
Environmental Risk Score as a New Tool to Examine
Multi-Pollutants in Epidemiologic Research: An Example
from the NHANES Study Using Serum Lipid Levels
Sung Kyun Park1,2*, Yebin Tao3, John D. Meeker2, Siobán D. Harlow1, Bhramar Mukherjee3

1 Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America, 2 Department of Environmental Health

Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America, 3 Department of Biostatistics, University of Michigan School of

Public Health, Ann Arbor, Michigan, United States of America

Abstract

Objective: A growing body of evidence suggests that environmental pollutants, such as heavy metals, persistent organic
pollutants and plasticizers play an important role in the development of chronic diseases. Most epidemiologic studies have
examined environmental pollutants individually, but in real life, we are exposed to multi-pollutants and pollution mixtures,
not single pollutants. Although multi-pollutant approaches have been recognized recently, challenges exist such as how to
estimate the risk of adverse health responses from multi-pollutants. We propose an ‘‘Environmental Risk Score (ERS)’’ as a
new simple tool to examine the risk of exposure to multi-pollutants in epidemiologic research.

Methods and Results: We examined 134 environmental pollutants in relation to serum lipids (total cholesterol, high-density
lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides) using data from the National
Health and Nutrition Examination Survey between 1999 and 2006. Using a two-stage approach, stage-1 for discovery
(n = 10818) and stage-2 for validation (n = 4615), we identified 13 associated pollutants for total cholesterol, 9 for HDL, 5 for
LDL and 27 for triglycerides with adjustment for sociodemographic factors, body mass index and serum nutrient levels.
Using the regression coefficients (weights) from joint analyses of the combined data and exposure concentrations, ERS were
computed as a weighted sum of the pollutant levels. We computed ERS for multiple lipid outcomes examined individually
(single-phenotype approach) or together (multi-phenotype approach). Although the contributions of ERS to overall risk
predictions for lipid outcomes were modest, we found relatively stronger associations between ERS and lipid outcomes
than with individual pollutants. The magnitudes of the observed associations for ERS were comparable to or stronger than
those for socio-demographic factors or BMI.

Conclusions: This study suggests ERS is a promising tool for characterizing disease risk from multi-pollutant exposures. This
new approach supports the need for moving from a single-pollutant to a multi-pollutant framework.
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Introduction

Over the last several decades, numerous environmental

pollutants have been examined as potential risk factors for various

diseases and health responses. Most studies have focused on single

pollutants, that is, examining a single factor or a set of species (e.g.,

arsenic species; polychlorinated biphenyl (PCB) congeners).

However, in real life we are exposed to multiple pollutants and

pollutant mixtures, not single pollutants. This complex exposure

profile may have additive, synergistic or antagonistic effects which

are not being detected by single pollutant approaches. In addition,

the impact of combined exposures to multiple pollutants may

differ from the sum of the impacts from single pollutant

assessments [1].

A main issue of the single pollutant approach in epidemiologic

research is that it is prone to confounding. For example, the health

effects of PCBs are subject to confounding by methylmercury if

participants were co-exposed to both toxicants from fish

consumption. This example also suggests that beneficial nutrients

such as omega-3 fatty acids may confound the toxic effects by

PCBs and methylmercury [2,3]. Therefore, a positive association

in a single pollutant approach may be observed if the single

pollutant is a proxy for other co-pollutants or a mixture of

pollutants. Alternatively, if individual pollutants have relatively

small effects but multiple pollutants as a whole influence the

disease risk, the single-pollutant approach may not capture the

true effects [4].

Recently, several studies have examined multiple pollutants.

Patel and colleagues adopted an approach widely used in
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analyzing high-throughput genotype data, genome-wide associa-

tion study (GWAS), and proposed an Environment-Wide Association

Study (EWAS) to examined wide ranges of environmental factors

including toxic chemicals as well as nutrients in relation to type-2

diabetes [5], lipid profiles [6], blood pressure [7] and all-cause

mortality [8] using data from the National Health and Nutrition

Examination Survey (NHANES). This systematic approach

avoided a potential bias from selective reporting of subsets of

analyses, outcomes, and adjustments [6]. Another EWAS

approach which examined 76 environmental and lifestyle factors

in relation to metabolic syndrome was conducted in Sweden [9].

Although these EWAS studies have yielded intriguing results, the

statistical analyses were still based on single pollutant approaches.

Multi-pollutant models were not considered. Of note, unlike

GWAS with millions of markers, current EWAS studies have a

moderate number of exposures and are not really comprehensive

or ‘‘ultra high-dimensional’’ in nature. Similarly, misclassification,

measurement error, temporal variations, and incomplete exposure

data are inherent challenges to an EWAS study that modern

genotyping techniques have overcome in GWAS.

Sun et al. [10] considered a number of statistical strategies to

examine multiple pollutants and their interactions using regression

methods for high-dimensional covariates, such as least absolute

shrinkage and selection operator (LASSO) [11], Bayesian model

averaging (BMA) [12] or supervised principal component analysis

(SPCA) [13]. This study showed that LASSO and other dimension

reduction techniques worked well for estimating risk models when

a large number of candidate pollutants exist. Elastic-net method

[14] or the adaptive elastic-net method [15] were proposed to take

into account the issue of multi-collinearity when highly correlated

predictors are fit simultaneously.

Another challenge in quantifying the health effects of multi-

pollutant exposure is how to estimate the risk of adverse health

responses from multiple pollutants. As stated above, single

pollutant approaches and even EWAS in which the unit of

analysis is based on a single pollutant have had small to modest

effect sizes. The challenge is to construct the disease risk from

exposure to multiple environmental risk factors [16–18]. Some

advances have been made in the air pollution area (air pollution

mixtures). For example, in the indicator approach one pollutant

represents the combined exposure to several pollutants [19,20]; or,

in the source apportionment approach particle constituents are

assigned to emission sources using principal component analysis

and hierarchical clustering [21,22]. However, these approaches do

not account for a wide range of environmental pollutants.

In the general context of risk factor epidemiology, risk

prediction models, such as the Framingham risk score for coronary

heart disease [23] and genetic risk scores (a.k.a Genetic Risk

Prediction Studies (GRIPS)) [24–29], have been widely used.

