI and 1.26 (95% CI,
0.97, 1.64) for ERS?2). For triglycerides, ORs ranged from 1.54
(95% CI, 1.15, 2.06) for ERS2 and single-phenotype approach to
2.03 (95% CI, 1.52, 2.70) for ERS2 and the multi-phenotype.
These ORs were comparable to or even stronger than those for
socio-demographic factors or BMI (Table S6). For example, the
OR of the association between total cholesterol and ERS from
single-pollutant models (1.45) was consistent with ORs for females
vs. males (1.47); for non-Hispanic blacks vs. non-Hispanic white
(1.42); and for a 30 kg/m? increase in BMI (1.47); and stronger
than ORs for <high school vs. college or higher (1.20).

Figure 2 shows ORs of having adverse levels of HDL and LDL
for individual pollutants that compose the ERS. Three out of the 9
pollutants (antimony, mono-benzyl phthalate, mono-(3-carboxyl-
propyl) phthalate) had significant positive associations with the
odds of HDL, the rest except for blood lead had weak non-
significant positive associations and blood lead had a weak non-
significant inverse association. One of the 5 pollutants (blood lead)
had a significant positive association with the odds of LDL and the
rest had weak non-significant associations. In particular, the effect
sizes of ERS’s in relation to LDL were larger than any of the effect
sizes of individual pollutants. Here we present ORs of HDL and
LDL because their ERS’s comprise the smaller number of
pollutants (9 and 5 pollutants each). The plots for total cholesterol
and triglycerides are shown in Figure S3.

Discussion

In this study, we propose an Environmental Risk Score (ERS) as
a novel approach that integrates information on the health effects
of multiple pollutant exposures. We used serum lipid measures and
various classes of pollutant biomonitoring data from NHANES to
illustrate and validate this approach. Important environmental risk
factors for lipid outcomes were identified individually (single-
phenotype approach) or together (multi-phenotype approach)
while controlling for socio-demographic risk factors and nutrients.
Although the contributions of ERS to overall risk predictions for
lipid outcomes (i.e., R%, PRESS and AUC) were modest after
accounting for important socio-demographic factors and nutrients,
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we found relatively stronger associations between ERS and lipid
outcomes than with individual pollutants. The magnitudes of the
observed associations between ERS and lipid outcomes were
comparable to or stronger than those for socio-demographic
factors or BMI.

Although the importance of evaluating the health effects of
multi-pollutant exposures has recently been recognized [18,42],
only a few studies have been conducted, mostly focused on
multiple air pollutants [10,21,43-46], probably due to methodo-
logical challenges, such as collinearity, measurement errors,
potential interaction between pollutants and potential non-linear
exposure-health relationships [16]. Patel et al. adopted newer
techniques used in genomics and proposed an Environment-Wide
Association Study (EWAS) [5,6]. This approach provided
excellent insight to identify ‘top hit’ pollutants. However, few
epidemiologic studies have provided methods to estimate com-
bined effects or to predict risks from multi-pollutant exposure
[43,47].

Hong et al. examined the combined effects of 4 air pollutants
(particulate matter<10 pm (PM,), nitrogen dioxide (NOs), sulfur
dioxide (SOy), and ozone) by summing each pollutant concentra-
tion divided by its mean (i.e., relative concentrations) and then
fitting this index as an independent variable [47]. They found that
the combined index had a stronger association with mortality than
individual pollutants. In a study of indoor exposure to volatile
organic compounds (VOCs) and respiratory health, Billionnet et
al. computed a global VOC score of 20 VOCis by dichotomizing
individual VOC as 1 if greater than the 75" percentile and
otherwise 0 and then summing the 20 dichotomous VOCs, which
indicates the number of VOCs whose concentrations were
relatively high within the study population (range 0-17) [43].
Each additional VOC with a concentration higher than the 75
percentile was associated with 7% (95% CI, 1.00-1.13) and 4%
(95% CI, 1.00-1.08) higher odds of asthma and rhinitis,
respectively. Although these studies evaluated the combined effects
of multi-pollutants, their approaches did not account for the
relative effects of individual pollutants on the phenotype of
interest, that is, each pollutant was not weighted depending on its
relative effect size. Our study aimed to obtain a more precise
relative effect size of each pollutant on each lipid outcome by
estimating the weights (regression coefficients) from a randomly
split training dataset and then computed ERS in an independent
validation dataset.

In the real-world, we are exposed to multiple pollutants which
may contribute to disease susceptibility in combination or as
mixtures. In contrast, individual pollutants may have relatively
small effects. Our study supports this notion that only a few
pollutants were significantly associated with serum lipids levels
while many individual pollutants had relatively weak associations
(Figure 2 and Figure S3). The ERS as a multi-pollutant approach
allows us to integrate those relatively small effects from multiple
pollutants and provides a better opportunity to identify subpop-
ulations that are at higher risk for diseases. We used multi-
pollutant information at different steps of our process. Our
discovery approach is different from Patel’s [5,6] as we performed
analysis with single pollutant models and then evaluated additional
pollutants conditional on the identified pollutants. We then formed
ERS using the set of all pollutants identified via this process using
the weights from assessing them one at a time (ERSI1) and jointly
(ERS2). It appears that in terms of overall prediction, ERS1 and
ERS2 were very similar in performance (Table 3), however, ERS2
was often slightly better in terms of risk stratification (Table 4). It is
not possible to conclude definitively, without extensive and
exhaustive simulation studies, which one performs better. Also,
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8 one could modify ERS2 by filtering potentially correlated
s 6 | & predictors through variable selection, and reducing its variability.
®»nxalt Although high risk groups were identified by the ERS in the
= 5 < R present study, the ERS showed only modest improvement in lipid-
3 g g 3|2 related risk prediction of above and beyond the effect of traditional
3 3sla 3l 2 risk factors including sociodemographic and dietary factors (e.g.,
s sss|g g grap ry g
a vVig 8 gz AUC improvements of 0.72 to 0.82, Table 3 and Table S5). This
= EE Py E ’g finding may not be surprising because a marker witb an OI_{ of 3
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= individuals [48]. In fact, the improvements of risk prediction/
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= . . . .
333 3&|ls 5 coronary heart disease risk prediction by genetic risk scores (GRS
> 2 <2 2] 8 & y p Y g
S 28 S| &8 o found in the Atherosclerosis Risk in Communities (ARIC) (from
n o © o B T
555 8| ¢ gw 0.742 to 0.749), Rotterdam Study (from 0.729 to 0.734) and
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E 2 B increment in AUC or R? however, similar risk stratification
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s § g E § § 8 properties across the quintiles of genetic risk scores have been
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E 9 ¥ 9|5 E‘ determine potential risk stratification where individuals are at
~ € | RRR&| % o increased risk of high lipid levels and related cardio-metabolic
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X % 5 lo | @ ™ < g & diseases than single pollutant approaches. The proposed ERS may
Il 1% |8 | z N g g 2 S allow us to identify susceptible subpopulations where targeted
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et al2l<|s s s 5| & 5 @ interventions are necessary and could have the greatest benefits
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< S = S [27]
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° 9 Lg - ORs in Table 4, aiding with risk stratification. In general, if there
E) T T 8 is correlation among the pollutants, the discovery approach based
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o ‘.‘-‘;'4 3 8 2R3 g £ on conditional associations may yield new results. If there is
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% G335 3|2 < _i correlation among the outcomes or different phenotypes, the
£ E E‘ ‘qé multi-phenotype approach, in spite of being a test with higher
o 8 g g4 E degrees of freedom, will yield a more powerful analysis. For
< . . . .
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2 N 2425 o Y ’ Pie;
S 2z 8¢ 2 E 5 pesticides and/or other endocrine disrupting chemicals may have
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c : . .
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] 3 A 2o B R ! X . .
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b= |3 © 9 q gl £2ez8e ¥ strategy in this initial paper. Moreover the ERS itself may have a
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BENS cc 28 . 7 s I
2 g v ES 2822 predictor. We used quintiles of ERS to somewhat address this issue
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S 5ges °3 §§ S in the association models but a completely flexible generalized
' nde .. . . . .
s 2 & 29 S S % qé—g additive model will be more appropriate from a statistical point of
R vo&22 > . . R s
bl 5 LS E B2 Y view. We tried to retain simplicity in our approach for usabilit
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% - S ERE upon in the future.
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” g & v | a®3LBEB T . . . .
> ° 2| £E8STc~--TEH interactions when important individual pollutants were selected.
2 s S 8| S85gm3E25 Some pollutants may interact and have synergy. A well-known
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= £ 5218 }? 8 §§ g== ﬁ <5 example is cigarette smoking and asbestos on lung cancer [52,53].