Following from these ideas, it would be interesting to assess the

predictive ability of an ‘‘Environmental Risk Score’’ as a follow-up to

an EWAS study after identifying environmental pollutants

significantly associated with health outcomes. A risk score may

also facilitate targeting of preventive interventions [27].

Here, we propose an ‘‘Environmental Risk Score (ERS)’’ as a

new tool to examine the risk of exposure to multi-pollutants in

epidemiologic research. As a ‘‘proof of concept’’, we used

environmental biomonitoring data from NHANES to illustrate

our methodology because it includes a wide range of environ-

mental pollutants from representative U.S. populations and

independent data from different cycles enabled us to discover

and validate our findings. As outcomes, we examined serum lipid

levels including total cholesterol, high-density lipoprotein choles-

terol (HDL), low-density lipoprotein cholesterol (LDL) and

triglycerides, because these are continuous measures that can be

dichotomized at clinically relevant cutoff points, allowing us to

evaluate both continuous and binary outcomes. These outcomes

were used in the previous EWAS by Patel et al. [6]. We focused on

environmental pollutants in this study rather than a broader array

of environmental exposures including dietary, behavioral, psycho-

social, socioeconomic and neighborhood, and microorganismic

factors, which may limit the feasibility and applicability of ERS.

Instead, we treated important determinants of lipid outcomes such

as age, sex, race/ethnicity, education (an indicator of socioeco-

nomic factor), body mass index (BMI), and selected dietary

nutrients as covariates and confounding factors. The methodology

can of course be generalized when the agnostic search for

important predictors is expanded to a broader set of exposures

capturing personal and community environment.

As the primary goal of the present study is to introduce this

novel approach rather than to estimate and generalize actual risks

in the U.S. population, and as some of the statistical procedures

used in our approach are not equipped with automated handling

of survey weights, we did not account for the complex sampling

design and used conventional regression modeling. Biomonitoring

data in NHANES were not measured in all participants; some

pollutants were measured only in a subset (e.g., one third) and

different kinds (classes) of pollutants were measured in different

subsets in order to reduce the burden of examinations, which

limits the sample size for this multi-pollutant model. To maximize

the power of the proposed approach, we imputed unmeasured or

missing pollutant data. For these reasons, our findings should be

cautiously interpreted as potential associations. Another new

feature of the present study is that we examined 4 lipid outcomes

separately (single-phenotype approach) as well as all 4 lipid

outcomes together as a whole (multi-phenotype approach). This

multi-phenotype approach can also help improve the power to

detect modest individual effects of environmental pollutants and

reduce the burden of multiple testing [30–32].

Methods

Ethics Statement
NHANES is a publicly available data set and all participants in

NHANES provide written informed consent, consistent with

approval by the National Center for Health Statistics Institutional

Review Board.

Data
We obtained all publicly available data from the NHANES

website (http://www.cdc.gov/nchs/nhanes.htm). Following the

two-stage design as in genome-wide association studies [33], we

selected three NHANES cycles, 1999–2000, 2001–2002, and

2005–2006 as stage 1 samples and NHANES 2003–2004 as stage

2 samples, because not all measures of environmental pollutants

are available in all cycles and the 2003–2004 cycle had the largest

number of shared pollutants. We restricted the sample to adults

aged 20 years or older and did not include children in this study.

We focused on the 149 environmental pollutant variables that

were measured in both stage 1 and 2 samples. The basic idea of an

EWAS, like GWAS, is to conduct an agnostic search in a broad set

of environmental compounds without any prior belief or

hypothesis regarding the effects related to a given outcome. As

our study was based on such a non-targeted approach and had no

a priori assumption of the association directions, chemicals known

to be less toxic, such as arsenosugars, were not screened out. For

the concentrations below the National Centers for Health Statistics

(NCHS) documented limit of detection (LOD), the values of each
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pollutant’s LOD/!2 were replaced. We eliminated 15 variables

that had more than 90% of the observations missing (including

missing due to below LOD), leaving 134 pollutants available for

our analysis (Table S1). As stated above the four outcome variables

included total cholesterol, HDL, LDL and triglycerides. Important

covariates were chosen a priori and included age, sex, race/

ethnicity (Mexican American, Other Hispanic, non-Hispanic

white, non-Hispanic black, Other), education (categorized to less

than high school diploma, high school diploma, and greater than

high school diploma), BMI, and NHANES cycle. We selected

education as an indicator of socioeconomic status because it is

widely used and has less missing data than other proxies, such as

household income or poverty income ratio. We also considered 21

blood measures of micronutrients (vitamins and isoflavone

compounds), some of which were identified to predict serum

lipids in the previous EWAS [6]. We imputed our data with a

sequential imputation strategy using IVEWARE where the

variables to be imputed were treated as the outcomes and all

other variables were used as predictors [34,35]. Since we used the

data solely for an illustrative purpose, we used only one imputed

dataset. The distributions of the data before and after imputation

were similar (see File S1 for more details). The sample sizes after

imputation were 10818 for the stage 1 sample and 4615 for the

stage 2 sample. We applied logarithmic transformation with base

10 to the continuous outcomes and pollutant levels because of

skewness in the distributions of the raw values.

Discovery Process of Environmental Factors Contributing
to ERS for Single Phenotype

1. Choice of covariates and micronutrients. Our base

model included age, gender, race/ethnicity, education and BMI as

was also done by Patel et al. [5,6]. Then we selected important

micronutrients corresponding to each phenotype using the full

data (stage 1 and 2 samples combined). Specifically, we first

regressed each phenotype on the set of covariates in the base

model to obtain the residuals, and then used the residuals as the

outcome to select the micronutrients. For micronutrient selection

we applied the Bayesian model averaging technique (BMA) to

jointly analyze all micronutrients and select the ones with posterior

inclusion probability greater than 0.8 (see Sun et al. [10] for

details). Other simpler methods (e.g., best subset regression) may

also be used at this step.