On the other hand, beneficial nutrients may mitigate toxic effects
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Table 4. Odds ratios (95% Cls) for environmental risk score (ERS) categorized by quintile® (n=3847).

Single-phenotype Approach®

Multi-phenotype Approach?

Phenotype®

ERS1°¢

ERS2f

ERS1¢

ERS2f

Total cholesterol

1.450 (1.112, 1.892)

1.722 (1.317, 2.252)

HDL 1.372 (1.077, 1.748) 1.450 (1.144, 1.838)
LDL 1.824 (1.394, 2.386) 1.820 (1.391, 2.381)
Triglyceride 1.843 (1.366, 2.487) 1.536 (1.147, 2.056)

1.781 (1.337, 2.374)
1.471 (1.142, 1.894)
1.357 (1.061, 1.735)
1.758 (1.275, 2.424)

1.564 (1.191, 2.054)
1.565 (1.230, 1.990)
1.262 (0.973, 1.637)
2.027 (1.521, 2.703)

micronutrients.

phenotype-specific micronutrients.

doi:10.1371/journal.pone.0098632.t004

of pollutants. For example, people with higher intake of
antioxidant vitamins, B-vitamins (folate and vitamin B12) or
omega-3 fatty acids had lower effects of air pollution [54-56].
Conventional statistical approach that includes cross-product
terms of two interacting factors may have low power and therefore
effect estimates would be unstable. A recent study by Sun et al.
[10] proposed statistical strategies to examine multi-pollutants and
their interactions using a two-stage model. Other dimension
reduction techniques may also work for estimating risk models
when a large number of pollutants and their interactions exist. A
planned future study accounting for pollutant-pollutant and
pollutant-nutrient interactions is expected to improve the model
prediction, and therefore, potentially the utility of ERS.

We used an arbitrary significance level of 0.01 to account for
false positive rate. One reason is that we wanted to allow
environmental pollutants that had even modest associations to be
included in the ERS. We conducted sensitivity analyses using

40dds ratios for dichotomized phenotype (high vs. low) comparing subjects with ERS in the top 20% to those in the bottom 20%, adjusted for covariates and

PDichotomization thresholds: 200 mg/dL for total cholesterol, 40 mg/dL (male) or 50 mg/dL (female) for HDL, 130 mg/dL for LDL and 150 mg/dL for triglyceride.
“Pollutants selected by single-phenotype regression (n=13, 9, 5 and 27 for total cholesterol, HDL, LDL and triglyceride, respectively) to construct ERS, adjusted for

dpollutants selected by multi-phenotype regression (n=45) to construct ERS, adjusted for union of selected micronutrients (n=14).
®ERS constructed with coefficient estimates from single-pollutant models as weights.
fERS constructed with coefficient estimates from multi-pollutant models as weights.

significance levels of 0.05 and 0.001 and applied these different
thresholds to the AUC as shown in Table 3. Under the significance
level of 0.05, 30 pollutants (vs. 13 under the significance of 0.01)
for total cholesterol; 16 (vs. 9) for HDL; 5 (vs. 5) for LDL; and 34
(vs. 27) for triglycerides were identified. However, the improve-
ment in the AUC and OR were minimal. Using a significance
level of 0.001, the number of pollutants identified decreased
substantially, especially for LDL. The decrease in AUC was
mainly for LDL while the decrease in OR was found for all
phenotypes. Therefore we chose the intermediate threshold of
0.01. Even higher significance levels (e.g., alpha of 0.1) have been
used as “pruning criteria” in genetic risk scores [57,58], therefore,
genetic markers conferring only modest levels of disease risk could
be aggregated in the risk score. In general, a liberal threshold is
often noted to perform better for prediction as compared to
controlling false discovery rate for identification of variables [59].