2. Single-pollutant models. We selected environmental

pollutants for each lipid outcome with adjustment for base

covariates and outcome-specific micronutrients. Specifically, for

subject i (i = 1, …, N), let Yi represent one given phenotype, Ei be

one given environmental pollutant, and Zi (k61) be the vector of

base covariates and micronutrients. The fitted single-pollutant

model was

Yi~b0zb1Eizb
0
2Ziz"i, ð1Þ

where "i ~N(0,s2). We adopted a two-stage analyses strategy

following Skol et al. [36] using the model in (1). In stage 1, we

analyzed the single-pollutant model for every pollutant using stage

1 samples and calculated the standard Wald test statistic z1

corresponding to b̂b1. In stage 2, we only included pollutants with

|z1| . C1 (pre-defined significance threshold). For each of these

chosen pollutants, we repeated the same regression analysis using

stage 2 samples, and calculated Wald test statistics z2 correspond-

ing to b̂b1. Finally, we conducted joint analysis to combine z1 and z2

and get a new statistic that allows for between-stage heterogeneity

[36],

zjoint~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psamples
p

z1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{psamples

p
z2, ð2Þ

where psamples was the proportion of samples in stage 1 (0.7 in our

case). zjoint was compared with a significance threshold Cjoint.

Thresholds C1 and Cjoint were selected to control for the false

positive rate. Details for the calculation can be found in Skol et al.

[36]. Pollutants with |z1|.C1 and |zjoint|.Cjoint were selected for

ERS and in our study, we chose C1 and Cjoint to be 2.58 and 3.57,

respectively (corresponding to a significance level of 0.01 for the

Wald test in both stage 1 and stage 2 analyses). The choice of these

thresholds can be optimized for enhanced power at a given false

positive rate; however, we wanted to be liberal in the choice of

these thresholds. Our primary goal was to identify pollutants to be

included in the construction of the ERS that can be used for

prediction of health risks, not just identification of individual

pollutants, thus, we are less concerned about the false positive rate

of the discovery process at this step. We denote the set of pollutants

selected in this step as E s.

3. Conditional analysis via multi-pollutant

models. Motivated by the discovery strategy of additional

genetic loci via conditioning on the loci identified through

marginal association in GWAS [37], we further explored the

possibility of identifying additional pollutants not selected in the

previous two-stage analysis, in the presence of the previously

selected ones in a multivariate model. Specifically, for subject i, let

Ei
+ denote a pollutant not belonging to E s. The conditional model

is given by.

Yi~c0zc1Ez
i zc

0
2Es

i zc
0
3Zizei, ð3Þ

where ei ~N(0,t2). We repeated the two-stage analysis with this

conditional model for each pollutant not belonging to E s. We

calculated the same Wald test statistics and compared them to the

same thresholds to select additional exposures for ERS. We

denoted the set of pollutants selected in this step as E c, denoting

pollutants identified based on conditional analysis.

Construction of ERS and Assessment of its Predictive
Power

We conceptualized the ERS as a weighted sum of the exposures

identified by marginal and conditional analysis, namely, E s and Ec

i.e., for subject i, ERSi = ws’Ei
s + wc’Ei

c, where ws and wc are

vectors of weights corresponding to E s and E c, respectively. Given

that all exposure variables were log-transformed in the present

study, the weights (regression coefficients) are on a relative (ratio)

scale, not an absolute (difference) scale, and therefore the weights

did not need to be scaled. For comparability of the weights on an

absolute scale if exposure variables are linearly fit, they need to be

scaled (by either standard deviation or IQR).

To estimate the weights and evaluate the performance of ERS,

we randomly split the full data (all cycles combined) by a 3:1 ratio:

the larger part (n = 11586) used for estimation/training and the

smaller part (n = 3847) for validation/testing. We considered two

types of weights. ERS1 used regression coefficients from single-

pollutant models for each pollutant in the E s and E c sets as

weights, while ERS2 used regression coefficients from a multi-

pollutant model that included all members of Es and E c

simultaneously. The weights of ERS1 and ERS2 were both

adjusted for base covariates and phenotype-specific micronutri-

ents. ERS1 and ERS2 differ in terms of the weights corresponding

to each pollutant, in particular, the weights in ERS2 are taking

into account correlation among the pollutants in the entire E s and

Environmental Risk Score
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Figure 1. Schematic plot of statistical methods for Environmental Risk Score.
doi:10.1371/journal.pone.0098632.g001
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E c sets. We estimated the weights using the training data and

calculated the ERS in the validation data based on those weights

to avoid issues of over-fitting. We realize that the multiple

regression model that includes both E s and E c with adjustment for

base covariates and phenotype-specific micronutrients may have

some redundant variables in terms of statistical significance, and a

further variable selection step may lead to a smaller model and a

more concise measure of ERS. We wanted to retain all the

identified pollutants in both versions of ERS and thus refrained

from applying this additional model selection step in constructing

the weights from the multivariate model.

We evaluated the performance of ERS using three metrics. In

each case, the contribution of ERS was measured in the presence

of base covariates and micronutrients retained in the model. First,

we used linear regression with the continuous phenotype outcome

and continuous version of the ERS, with R2 and the predicted

residual sums of squares (PRESS) statistic measuring model fit.

Second, we dichotomized the levels of the phenotypes as high vs.

low (200 mg/dL for total cholesterol; 40 mg/dL (male) or 50 mg/

dL (female) for HDL; 130 mg/dL for LDL; and 150 mg/dL for

triglycerides [38]), and conducted logistic regression analysis with

this dichotomized outcome and with continuous ERS as predictor.

We used area under the receiver operating characteristic (ROC)

curve or AUC to assess predictive ability of the ERS with these

binary endpoints. In each of the above two metrics we compared a

sequence of models, with only base covariates, base covariates +
micronutrients, base covariates + micronutrients + ERS. Note that

the above two metrics measure overall prediction, aggregated over

all subjects. A bootstrap resampling (2000 iterations) was used to

compute 95% confidence intervals of AUCs for different models

[39] (the ci.auc() function in the pROC package in R [40]).

In order to assess risk stratification/discrimination power of the

ERS we further categorized ERS by its quintiles and conducted

logistic regression for the binary phenotype and categorical ERS.

We used the odds ratio (OR) for the highest quintile vs. the lowest

quintile of ERS to measure the risk stratification properties of

ERS.