HDL LDL
ERS1 -
; ERS1 — _—
ERS2 — P
Dieldrin H— ERS2
Heptachlor epoxide — —0—
Antimony in urine —| — Diethylphosphate —
Mono-isobutyl phthalate — —vo— 2.3,7,8-TCDD —
Mono-(3-carboxylpropyl) phthalate — —0—
Mono-benzyl phthalate — e Perfluoroheptanoic acid —
Mono-n-butyl phthalate — _._
; Cadmium in urine —| ———
Cadmium in urine — —te—
Lead in blood - — Lead in blood - _—
I T T T l I 1 T T 1
0.5 1.0 1.5 2.0 25 0.5 1.0 1.5 2.0 2.5
Odds Ratio Odds Ratio

Figure 2. Odds ratios (95% confidence intervals) of having adverse levels of HDL (40 mg/dL for men and 50 mg/dL for women) and
LDL (130 mg/dL) comparing the highest vs. the lowest quintiles of ERS and individual pollutants that compose the ERS. Models were
adjusted for age, gender, race/ethnicity, education, BMI, and phenotype-specific micronutrients.

doi:10.1371/journal.pone.0098632.g002
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Although we include many environmental pollutants that are
widespread and available in NHANES, we were not able to
account for a/l environmental pollutants as it is unrealistic, the data
were not available and not all environmental pollutants have been
identified as yet. Also, we limited our analysis to chemical
environmental pollutants in constructing the ERS. Recently, a
new concept of the exposome, that is, the totality of exposures over
the course of a lifetime, has been proposed [60-65] and the need
for more complete non-genetic exposure assessment in epidemiologic
research has been emerging, as emphasized in the strategic
themes defined by the National Institute of Environmental
Health Sciences (NIEHS) (http://www.niehs.nih.gov/about/
strategicplan/). Our proposed approach will be useful to identify
important individual factors and to combine their risks, which
eventually will advance our understanding of health responses to
the complex nature of multi-pollutant exposures.

Each individual pollutant has different degrees of measurement
error. Exposure measurement errors are generally non-differential
when the errors are independent of each other and the disease
status [66]. Therefore, it is expected that environmental pollutants
measured with less non-differential measurement error such as
those with lower temporal variability are more likely to be detected
(e.g., PCBs vs. phthalates). However, differential measurement
errors may occur when exposure measurement errors are not
independent because some of the effects of more poorly measured
exposures may be transferred to the effect estimates of better-
measured exposures [67]. In addition, most of the pollutant
variables used in our study are subject to a limit of detection
(LOD). Several ad hoc substitution methods, such as substitution of
LOD/2 or LOD/|2 for values below LOD, are widely used
(NHANES used LOD/ \512). These ad hoc methods, however, can
lead to bias especially when the proportion of values below LOD is
high [68]. Maximum likelihood estimation based on a parametric
joint distribution assumption for all the exposures, for example,
multivariate normal distribution, may reduce potential bias if the
parametric distribution assumption is correct [69].

Exposure data were collected cross-sectionally at one point in
time, yet exposures are subject to temporal variation. This issue
becomes particularly important when examining health effects of
non-persistent short-lived environmental pollutants, such as BPA
and phthalates. A recent study of urinary BPA and type-2 diabetes
using three NHANES cycles found a significant association which
was confirmed in one cycle (2003-2004) but not in the other two
cycles. This finding indicates possible exposure misclassification
due to a single urine sample [70]. Reliable exposure biomarker
data assessed based on repeatedly collected samples is warranted
to reduce exposure misclassification.

We did not consider differential risk prediction in different
subpopulations. Emerging evidence suggests that certain sub-
groups may be more responsive to environmental pollutant
exposure. Women are known to take up more divalent metals
such as lead and cadmium due to iron depletion [71]. Stronger
associations between lead and hypertension have been found in
some racial/ethnic populations [72,73]. Sex- or race/ethnic
group-specific biological differences, such as differences in body
iron and estrogen levels between men and women, or socially
determined gender- or race/ethnic group differences, such as
different psychosocial stress levels, may confer susceptibility to
health responses to pollutant exposures [74,75]. Sex-specific or
race/ethnic group-specific ERS’s may provide better risk predic-
tion as well as risk assessment.