Extension to Multiple Phenotypes
Since we are dealing with multiple lipid outcomes that are

correlated, a natural question may be to investigate whether

simultaneously analyzing the phenotypes lead to methods with

superior/different performance. In this step we used four

phenotypes together to select environmental pollutants by

multivariate regression. The micronutrients adjusted for were the

union of all phenotype-specific micronutrients selected in Section

1. Specifically, for subject i, the multivariate single-pollutant model

is.

~YYi~~aa0z~aa1Eiz~aa2Wiz~""i, ð4Þ

where ~YYi is the 461 vector of phenotypes, ~aa0 and ~aa1are 461

vectors of intercepts and regression coefficients for one given

pollutant, respectively, ~aa2 is the 46 m matrix of regression

coefficients for base covariates and micronutrients W, (m61) and

~EEi
~NN(0,S4|4). Similar to the single-phenotype method, we also

applied the two-stage analysis. In stage 1, we analyzed the

multivariate single-pollutant model for every pollutant using stage

1 samples and calculated the likelihood ratio Chi-squared test

statistic with 4 degrees of freedom, namely, x1 comparing the

multivariate single-pollutant model with the base model (~aa1 = 0).

In stage 2, we repeated the same analysis using stage 2 samples,

but only for pollutants with |x1| . C�1 (pre-defined significance

threshold), and calculated the same likelihood ratio test statistic x2.

We also used equation (2) (replace z with x) to calculate xjoint which

was compared with a significance threshold C�joint. Again,

thresholds C�1 and C�joint were selected to control the false positive

rate and we set them to be 13.3 and 18.4, respectively

(corresponding to a significance level of 0.01 for the chi-squared

test with 4 degrees of freedom in each stage).

Similarly, we also conduct the conditional analysis using the

multivariate multi-pollutant model adjusted for pollutants selected

in the previous step, base covariates and micronutrients. We

calculated the same likelihood ratio test statistics and compared

them to the same thresholds to select additional exposures for

ERS.

The ERS consists of pollutants selected in the multivariate

single- or multi-pollutant analyses. Its construction and assessment

steps were the same as in Section 2. A schematic representation of

the procedures is presented in Figure 1.

Results

Table 1 shows population characteristics of the stage 1 and 2

samples. Mean (SD) age and the proportion female were 48 (18.7)

years and 53.5% in Stage 1 and 50 (19.5) years and 51.9% in

Stage 2, respectively. The mean BMI was 28.4 kg/m2 in both

Stages. The Stage 1 samples included more Mexican American

and other Hispanic and were less educated than the Stage 2

samples. Participants in the Stage 1 had lower HDL (53.0 vs. 54.7

mg/dL) and higher triglycerides (150.2 vs. 140.0 mg/dL) than

those in the Stage 2. Total cholesterol was highly correlated with

LDL (Spearman correlation coefficient (rho) = 0.86) but modestly

correlated with HDL (rho = 0.16) and triglycerides (rho = 0.37)

(Table S2). HDL was inversely correlated with triglycerides

(rho = –0.42).

Of 31 micronutrient measures in blood, we identified 12

significant predictors for total cholesterol, 9 for HDL, 9 for LDL

and 11 for triglycerides (Table S3). Measures of B vitamins (folate,

B12, methylmalonic acid), vitamin A (retinol, retinyl palmitate,

retinyl stearate), carotenoids (a-carotene, b-carotene, b-crypto-

xanthin, lutein/zeaxanthin, lycopene), and/or vitamin E (a- and

c-tocopherol) were selected for each lipid outcome. These

phenotype-specific nutrient variables along with the pre-selected

base covariates were adjusted for when identifying environmental

pollutants for ERS.

Discovery of Environmental Pollutants for ERS
Table 2 shows environmental pollutants that reached the

significance threshold (Cjoint of 0.01) for each lipid outcome and

their estimated weights (regression coefficients) for ERS from

single-pollutant models (ERS1) and a multi-pollutant model

(ERS2). Figure S1 presents visual distributions of the P values

for the individual environmental pollutants examined in the Stage-

1 samples (Manhattan plot [41]). Out of 134 environmental

pollutants, 11, 9, 5 and 23 pollutants were significantly associated

with total cholesterol, HDL, LDL, and triglycerides, respectively,

in single pollutant models (marginal analyses) with adjustment for

the base covariates and phenotype-specific nutrients. Note that the

weights in Table 2 are the regression coefficients for each log-

transformed exposure in relation to the log-transformed lipid

outcome, which are not directly interpretable. Generally, percent

changes for a two-fold increase in exposure concentrations are

presented as [exp(regression coefficient6log(2)) –1]6100%. For

example, a two-fold increase in blood lead was associated with a

19% higher levels of total cholesterol ([exp(1.716log(2)) –

1]6100% = 19%). Since we used these weights to construct

Environmental Risk Score
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ERS rather than interpret the associations of individual pollutants,

we presented the direct weights rather than more interpretable

estimates (percent changes). Also note that less significant

associations in ERS2 compared with ERS1 are mainly due to

lower power due to fitting of a larger model with larger number of

parameters and with multiple pollutants that are potentially

correlated. Two pollutants (1,2,3,4,6,7,8-HpCDD and PCB 177)

for total cholesterol and 4 pollutants (PCB 118, PCB 138, PCB

153 and 3,3,4,4,5,5-PnCB) for triglycerides were additionally

identified in conditional analyses in which the pollutants selected

in the previous two-stage analyses were included as covariates. No

further pollutants were identified in relation to HDL and LDL in

the conditional analyses. Therefore, a total of 13 pollutants for

total cholesterol, 9 for HDL, 5 for LDL and 27 for triglycerides

were identified and used to construct ERS for each outcome.

Various persistent organic pollutants (POPs) were positively

associated with total cholesterol and triglycerides and inversely

associated with HDL in single-pollutant models but the association

directions for some POPs (2,3,4,7,8-PnCDF, 3,3,4,4,5-HxCB,

PCB 138, PCB 146, PCB 156, PCB 177, PCB 180, and PCB 183)

changed in the multi-pollutant model, probably due to multi-

collinearity. Phthalates were inversely associated with HDL.

Cadmium and lead were associated with lipid outcomes in

expected directions, that is, higher concentrations of cadmium and

lead were associated with higher levels of lipid outcomes except the

association between lead and HDL (good cholesterol) which was

positive. Interestingly, the mercury (blood total and urinary) and

arsenobetaine measures were inversely associated with triglycer-

ides; as were perfluoroheptanoic acid and diethylphosphate with

LDL.

Risk Prediction by ERS and its Associations with Lipid
Outcomes

The ERS’s from single-pollutant models ranged from 20.068 to

0.239 (mean6SD = 0.09060.043) for total cholesterol (fit as a

continuous outcome (log-transformation). Same for other out-

comes); 20.226 to 0.205 (0.03060.057) for HDL; 20.059 to

0.195 (0.08860.029) for LDL; and 21.278 to 0.563 (–

0.44560.228) for triglycerides. Those from a multi-pollutant

model ranged from 20.009 to 0.135 (0.05860.019) for total

cholesterol; 20.013 to 0.152 (0.06160.022) for HDL; 20.054 to

0.183 (0.08660.027) for LDL; and 20.291 to 0.339 (–

0.00960.082) for triglycerides (Table S4). The ERS2 were

generally smaller than the ERS1 because of more inverse

associations in ERS2.

Table 3 presents risk prediction measures by ERS when

outcomes were continuous (R2 and PRESS) and dichotomized

(AUC). Base covariates and micronutrients explained approxi-

mately 13% of the variation for LDL, 26% for HDL, 33% for total

cholesterol and 37% for triglycerides. ERS constructed with

Table 1. Population characteristics by two stage samples.

Variable Stage 1 Samples (n = 10818) Stage 2 Samples (n = 4615)

Continuous (Mean (SD))

Age (years) 48.0 (18.7) 50.3 (19.5)

BMI (kg/m2) 28.4 (6.4) 28.4 (6.3)

Total cholesterol (mg/dL) 201.8 (43.9) 202.0 (44.0)

HDL (mg/dL) 53.0 (16.3) 54.7 (16.3)

LDL (mg/dL) 118.9 (37.8) 119.9 (38.1)

Triglycerides (mg/dL) 150.2 (135) 140.0 (139)

Categorical (N (%))

Gender

Male 5029 (46.5) 2220 (48.1)

Female 5789 (53.5) 2395 (51.9)

Race/Ethnicity

Non-Hispanic White 5397 (49.9) 2447 (53.0)

Mexican American 2433 (22.5) 925 (20.0)

Non-Hispanic Black 2121 (19.6) 905 (19.6)

Other Hispanic 498 (4.6) 139 (3.0)

Others 369 (3.4) 199 (4.3)

Education

, High School 3383 (31.3) 1356 (29.4)

High School 2522 (23.3) 1159 (25.1)

College or Above 4913 (45.4) 2100 (45.5)

Study Year

1999–2000 3089 (28.5) -

2001–2002 4736 (43.8) -

2003–2004 - 4615 (100)

2005–2006 2993 (27.7) -

HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
doi:10.1371/journal.pone.0098632.t001
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coefficients from single-pollutant models (ERS1) additionally

explained variations from 0.33% for LDL to 0.72% for

triglycerides. Addition of ERS1 decreased the PRESS by from

0.33% [(539.62–537.84)/539.62] for LDL to 1.1% [(967.24–

956.76)/967.24] for triglycerides. When the dichotomous out-

comes were used, the addition of the ERS1 only minimally

modestly improved the AUC for each lipid outcome (Table 3 and

Figure S2). Similar results were found with the ERS constructed

with coefficients from multi-pollutant models (ERS2). Similar risk

predictions were observed in the multi-phenotype approach

although six new pollutants were identified in the multi-phenotype

approach (Table S5).

Table 4 shows ORs of having adverse levels of lipid outcomes

comparing the highest vs. the lowest quintiles of ERS. After

controlling for base covariates and micronutrients, ORs of total

cholesterol comparing the highest vs. the lowest quintiles were

from 1.45 (95% confidence interval (CI), 1.11, 1.89) for ERS1 and

single-phenotype approach to 1.78 (95% CI, 1.34, 2.37) for ERS1

and multi-phenotype approach. For HDL, ORs ranged from 1.37

(95% CI, 1.08, 1.75) for ERS1 and single-phenotype approach to

1.57 (95% CI, 1.23, 1.99) for ERS2 and multi-phenotype

approach. For LDL, the highest quintile had a 82% higher odds

of having high LDL levels (95% CI, 1.39, 2.38) compared with the

lowest quintile in single-phenotype approaches, whereas the

associations were relatively weak in multi-phenotype approaches

(OR = 1.36 (95% CI, 1.06, 1.74) for ERS1 and 1.26 (95% CI,

0.97, 1.64) for ERS2). For triglycerides, ORs ranged from 1.54

(95% CI, 1.15, 2.06) for ERS2 and single-phenotype approach to

2.03 (95% CI, 1.52, 2.70) for ERS2 and the multi-phenotype.

These ORs were comparable to or even stronger than those for

socio-demographic factors or BMI (Table S6). For example, the

OR of the association between total cholesterol and ERS from

single-pollutant models (1.45) was consistent with ORs for females

vs. males (1.47); for non-Hispanic blacks vs. non-Hispanic white

(1.42); and for a 30 kg/m2 increase in BMI (1.47); and stronger

than ORs for ,high school vs. college or higher (1.20).

Figure 2 shows ORs of having adverse levels of HDL and LDL

for individual pollutants that compose the ERS. Three out of the 9

pollutants (antimony, mono-benzyl phthalate, mono-(3-carboxyl-

propyl) phthalate) had significant positive associations with the

odds of HDL, the rest except for blood lead had weak non-

significant positive associations and blood lead had a weak non-

significant inverse association. One of the 5 pollutants (blood lead)

had a significant positive association with the odds of LDL and the

rest had weak non-significant associations. In particular, the effect

sizes of ERS’s in relation to LDL were larger than any of the effect

sizes of individual pollutants. Here we present ORs of HDL and

LDL because their ERS’s comprise the smaller number of

pollutants (9 and 5 pollutants each). The plots for total cholesterol

and triglycerides are shown in Figure S3.