Our results may be biased due to residual confounding. Urinary
creatinine adjustment has been recommended for urinary
biomarkers to correct for dilutions of pollutant concentrations in
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spot urine samples [76]. The main purpose of the present study is
to introduce a novel ERS approach as a proof of concept
illustration rather than to identify potential environmental factors
related to health outcomes and estimate the associations as done in
previous EWAS. Variance may be somewhat underestimated and
the observed findings may not be generalizable to the US
population.

Because not all environmental pollutants were measured in the
entire population, we imputed unmeasured or missing pollutant
data to maximize the power. We used a single imputation because
our main goal was to introduce the approach of ERS, but multiple
imputations after taking the uncertainty in imputed values into
account would be a more appropriate approach. Imputation may
be necessary for meta-analyses of multiple ERS studies in the
future because it is unlikely that every cohort has a uniform set of
pollutants measured. Careful data harmonization and imputation
may increase the power of the analysis if correlated exposures and
covariates are observed in one cohort that are predictive of
exposures in another cohort where those exposures are missing.
However, the imputation issue will merit a complete paper in its
own right, as imputation with high dimensional data is still very
much an evolving topic in statistical research [77]. In summary,
the present study suggests ERS is a promising tool for integrating
disease risks from multi-pollutant mixture exposures. The ERS is a
simplest form of data reduction, characterizing the summary
exposure burden like a polygenic risk score in genetics [27]. This
new approach supports the need for moving from a single-
pollutant to a multi-pollutant framework for new discoveries and
better risk stratification. Combining information from ERS along
with known predictors can improve disease prediction. Also, the
ERS along with genetic risk score can potentially provide a way to
reduce dimension and increase the power in studies of gene-
environment interaction. More generally, ERS can be taken as a
measure of summary/background burden of environmental
exposure and it will be interesting to explore whether the effect
of a certain gene, behavioral factors (diet, physical activity,
smoking) or another pollutant is larger if individuals are in the
highest quartile of ERS. The contribution of ERS to risk
prediction and classification warrants further studies.

Data Sharing: The data and codes used for illustration of our
approach are available at http://www-personal.umich.edu/
bhramar/software/.

Supporting Information

Figure S1 Manhattan plots representing the P value
distributions of the individual environmental pollutants
examined using the stage 1 samples. Y-axis indicates —
log10(p-value) of the regression coefficient for each of the
environmental pollutants, adjusted for age, gender, race/ethnicity,
education, body mass index and phenotype-specific micronutri-
ents. The horizontal dotted line represents the p-value of 0.01. X-
axis indicates 13 classes of environmental pollutants: 1) heavy
metals; 2) phthalates; 3) environmental phenols; 4) polycyclic
aromatic hydrocarbons (PAHs); 5) volatile organic compounds
(VOCGs); 6) perfluorinated compounds (PFCs); 7) dioxins and
furans; 8) dioxin-like polychlorinated biphenyls (PCBs); 9) non-
dioxin-like PCBs; 10) organochlorine pesticides; 11) organophos-
phate dialkyl metabolites; 12) herbicides; and 13) pesticides
phenols. Each color represents one class.

(PDF)

Figure S2 Receiver operating characteristic (ROC)
curves for four phenotypes. The dotted line denotes the null
curve. The black curve is for the model with only covariates. The
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blue curve is for the model with both covariates and phenotype-
specific micronutrients. The red curve is for the model with
environmental risk score (ERS), covariates and phenotype-specific
micronutrients.

(PDF)

Figure S3 Odds ratios (95% confidence intervals) of
having adverse levels of total cholesterol (CHOL:
200 mg/dL) and triglyceride (TRIG: 150 mg/dL) com-
paring the highest vs. the lowest quintiles of ERS and
individual pollutants that compose the ERS. Models were
adjusted for age, gender, race/ethnicity, education, BMI, and
phenotype-specific micronutrients.

(PDF)

Table S1 Environmental pollutants evaluated in the
present study (n=134).
(PDF)

Table 82 Spearman correlation coefficients between
four phenotypes.
(PDF)
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