Discussion

In this study, we propose an Environmental Risk Score (ERS) as

a novel approach that integrates information on the health effects

of multiple pollutant exposures. We used serum lipid measures and

various classes of pollutant biomonitoring data from NHANES to

illustrate and validate this approach. Important environmental risk

factors for lipid outcomes were identified individually (single-

phenotype approach) or together (multi-phenotype approach)

while controlling for socio-demographic risk factors and nutrients.

Although the contributions of ERS to overall risk predictions for

lipid outcomes (i.e., R2, PRESS and AUC) were modest after

accounting for important socio-demographic factors and nutrients,

we found relatively stronger associations between ERS and lipid

outcomes than with individual pollutants. The magnitudes of the

observed associations between ERS and lipid outcomes were

comparable to or stronger than those for socio-demographic

factors or BMI.

Although the importance of evaluating the health effects of

multi-pollutant exposures has recently been recognized [18,42],

only a few studies have been conducted, mostly focused on

multiple air pollutants [10,21,43–46], probably due to methodo-

logical challenges, such as collinearity, measurement errors,

potential interaction between pollutants and potential non-linear

exposure-health relationships [16]. Patel et al. adopted newer

techniques used in genomics and proposed an Environment-Wide

Association Study (EWAS) [5,6]. This approach provided

excellent insight to identify ‘top hit’ pollutants. However, few

epidemiologic studies have provided methods to estimate com-

bined effects or to predict risks from multi-pollutant exposure

[43,47].

Hong et al. examined the combined effects of 4 air pollutants

(particulate matter,10 mm (PM10), nitrogen dioxide (NO2), sulfur

dioxide (SO2), and ozone) by summing each pollutant concentra-

tion divided by its mean (i.e., relative concentrations) and then

fitting this index as an independent variable [47]. They found that

the combined index had a stronger association with mortality than

individual pollutants. In a study of indoor exposure to volatile

organic compounds (VOCs) and respiratory health, Billionnet et

al. computed a global VOC score of 20 VOCs by dichotomizing

individual VOC as 1 if greater than the 75th percentile and

otherwise 0 and then summing the 20 dichotomous VOCs, which

indicates the number of VOCs whose concentrations were

relatively high within the study population (range 0–17) [43].

Each additional VOC with a concentration higher than the 75th

percentile was associated with 7% (95% CI, 1.00–1.13) and 4%

(95% CI, 1.00–1.08) higher odds of asthma and rhinitis,

respectively. Although these studies evaluated the combined effects

of multi-pollutants, their approaches did not account for the

relative effects of individual pollutants on the phenotype of

interest, that is, each pollutant was not weighted depending on its

relative effect size. Our study aimed to obtain a more precise

relative effect size of each pollutant on each lipid outcome by

estimating the weights (regression coefficients) from a randomly

split training dataset and then computed ERS in an independent

validation dataset.

In the real-world, we are exposed to multiple pollutants which

may contribute to disease susceptibility in combination or as

mixtures. In contrast, individual pollutants may have relatively

small effects. Our study supports this notion that only a few

pollutants were significantly associated with serum lipids levels

while many individual pollutants had relatively weak associations

(Figure 2 and Figure S3). The ERS as a multi-pollutant approach

allows us to integrate those relatively small effects from multiple

pollutants and provides a better opportunity to identify subpop-

ulations that are at higher risk for diseases. We used multi-

pollutant information at different steps of our process. Our

discovery approach is different from Patel’s [5,6] as we performed

analysis with single pollutant models and then evaluated additional

pollutants conditional on the identified pollutants. We then formed

ERS using the set of all pollutants identified via this process using

the weights from assessing them one at a time (ERS1) and jointly

(ERS2). It appears that in terms of overall prediction, ERS1 and

ERS2 were very similar in performance (Table 3), however, ERS2

was often slightly better in terms of risk stratification (Table 4). It is

not possible to conclude definitively, without extensive and

exhaustive simulation studies, which one performs better. Also,
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one could modify ERS2 by filtering potentially correlated

predictors through variable selection, and reducing its variability.

Although high risk groups were identified by the ERS in the

present study, the ERS showed only modest improvement in lipid-

related risk prediction of above and beyond the effect of traditional

risk factors including sociodemographic and dietary factors (e.g.,

AUC improvements of 0.72 to 0.82, Table 3 and Table S5). This

finding may not be surprising because a marker with an OR of 3

or lower is usually a poor tool for classifying or predicting risk for

individuals [48]. In fact, the improvements of risk prediction/

classification by the ERS are similar to the AUC improvements for

coronary heart disease risk prediction by genetic risk scores (GRS)

found in the Atherosclerosis Risk in Communities (ARIC) (from

0.742 to 0.749), Rotterdam Study (from 0.729 to 0.734) and

Framingham Offspring Study (from 0.773 to 0.775) [49]. We also

point out that for GWAS studies, a polygenic risk score has also

contributed very modestly to risk prediction as measured by

increment in AUC or R2, however, similar risk stratification

properties across the quintiles of genetic risk scores have been

noted [23]. Nonetheless, our findings imply that ERS can better

determine potential risk stratification where individuals are at

increased risk of high lipid levels and related cardio-metabolic

diseases than single pollutant approaches. The proposed ERS may

allow us to identify susceptible subpopulations where targeted

interventions are necessary and could have the greatest benefits

[27].

Theoretically, a multiple phenotype approach always reduces

the number of tests that are conducted, and also increases power

by exploiting correlation across phenotypes. In our study, we

discovered that the multi-phenotype approach leads to elevated

ORs in Table 4, aiding with risk stratification. In general, if there

is correlation among the pollutants, the discovery approach based

on conditional associations may yield new results. If there is

correlation among the outcomes or different phenotypes, the

multi-phenotype approach, in spite of being a test with higher

degrees of freedom, will yield a more powerful analysis. For

example, six new pollutants were discovered with the multi-

phenotype approach in our case study.

Our study has numerous limitations. The individual pollutants

used to construct the ERS were identified in linear regression

models with log-transformation due to skewed distributions, which

assumes linear (in fact, log-linear) exposure-outcome relationships

for all individual pollutants. However, not all pollutants are

linearly associated with health outcomes, for example, some

pesticides and/or other endocrine disrupting chemicals may have

thresholds or non-monotonic dose-responses [50,51]. Pollutants

whose dose-responses were misspecified may not be selected and

not contribute to the ERS. Examining non-linearity in each of the

single pollutant models may identify new pollutants but construc-

tion of a simple weighted risk score like ERS would no longer be

possible, which led us to a linear regression based screening

strategy in this initial paper. Moreover the ERS itself may have a

non-linear association with the outcome when treated as a single

predictor. We used quintiles of ERS to somewhat address this issue

in the association models but a completely flexible generalized

additive model will be more appropriate from a statistical point of

view. We tried to retain simplicity in our approach for usability

and thus compromised on some finer points that may be expanded

upon in the future.

We did not consider pollutant-pollutant or pollutant-nutrient

interactions when important individual pollutants were selected.

Some pollutants may interact and have synergy. A well-known

example is cigarette smoking and asbestos on lung cancer [52,53].

On the other hand, beneficial nutrients may mitigate toxic effects
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of pollutants. For example, people with higher intake of

antioxidant vitamins, B-vitamins (folate and vitamin B12) or

omega-3 fatty acids had lower effects of air pollution [54–56].

Conventional statistical approach that includes cross-product

terms of two interacting factors may have low power and therefore

effect estimates would be unstable. A recent study by Sun et al.

[10] proposed statistical strategies to examine multi-pollutants and

their interactions using a two-stage model. Other dimension

reduction techniques may also work for estimating risk models

when a large number of pollutants and their interactions exist. A

planned future study accounting for pollutant-pollutant and

pollutant-nutrient interactions is expected to improve the model

prediction, and therefore, potentially the utility of ERS.

We used an arbitrary significance level of 0.01 to account for

false positive rate. One reason is that we wanted to allow

environmental pollutants that had even modest associations to be

included in the ERS. We conducted sensitivity analyses using

significance levels of 0.05 and 0.001 and applied these different

thresholds to the AUC as shown in Table 3. Under the significance

level of 0.05, 30 pollutants (vs. 13 under the significance of 0.01)

for total cholesterol; 16 (vs. 9) for HDL; 5 (vs. 5) for LDL; and 34

(vs. 27) for triglycerides were identified. However, the improve-

ment in the AUC and OR were minimal. Using a significance

level of 0.001, the number of pollutants identified decreased

substantially, especially for LDL. The decrease in AUC was

mainly for LDL while the decrease in OR was found for all

phenotypes. Therefore we chose the intermediate threshold of

0.01. Even higher significance levels (e.g., alpha of 0.1) have been

used as ‘‘pruning criteria’’ in genetic risk scores [57,58], therefore,

genetic markers conferring only modest levels of disease risk could

be aggregated in the risk score. In general, a liberal threshold is

often noted to perform better for prediction as compared to

controlling false discovery rate for identification of variables [59].

Table 4. Odds ratios (95% CIs) for environmental risk score (ERS) categorized by quintilea (n = 3847).

Phenotypeb Single-phenotype Approachc Multi-phenotype Approachd

ERS1e ERS2f ERS1e ERS2f

Total cholesterol 1.450 (1.112, 1.892) 1.722 (1.317, 2.252) 1.781 (1.337, 2.374) 1.564 (1.191, 2.054)

HDL 1.372 (1.077, 1.748) 1.450 (1.144, 1.838) 1.471 (1.142, 1.894) 1.565 (1.230, 1.990)

LDL 1.824 (1.394, 2.386) 1.820 (1.391, 2.381) 1.357 (1.061, 1.735) 1.262 (0.973, 1.637)

Triglyceride 1.843 (1.366, 2.487) 1.536 (1.147, 2.056) 1.758 (1.275, 2.424) 2.027 (1.521, 2.703)

aOdds ratios for dichotomized phenotype (high vs. low) comparing subjects with ERS in the top 20% to those in the bottom 20%, adjusted for covariates and
micronutrients.
bDichotomization thresholds: 200 mg/dL for total cholesterol, 40 mg/dL (male) or 50 mg/dL (female) for HDL, 130 mg/dL for LDL and 150 mg/dL for triglyceride.
cPollutants selected by single-phenotype regression (n = 13, 9, 5 and 27 for total cholesterol, HDL, LDL and triglyceride, respectively) to construct ERS, adjusted for
phenotype-specific micronutrients.
dPollutants selected by multi-phenotype regression (n = 45) to construct ERS, adjusted for union of selected micronutrients (n = 14).
eERS constructed with coefficient estimates from single-pollutant models as weights.
fERS constructed with coefficient estimates from multi-pollutant models as weights.
doi:10.1371/journal.pone.0098632.t004

Figure 2. Odds ratios (95% confidence intervals) of having adverse levels of HDL (40 mg/dL for men and 50 mg/dL for women) and
LDL (130 mg/dL) comparing the highest vs. the lowest quintiles of ERS and individual pollutants that compose the ERS. Models were
adjusted for age, gender, race/ethnicity, education, BMI, and phenotype-specific micronutrients.
doi:10.1371/journal.pone.0098632.g002
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Although we include many environmental pollutants that are

widespread and available in NHANES, we were not able to

account for all environmental pollutants as it is unrealistic, the data

were not available and not all environmental pollutants have been

identified as yet. Also, we limited our analysis to chemical

environmental pollutants in constructing the ERS. Recently, a

new concept of the exposome, that is, the totality of exposures over

the course of a lifetime, has been proposed [60–65] and the need

for more complete non-genetic exposure assessment in epidemiologic

research has been emerging, as emphasized in the strategic

themes defined by the National Institute of Environmental

Health Sciences (NIEHS) (http://www.niehs.nih.gov/about/

strategicplan/). Our proposed approach will be useful to identify

important individual factors and to combine their risks, which

eventually will advance our understanding of health responses to

the complex nature of multi-pollutant exposures.

Each individual pollutant has different degrees of measurement

error. Exposure measurement errors are generally non-differential

when the errors are independent of each other and the disease

status [66]. Therefore, it is expected that environmental pollutants

measured with less non-differential measurement error such as

those with lower temporal variability are more likely to be detected

(e.g., PCBs vs. phthalates). However, differential measurement

errors may occur when exposure measurement errors are not

independent because some of the effects of more poorly measured

exposures may be transferred to the effect estimates of better-

measured exposures [67]. In addition, most of the pollutant

variables used in our study are subject to a limit of detection

(LOD). Several ad hoc substitution methods, such as substitution of

LOD/2 or LOD/!2 for values below LOD, are widely used

(NHANES used LOD/!2). These ad hoc methods, however, can

lead to bias especially when the proportion of values below LOD is

high [68]. Maximum likelihood estimation based on a parametric

joint distribution assumption for all the exposures, for example,

multivariate normal distribution, may reduce potential bias if the

parametric distribution assumption is correct [69].

Exposure data were collected cross-sectionally at one point in

time, yet exposures are subject to temporal variation. This issue

becomes particularly important when examining health effects of

non-persistent short-lived environmental pollutants, such as BPA

and phthalates. A recent study of urinary BPA and type-2 diabetes

using three NHANES cycles found a significant association which

was confirmed in one cycle (2003–2004) but not in the other two

cycles. This finding indicates possible exposure misclassification

due to a single urine sample [70]. Reliable exposure biomarker

data assessed based on repeatedly collected samples is warranted

to reduce exposure misclassification.

We did not consider differential risk prediction in different

subpopulations. Emerging evidence suggests that certain sub-

groups may be more responsive to environmental pollutant

exposure. Women are known to take up more divalent metals

such as lead and cadmium due to iron depletion [71]. Stronger

associations between lead and hypertension have been found in

some racial/ethnic populations [72,73]. Sex- or race/ethnic

group-specific biological differences, such as differences in body

iron and estrogen levels between men and women, or socially

determined gender- or race/ethnic group differences, such as

different psychosocial stress levels, may confer susceptibility to

health responses to pollutant exposures [74,75]. Sex-specific or

race/ethnic group-specific ERS’s may provide better risk predic-

tion as well as risk assessment.

Our results may be biased due to residual confounding. Urinary

creatinine adjustment has been recommended for urinary

biomarkers to correct for dilutions of pollutant concentrations in

spot urine samples [76]. The main purpose of the present study is

to introduce a novel ERS approach as a proof of concept

illustration rather than to identify potential environmental factors

related to health outcomes and estimate the associations as done in

previous EWAS. Variance may be somewhat underestimated and

the observed findings may not be generalizable to the US

population.

Because not all environmental pollutants were measured in the

entire population, we imputed unmeasured or missing pollutant

data to maximize the power. We used a single imputation because

our main goal was to introduce the approach of ERS, but multiple

imputations after taking the uncertainty in imputed values into

account would be a more appropriate approach. Imputation may

be necessary for meta-analyses of multiple ERS studies in the

future because it is unlikely that every cohort has a uniform set of

pollutants measured. Careful data harmonization and imputation

may increase the power of the analysis if correlated exposures and

covariates are observed in one cohort that are predictive of

exposures in another cohort where those exposures are missing.

However, the imputation issue will merit a complete paper in its

own right, as imputation with high dimensional data is still very

much an evolving topic in statistical research [77]. In summary,

the present study suggests ERS is a promising tool for integrating

disease risks from multi-pollutant mixture exposures. The ERS is a

simplest form of data reduction, characterizing the summary

exposure burden like a polygenic risk score in genetics [27]. This

new approach supports the need for moving from a single-

pollutant to a multi-pollutant framework for new discoveries and

better risk stratification. Combining information from ERS along

with known predictors can improve disease prediction. Also, the

ERS along with genetic risk score can potentially provide a way to

reduce dimension and increase the power in studies of gene-

environment interaction. More generally, ERS can be taken as a

measure of summary/background burden of environmental

exposure and it will be interesting to explore whether the effect

of a certain gene, behavioral factors (diet, physical activity,

smoking) or another pollutant is larger if individuals are in the

highest quartile of ERS. The contribution of ERS to risk

prediction and classification warrants further studies.

Data Sharing: The data and codes used for illustration of our

approach are available at http://www-personal.umich.edu/

bhramar/software/.

Supporting Information

Figure S1 Manhattan plots representing the P value
distributions of the individual environmental pollutants
examined using the stage 1 samples. Y-axis indicates –

log10(p-value) of the regression coefficient for each of the

environmental pollutants, adjusted for age, gender, race/ethnicity,

education, body mass index and phenotype-specific micronutri-

ents. The horizontal dotted line represents the p-value of 0.01. X-

axis indicates 13 classes of environmental pollutants: 1) heavy

metals; 2) phthalates; 3) environmental phenols; 4) polycyclic

aromatic hydrocarbons (PAHs); 5) volatile organic compounds

(VOCs); 6) perfluorinated compounds (PFCs); 7) dioxins and

furans; 8) dioxin-like polychlorinated biphenyls (PCBs); 9) non-

dioxin-like PCBs; 10) organochlorine pesticides; 11) organophos-

phate dialkyl metabolites; 12) herbicides; and 13) pesticides

phenols. Each color represents one class.

(PDF)

Figure S2 Receiver operating characteristic (ROC)
curves for four phenotypes. The dotted line denotes the null

curve. The black curve is for the model with only covariates. The
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blue curve is for the model with both covariates and phenotype-

specific micronutrients. The red curve is for the model with

environmental risk score (ERS), covariates and phenotype-specific

micronutrients.

(PDF)

Figure S3 Odds ratios (95% confidence intervals) of
having adverse levels of total cholesterol (CHOL:
200 mg/dL) and triglyceride (TRIG: 150 mg/dL) com-
paring the highest vs. the lowest quintiles of ERS and
individual pollutants that compose the ERS. Models were

adjusted for age, gender, race/ethnicity, education, BMI, and

phenotype-specific micronutrients.

(PDF)

Table S1 Environmental pollutants evaluated in the
present study (n = 134).

(PDF)

Table S2 Spearman correlation coefficients between
four phenotypes.

(PDF)

Table S3 Micronutrients selected for each phenotype
using Bayesian model averaging (BMA).
(PDF)

Table S4 Distributions of Environmental Risk Scores
(ERS) (n = 3847).
(PDF)

Table S5 Risk prediction by continuous environmental
risk score (ERS) using multi-phenotype approacha

(n = 3847).
(PDF)

Table S6 Regression outputs for each lipid outcome in
relation to ERS1.
(PDF)

File S1 Diagnostic Analysis for the Imputation.
(PDF)
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